• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends.  This makes it easier to access the data and
12 // provides a single place that needs to check it for validity.  All of these
13 // classes abort on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodeGenTarget.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include <algorithm>
26 using namespace llvm;
27 
28 static cl::opt<unsigned>
29 AsmParserNum("asmparsernum", cl::init(0),
30              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
31 
32 static cl::opt<unsigned>
33 AsmWriterNum("asmwriternum", cl::init(0),
34              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
35 
36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
37 /// record corresponds to.
getValueType(Record * Rec)38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
39   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
40 }
41 
getName(MVT::SimpleValueType T)42 std::string llvm::getName(MVT::SimpleValueType T) {
43   switch (T) {
44   case MVT::Other:   return "UNKNOWN";
45   case MVT::iPTR:    return "TLI.getPointerTy()";
46   case MVT::iPTRAny: return "TLI.getPointerTy()";
47   default: return getEnumName(T);
48   }
49 }
50 
getEnumName(MVT::SimpleValueType T)51 std::string llvm::getEnumName(MVT::SimpleValueType T) {
52   switch (T) {
53   case MVT::Other:    return "MVT::Other";
54   case MVT::i1:       return "MVT::i1";
55   case MVT::i8:       return "MVT::i8";
56   case MVT::i16:      return "MVT::i16";
57   case MVT::i32:      return "MVT::i32";
58   case MVT::i64:      return "MVT::i64";
59   case MVT::i128:     return "MVT::i128";
60   case MVT::Any:      return "MVT::Any";
61   case MVT::iAny:     return "MVT::iAny";
62   case MVT::fAny:     return "MVT::fAny";
63   case MVT::vAny:     return "MVT::vAny";
64   case MVT::f16:      return "MVT::f16";
65   case MVT::f32:      return "MVT::f32";
66   case MVT::f64:      return "MVT::f64";
67   case MVT::f80:      return "MVT::f80";
68   case MVT::f128:     return "MVT::f128";
69   case MVT::ppcf128:  return "MVT::ppcf128";
70   case MVT::x86mmx:   return "MVT::x86mmx";
71   case MVT::Glue:     return "MVT::Glue";
72   case MVT::isVoid:   return "MVT::isVoid";
73   case MVT::v2i1:     return "MVT::v2i1";
74   case MVT::v4i1:     return "MVT::v4i1";
75   case MVT::v8i1:     return "MVT::v8i1";
76   case MVT::v16i1:    return "MVT::v16i1";
77   case MVT::v32i1:    return "MVT::v32i1";
78   case MVT::v64i1:    return "MVT::v64i1";
79   case MVT::v512i1:   return "MVT::v512i1";
80   case MVT::v1024i1:  return "MVT::v1024i1";
81   case MVT::v1i8:     return "MVT::v1i8";
82   case MVT::v2i8:     return "MVT::v2i8";
83   case MVT::v4i8:     return "MVT::v4i8";
84   case MVT::v8i8:     return "MVT::v8i8";
85   case MVT::v16i8:    return "MVT::v16i8";
86   case MVT::v32i8:    return "MVT::v32i8";
87   case MVT::v64i8:    return "MVT::v64i8";
88   case MVT::v128i8:   return "MVT::v128i8";
89   case MVT::v256i8:   return "MVT::v256i8";
90   case MVT::v1i16:    return "MVT::v1i16";
91   case MVT::v2i16:    return "MVT::v2i16";
92   case MVT::v4i16:    return "MVT::v4i16";
93   case MVT::v8i16:    return "MVT::v8i16";
94   case MVT::v16i16:   return "MVT::v16i16";
95   case MVT::v32i16:   return "MVT::v32i16";
96   case MVT::v64i16:   return "MVT::v64i16";
97   case MVT::v128i16:  return "MVT::v128i16";
98   case MVT::v1i32:    return "MVT::v1i32";
99   case MVT::v2i32:    return "MVT::v2i32";
100   case MVT::v4i32:    return "MVT::v4i32";
101   case MVT::v8i32:    return "MVT::v8i32";
102   case MVT::v16i32:   return "MVT::v16i32";
103   case MVT::v32i32:   return "MVT::v32i32";
104   case MVT::v64i32:   return "MVT::v64i32";
105   case MVT::v1i64:    return "MVT::v1i64";
106   case MVT::v2i64:    return "MVT::v2i64";
107   case MVT::v4i64:    return "MVT::v4i64";
108   case MVT::v8i64:    return "MVT::v8i64";
109   case MVT::v16i64:   return "MVT::v16i64";
110   case MVT::v32i64:   return "MVT::v32i64";
111   case MVT::v1i128:   return "MVT::v1i128";
112   case MVT::v2f16:    return "MVT::v2f16";
113   case MVT::v4f16:    return "MVT::v4f16";
114   case MVT::v8f16:    return "MVT::v8f16";
115   case MVT::v1f32:    return "MVT::v1f32";
116   case MVT::v2f32:    return "MVT::v2f32";
117   case MVT::v4f32:    return "MVT::v4f32";
118   case MVT::v8f32:    return "MVT::v8f32";
119   case MVT::v16f32:   return "MVT::v16f32";
120   case MVT::v1f64:    return "MVT::v1f64";
121   case MVT::v2f64:    return "MVT::v2f64";
122   case MVT::v4f64:    return "MVT::v4f64";
123   case MVT::v8f64:    return "MVT::v8f64";
124   case MVT::token:    return "MVT::token";
125   case MVT::Metadata: return "MVT::Metadata";
126   case MVT::iPTR:     return "MVT::iPTR";
127   case MVT::iPTRAny:  return "MVT::iPTRAny";
128   case MVT::Untyped:  return "MVT::Untyped";
129   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
130   }
131 }
132 
133 /// getQualifiedName - Return the name of the specified record, with a
134 /// namespace qualifier if the record contains one.
135 ///
getQualifiedName(const Record * R)136 std::string llvm::getQualifiedName(const Record *R) {
137   std::string Namespace;
138   if (R->getValue("Namespace"))
139      Namespace = R->getValueAsString("Namespace");
140   if (Namespace.empty()) return R->getName();
141   return Namespace + "::" + R->getName();
142 }
143 
144 
145 /// getTarget - Return the current instance of the Target class.
146 ///
CodeGenTarget(RecordKeeper & records)147 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
148   : Records(records) {
149   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
150   if (Targets.size() == 0)
151     PrintFatalError("ERROR: No 'Target' subclasses defined!");
152   if (Targets.size() != 1)
153     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
154   TargetRec = Targets[0];
155 }
156 
~CodeGenTarget()157 CodeGenTarget::~CodeGenTarget() {
158 }
159 
getName() const160 const std::string &CodeGenTarget::getName() const {
161   return TargetRec->getName();
162 }
163 
getInstNamespace() const164 std::string CodeGenTarget::getInstNamespace() const {
165   for (const CodeGenInstruction *Inst : instructions()) {
166     // Make sure not to pick up "TargetOpcode" by accidentally getting
167     // the namespace off the PHI instruction or something.
168     if (Inst->Namespace != "TargetOpcode")
169       return Inst->Namespace;
170   }
171 
172   return "";
173 }
174 
getInstructionSet() const175 Record *CodeGenTarget::getInstructionSet() const {
176   return TargetRec->getValueAsDef("InstructionSet");
177 }
178 
179 
180 /// getAsmParser - Return the AssemblyParser definition for this target.
181 ///
getAsmParser() const182 Record *CodeGenTarget::getAsmParser() const {
183   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
184   if (AsmParserNum >= LI.size())
185     PrintFatalError("Target does not have an AsmParser #" +
186                     Twine(AsmParserNum) + "!");
187   return LI[AsmParserNum];
188 }
189 
190 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
191 /// this target.
192 ///
getAsmParserVariant(unsigned i) const193 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
194   std::vector<Record*> LI =
195     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
196   if (i >= LI.size())
197     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
198                     "!");
199   return LI[i];
200 }
201 
202 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
203 /// available for this target.
204 ///
getAsmParserVariantCount() const205 unsigned CodeGenTarget::getAsmParserVariantCount() const {
206   std::vector<Record*> LI =
207     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
208   return LI.size();
209 }
210 
211 /// getAsmWriter - Return the AssemblyWriter definition for this target.
212 ///
getAsmWriter() const213 Record *CodeGenTarget::getAsmWriter() const {
214   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
215   if (AsmWriterNum >= LI.size())
216     PrintFatalError("Target does not have an AsmWriter #" +
217                     Twine(AsmWriterNum) + "!");
218   return LI[AsmWriterNum];
219 }
220 
getRegBank() const221 CodeGenRegBank &CodeGenTarget::getRegBank() const {
222   if (!RegBank)
223     RegBank = llvm::make_unique<CodeGenRegBank>(Records);
224   return *RegBank;
225 }
226 
ReadRegAltNameIndices() const227 void CodeGenTarget::ReadRegAltNameIndices() const {
228   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
229   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
230 }
231 
232 /// getRegisterByName - If there is a register with the specific AsmName,
233 /// return it.
getRegisterByName(StringRef Name) const234 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
235   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
236   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
237   if (I == Regs.end())
238     return nullptr;
239   return I->second;
240 }
241 
242 std::vector<MVT::SimpleValueType> CodeGenTarget::
getRegisterVTs(Record * R) const243 getRegisterVTs(Record *R) const {
244   const CodeGenRegister *Reg = getRegBank().getReg(R);
245   std::vector<MVT::SimpleValueType> Result;
246   for (const auto &RC : getRegBank().getRegClasses()) {
247     if (RC.contains(Reg)) {
248       ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
249       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
250     }
251   }
252 
253   // Remove duplicates.
254   array_pod_sort(Result.begin(), Result.end());
255   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
256   return Result;
257 }
258 
259 
ReadLegalValueTypes() const260 void CodeGenTarget::ReadLegalValueTypes() const {
261   for (const auto &RC : getRegBank().getRegClasses())
262     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
263 
264   // Remove duplicates.
265   array_pod_sort(LegalValueTypes.begin(), LegalValueTypes.end());
266   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
267                                     LegalValueTypes.end()),
268                         LegalValueTypes.end());
269 }
270 
getSchedModels() const271 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
272   if (!SchedModels)
273     SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
274   return *SchedModels;
275 }
276 
ReadInstructions() const277 void CodeGenTarget::ReadInstructions() const {
278   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
279   if (Insts.size() <= 2)
280     PrintFatalError("No 'Instruction' subclasses defined!");
281 
282   // Parse the instructions defined in the .td file.
283   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
284     Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
285 }
286 
287 static const CodeGenInstruction *
GetInstByName(const char * Name,const DenseMap<const Record *,std::unique_ptr<CodeGenInstruction>> & Insts,RecordKeeper & Records)288 GetInstByName(const char *Name,
289               const DenseMap<const Record*,
290                              std::unique_ptr<CodeGenInstruction>> &Insts,
291               RecordKeeper &Records) {
292   const Record *Rec = Records.getDef(Name);
293 
294   const auto I = Insts.find(Rec);
295   if (!Rec || I == Insts.end())
296     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
297   return I->second.get();
298 }
299 
300 /// \brief Return all of the instructions defined by the target, ordered by
301 /// their enum value.
ComputeInstrsByEnum() const302 void CodeGenTarget::ComputeInstrsByEnum() const {
303   // The ordering here must match the ordering in TargetOpcodes.h.
304   static const char *const FixedInstrs[] = {
305       "PHI",          "INLINEASM",     "CFI_INSTRUCTION",  "EH_LABEL",
306       "GC_LABEL",     "KILL",          "EXTRACT_SUBREG",   "INSERT_SUBREG",
307       "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE",
308       "REG_SEQUENCE", "COPY",          "BUNDLE",           "LIFETIME_START",
309       "LIFETIME_END", "STACKMAP",      "PATCHPOINT",       "LOAD_STACK_GUARD",
310       "STATEPOINT",   "LOCAL_ESCAPE",   "FAULTING_LOAD_OP",
311       nullptr};
312   const auto &Insts = getInstructions();
313   for (const char *const *p = FixedInstrs; *p; ++p) {
314     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
315     assert(Instr && "Missing target independent instruction");
316     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
317     InstrsByEnum.push_back(Instr);
318   }
319   unsigned EndOfPredefines = InstrsByEnum.size();
320 
321   for (const auto &I : Insts) {
322     const CodeGenInstruction *CGI = I.second.get();
323     if (CGI->Namespace != "TargetOpcode")
324       InstrsByEnum.push_back(CGI);
325   }
326 
327   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
328 
329   // All of the instructions are now in random order based on the map iteration.
330   // Sort them by name.
331   std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
332             [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
333     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
334   });
335 }
336 
337 
338 /// isLittleEndianEncoding - Return whether this target encodes its instruction
339 /// in little-endian format, i.e. bits laid out in the order [0..n]
340 ///
isLittleEndianEncoding() const341 bool CodeGenTarget::isLittleEndianEncoding() const {
342   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
343 }
344 
345 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
346 /// encodings, reverse the bit order of all instructions.
reverseBitsForLittleEndianEncoding()347 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
348   if (!isLittleEndianEncoding())
349     return;
350 
351   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
352   for (Record *R : Insts) {
353     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
354         R->getValueAsBit("isPseudo"))
355       continue;
356 
357     BitsInit *BI = R->getValueAsBitsInit("Inst");
358 
359     unsigned numBits = BI->getNumBits();
360 
361     SmallVector<Init *, 16> NewBits(numBits);
362 
363     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
364       unsigned bitSwapIdx = numBits - bit - 1;
365       Init *OrigBit = BI->getBit(bit);
366       Init *BitSwap = BI->getBit(bitSwapIdx);
367       NewBits[bit]        = BitSwap;
368       NewBits[bitSwapIdx] = OrigBit;
369     }
370     if (numBits % 2) {
371       unsigned middle = (numBits + 1) / 2;
372       NewBits[middle] = BI->getBit(middle);
373     }
374 
375     BitsInit *NewBI = BitsInit::get(NewBits);
376 
377     // Update the bits in reversed order so that emitInstrOpBits will get the
378     // correct endianness.
379     R->getValue("Inst")->setValue(NewBI);
380   }
381 }
382 
383 /// guessInstructionProperties - Return true if it's OK to guess instruction
384 /// properties instead of raising an error.
385 ///
386 /// This is configurable as a temporary migration aid. It will eventually be
387 /// permanently false.
guessInstructionProperties() const388 bool CodeGenTarget::guessInstructionProperties() const {
389   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
390 }
391 
392 //===----------------------------------------------------------------------===//
393 // ComplexPattern implementation
394 //
ComplexPattern(Record * R)395 ComplexPattern::ComplexPattern(Record *R) {
396   Ty          = ::getValueType(R->getValueAsDef("Ty"));
397   NumOperands = R->getValueAsInt("NumOperands");
398   SelectFunc  = R->getValueAsString("SelectFunc");
399   RootNodes   = R->getValueAsListOfDefs("RootNodes");
400 
401   // Parse the properties.
402   Properties = 0;
403   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
404   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
405     if (PropList[i]->getName() == "SDNPHasChain") {
406       Properties |= 1 << SDNPHasChain;
407     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
408       Properties |= 1 << SDNPOptInGlue;
409     } else if (PropList[i]->getName() == "SDNPMayStore") {
410       Properties |= 1 << SDNPMayStore;
411     } else if (PropList[i]->getName() == "SDNPMayLoad") {
412       Properties |= 1 << SDNPMayLoad;
413     } else if (PropList[i]->getName() == "SDNPSideEffect") {
414       Properties |= 1 << SDNPSideEffect;
415     } else if (PropList[i]->getName() == "SDNPMemOperand") {
416       Properties |= 1 << SDNPMemOperand;
417     } else if (PropList[i]->getName() == "SDNPVariadic") {
418       Properties |= 1 << SDNPVariadic;
419     } else if (PropList[i]->getName() == "SDNPWantRoot") {
420       Properties |= 1 << SDNPWantRoot;
421     } else if (PropList[i]->getName() == "SDNPWantParent") {
422       Properties |= 1 << SDNPWantParent;
423     } else {
424       PrintFatalError("Unsupported SD Node property '" +
425                       PropList[i]->getName() + "' on ComplexPattern '" +
426                       R->getName() + "'!");
427     }
428 }
429 
430 //===----------------------------------------------------------------------===//
431 // CodeGenIntrinsic Implementation
432 //===----------------------------------------------------------------------===//
433 
LoadIntrinsics(const RecordKeeper & RC,bool TargetOnly)434 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
435                                                    bool TargetOnly) {
436   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
437 
438   std::vector<CodeGenIntrinsic> Result;
439 
440   for (unsigned i = 0, e = I.size(); i != e; ++i) {
441     bool isTarget = I[i]->getValueAsBit("isTarget");
442     if (isTarget == TargetOnly)
443       Result.push_back(CodeGenIntrinsic(I[i]));
444   }
445   return Result;
446 }
447 
CodeGenIntrinsic(Record * R)448 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
449   TheDef = R;
450   std::string DefName = R->getName();
451   ModRef = ReadWriteMem;
452   isOverloaded = false;
453   isCommutative = false;
454   canThrow = false;
455   isNoReturn = false;
456   isNoDuplicate = false;
457   isConvergent = false;
458 
459   if (DefName.size() <= 4 ||
460       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
461     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
462 
463   EnumName = std::string(DefName.begin()+4, DefName.end());
464 
465   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
466     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
467   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
468     MSBuiltinName = R->getValueAsString("MSBuiltinName");
469 
470   TargetPrefix = R->getValueAsString("TargetPrefix");
471   Name = R->getValueAsString("LLVMName");
472 
473   if (Name == "") {
474     // If an explicit name isn't specified, derive one from the DefName.
475     Name = "llvm.";
476 
477     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
478       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
479   } else {
480     // Verify it starts with "llvm.".
481     if (Name.size() <= 5 ||
482         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
483       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
484   }
485 
486   // If TargetPrefix is specified, make sure that Name starts with
487   // "llvm.<targetprefix>.".
488   if (!TargetPrefix.empty()) {
489     if (Name.size() < 6+TargetPrefix.size() ||
490         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
491         != (TargetPrefix + "."))
492       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
493         TargetPrefix + ".'!");
494   }
495 
496   // Parse the list of return types.
497   std::vector<MVT::SimpleValueType> OverloadedVTs;
498   ListInit *TypeList = R->getValueAsListInit("RetTypes");
499   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
500     Record *TyEl = TypeList->getElementAsRecord(i);
501     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
502     MVT::SimpleValueType VT;
503     if (TyEl->isSubClassOf("LLVMMatchType")) {
504       unsigned MatchTy = TyEl->getValueAsInt("Number");
505       assert(MatchTy < OverloadedVTs.size() &&
506              "Invalid matching number!");
507       VT = OverloadedVTs[MatchTy];
508       // It only makes sense to use the extended and truncated vector element
509       // variants with iAny types; otherwise, if the intrinsic is not
510       // overloaded, all the types can be specified directly.
511       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
512                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
513               VT == MVT::iAny || VT == MVT::vAny) &&
514              "Expected iAny or vAny type");
515     } else {
516       VT = getValueType(TyEl->getValueAsDef("VT"));
517     }
518     if (MVT(VT).isOverloaded()) {
519       OverloadedVTs.push_back(VT);
520       isOverloaded = true;
521     }
522 
523     // Reject invalid types.
524     if (VT == MVT::isVoid)
525       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
526 
527     IS.RetVTs.push_back(VT);
528     IS.RetTypeDefs.push_back(TyEl);
529   }
530 
531   // Parse the list of parameter types.
532   TypeList = R->getValueAsListInit("ParamTypes");
533   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
534     Record *TyEl = TypeList->getElementAsRecord(i);
535     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
536     MVT::SimpleValueType VT;
537     if (TyEl->isSubClassOf("LLVMMatchType")) {
538       unsigned MatchTy = TyEl->getValueAsInt("Number");
539       assert(MatchTy < OverloadedVTs.size() &&
540              "Invalid matching number!");
541       VT = OverloadedVTs[MatchTy];
542       // It only makes sense to use the extended and truncated vector element
543       // variants with iAny types; otherwise, if the intrinsic is not
544       // overloaded, all the types can be specified directly.
545       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
546                !TyEl->isSubClassOf("LLVMTruncatedType") &&
547                !TyEl->isSubClassOf("LLVMVectorSameWidth") &&
548                !TyEl->isSubClassOf("LLVMPointerToElt")) ||
549               VT == MVT::iAny || VT == MVT::vAny) &&
550              "Expected iAny or vAny type");
551     } else
552       VT = getValueType(TyEl->getValueAsDef("VT"));
553 
554     if (MVT(VT).isOverloaded()) {
555       OverloadedVTs.push_back(VT);
556       isOverloaded = true;
557     }
558 
559     // Reject invalid types.
560     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
561       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
562 
563     IS.ParamVTs.push_back(VT);
564     IS.ParamTypeDefs.push_back(TyEl);
565   }
566 
567   // Parse the intrinsic properties.
568   ListInit *PropList = R->getValueAsListInit("Properties");
569   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
570     Record *Property = PropList->getElementAsRecord(i);
571     assert(Property->isSubClassOf("IntrinsicProperty") &&
572            "Expected a property!");
573 
574     if (Property->getName() == "IntrNoMem")
575       ModRef = NoMem;
576     else if (Property->getName() == "IntrReadArgMem")
577       ModRef = ReadArgMem;
578     else if (Property->getName() == "IntrReadMem")
579       ModRef = ReadMem;
580     else if (Property->getName() == "IntrReadWriteArgMem")
581       ModRef = ReadWriteArgMem;
582     else if (Property->getName() == "Commutative")
583       isCommutative = true;
584     else if (Property->getName() == "Throws")
585       canThrow = true;
586     else if (Property->getName() == "IntrNoDuplicate")
587       isNoDuplicate = true;
588     else if (Property->getName() == "IntrConvergent")
589       isConvergent = true;
590     else if (Property->getName() == "IntrNoReturn")
591       isNoReturn = true;
592     else if (Property->isSubClassOf("NoCapture")) {
593       unsigned ArgNo = Property->getValueAsInt("ArgNo");
594       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
595     } else if (Property->isSubClassOf("ReadOnly")) {
596       unsigned ArgNo = Property->getValueAsInt("ArgNo");
597       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
598     } else if (Property->isSubClassOf("ReadNone")) {
599       unsigned ArgNo = Property->getValueAsInt("ArgNo");
600       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
601     } else
602       llvm_unreachable("Unknown property!");
603   }
604 
605   // Sort the argument attributes for later benefit.
606   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
607 }
608