• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_X64
6 
7 #include "src/crankshaft/x64/lithium-codegen-x64.h"
8 
9 #include "src/base/bits.h"
10 #include "src/code-factory.h"
11 #include "src/code-stubs.h"
12 #include "src/crankshaft/hydrogen-osr.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 #include "src/profiler/cpu-profiler.h"
16 
17 namespace v8 {
18 namespace internal {
19 
20 
21 // When invoking builtins, we need to record the safepoint in the middle of
22 // the invoke instruction sequence generated by the macro assembler.
23 class SafepointGenerator final : public CallWrapper {
24  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)25   SafepointGenerator(LCodeGen* codegen,
26                      LPointerMap* pointers,
27                      Safepoint::DeoptMode mode)
28       : codegen_(codegen),
29         pointers_(pointers),
30         deopt_mode_(mode) { }
~SafepointGenerator()31   virtual ~SafepointGenerator() {}
32 
BeforeCall(int call_size) const33   void BeforeCall(int call_size) const override {}
34 
AfterCall() const35   void AfterCall() const override {
36     codegen_->RecordSafepoint(pointers_, deopt_mode_);
37   }
38 
39  private:
40   LCodeGen* codegen_;
41   LPointerMap* pointers_;
42   Safepoint::DeoptMode deopt_mode_;
43 };
44 
45 
46 #define __ masm()->
47 
GenerateCode()48 bool LCodeGen::GenerateCode() {
49   LPhase phase("Z_Code generation", chunk());
50   DCHECK(is_unused());
51   status_ = GENERATING;
52 
53   // Open a frame scope to indicate that there is a frame on the stack.  The
54   // MANUAL indicates that the scope shouldn't actually generate code to set up
55   // the frame (that is done in GeneratePrologue).
56   FrameScope frame_scope(masm_, StackFrame::MANUAL);
57 
58   return GeneratePrologue() &&
59       GenerateBody() &&
60       GenerateDeferredCode() &&
61       GenerateJumpTable() &&
62       GenerateSafepointTable();
63 }
64 
65 
FinishCode(Handle<Code> code)66 void LCodeGen::FinishCode(Handle<Code> code) {
67   DCHECK(is_done());
68   code->set_stack_slots(GetStackSlotCount());
69   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
70   PopulateDeoptimizationData(code);
71 }
72 
73 
74 #ifdef _MSC_VER
MakeSureStackPagesMapped(int offset)75 void LCodeGen::MakeSureStackPagesMapped(int offset) {
76   const int kPageSize = 4 * KB;
77   for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
78     __ movp(Operand(rsp, offset), rax);
79   }
80 }
81 #endif
82 
83 
SaveCallerDoubles()84 void LCodeGen::SaveCallerDoubles() {
85   DCHECK(info()->saves_caller_doubles());
86   DCHECK(NeedsEagerFrame());
87   Comment(";;; Save clobbered callee double registers");
88   int count = 0;
89   BitVector* doubles = chunk()->allocated_double_registers();
90   BitVector::Iterator save_iterator(doubles);
91   while (!save_iterator.Done()) {
92     __ Movsd(MemOperand(rsp, count * kDoubleSize),
93              XMMRegister::from_code(save_iterator.Current()));
94     save_iterator.Advance();
95     count++;
96   }
97 }
98 
99 
RestoreCallerDoubles()100 void LCodeGen::RestoreCallerDoubles() {
101   DCHECK(info()->saves_caller_doubles());
102   DCHECK(NeedsEagerFrame());
103   Comment(";;; Restore clobbered callee double registers");
104   BitVector* doubles = chunk()->allocated_double_registers();
105   BitVector::Iterator save_iterator(doubles);
106   int count = 0;
107   while (!save_iterator.Done()) {
108     __ Movsd(XMMRegister::from_code(save_iterator.Current()),
109              MemOperand(rsp, count * kDoubleSize));
110     save_iterator.Advance();
111     count++;
112   }
113 }
114 
115 
GeneratePrologue()116 bool LCodeGen::GeneratePrologue() {
117   DCHECK(is_generating());
118 
119   if (info()->IsOptimizing()) {
120     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
121 
122 #ifdef DEBUG
123     if (strlen(FLAG_stop_at) > 0 &&
124         info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
125       __ int3();
126     }
127 #endif
128   }
129 
130   info()->set_prologue_offset(masm_->pc_offset());
131   if (NeedsEagerFrame()) {
132     DCHECK(!frame_is_built_);
133     frame_is_built_ = true;
134     if (info()->IsStub()) {
135       __ StubPrologue();
136     } else {
137       __ Prologue(info()->GeneratePreagedPrologue());
138     }
139   }
140 
141   // Reserve space for the stack slots needed by the code.
142   int slots = GetStackSlotCount();
143   if (slots > 0) {
144     if (FLAG_debug_code) {
145       __ subp(rsp, Immediate(slots * kPointerSize));
146 #ifdef _MSC_VER
147       MakeSureStackPagesMapped(slots * kPointerSize);
148 #endif
149       __ Push(rax);
150       __ Set(rax, slots);
151       __ Set(kScratchRegister, kSlotsZapValue);
152       Label loop;
153       __ bind(&loop);
154       __ movp(MemOperand(rsp, rax, times_pointer_size, 0),
155               kScratchRegister);
156       __ decl(rax);
157       __ j(not_zero, &loop);
158       __ Pop(rax);
159     } else {
160       __ subp(rsp, Immediate(slots * kPointerSize));
161 #ifdef _MSC_VER
162       MakeSureStackPagesMapped(slots * kPointerSize);
163 #endif
164     }
165 
166     if (info()->saves_caller_doubles()) {
167       SaveCallerDoubles();
168     }
169   }
170   return !is_aborted();
171 }
172 
173 
DoPrologue(LPrologue * instr)174 void LCodeGen::DoPrologue(LPrologue* instr) {
175   Comment(";;; Prologue begin");
176 
177   // Possibly allocate a local context.
178   if (info_->num_heap_slots() > 0) {
179     Comment(";;; Allocate local context");
180     bool need_write_barrier = true;
181     // Argument to NewContext is the function, which is still in rdi.
182     int slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
183     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
184     if (info()->scope()->is_script_scope()) {
185       __ Push(rdi);
186       __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
187       __ CallRuntime(Runtime::kNewScriptContext);
188       deopt_mode = Safepoint::kLazyDeopt;
189     } else if (slots <= FastNewContextStub::kMaximumSlots) {
190       FastNewContextStub stub(isolate(), slots);
191       __ CallStub(&stub);
192       // Result of FastNewContextStub is always in new space.
193       need_write_barrier = false;
194     } else {
195       __ Push(rdi);
196       __ CallRuntime(Runtime::kNewFunctionContext);
197     }
198     RecordSafepoint(deopt_mode);
199 
200     // Context is returned in rax.  It replaces the context passed to us.
201     // It's saved in the stack and kept live in rsi.
202     __ movp(rsi, rax);
203     __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
204 
205     // Copy any necessary parameters into the context.
206     int num_parameters = scope()->num_parameters();
207     int first_parameter = scope()->has_this_declaration() ? -1 : 0;
208     for (int i = first_parameter; i < num_parameters; i++) {
209       Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
210       if (var->IsContextSlot()) {
211         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
212             (num_parameters - 1 - i) * kPointerSize;
213         // Load parameter from stack.
214         __ movp(rax, Operand(rbp, parameter_offset));
215         // Store it in the context.
216         int context_offset = Context::SlotOffset(var->index());
217         __ movp(Operand(rsi, context_offset), rax);
218         // Update the write barrier. This clobbers rax and rbx.
219         if (need_write_barrier) {
220           __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
221         } else if (FLAG_debug_code) {
222           Label done;
223           __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
224           __ Abort(kExpectedNewSpaceObject);
225           __ bind(&done);
226         }
227       }
228     }
229     Comment(";;; End allocate local context");
230   }
231 
232   Comment(";;; Prologue end");
233 }
234 
235 
GenerateOsrPrologue()236 void LCodeGen::GenerateOsrPrologue() {
237   // Generate the OSR entry prologue at the first unknown OSR value, or if there
238   // are none, at the OSR entrypoint instruction.
239   if (osr_pc_offset_ >= 0) return;
240 
241   osr_pc_offset_ = masm()->pc_offset();
242 
243   // Adjust the frame size, subsuming the unoptimized frame into the
244   // optimized frame.
245   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
246   DCHECK(slots >= 0);
247   __ subp(rsp, Immediate(slots * kPointerSize));
248 }
249 
250 
GenerateBodyInstructionPre(LInstruction * instr)251 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
252   if (instr->IsCall()) {
253     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
254   }
255   if (!instr->IsLazyBailout() && !instr->IsGap()) {
256     safepoints_.BumpLastLazySafepointIndex();
257   }
258 }
259 
260 
GenerateBodyInstructionPost(LInstruction * instr)261 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
262   if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() &&
263       instr->hydrogen_value()->representation().IsInteger32() &&
264       instr->result()->IsRegister()) {
265     __ AssertZeroExtended(ToRegister(instr->result()));
266   }
267 
268   if (instr->HasResult() && instr->MustSignExtendResult(chunk())) {
269     // We sign extend the dehoisted key at the definition point when the pointer
270     // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
271     // points and MustSignExtendResult is always false. We can't use
272     // STATIC_ASSERT here as the pointer size is 32-bit for x32.
273     DCHECK(kPointerSize == kInt64Size);
274     if (instr->result()->IsRegister()) {
275       Register result_reg = ToRegister(instr->result());
276       __ movsxlq(result_reg, result_reg);
277     } else {
278       // Sign extend the 32bit result in the stack slots.
279       DCHECK(instr->result()->IsStackSlot());
280       Operand src = ToOperand(instr->result());
281       __ movsxlq(kScratchRegister, src);
282       __ movq(src, kScratchRegister);
283     }
284   }
285 }
286 
287 
GenerateJumpTable()288 bool LCodeGen::GenerateJumpTable() {
289   if (jump_table_.length() == 0) return !is_aborted();
290 
291   Label needs_frame;
292   Comment(";;; -------------------- Jump table --------------------");
293   for (int i = 0; i < jump_table_.length(); i++) {
294     Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
295     __ bind(&table_entry->label);
296     Address entry = table_entry->address;
297     DeoptComment(table_entry->deopt_info);
298     if (table_entry->needs_frame) {
299       DCHECK(!info()->saves_caller_doubles());
300       __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry));
301       __ call(&needs_frame);
302     } else {
303       if (info()->saves_caller_doubles()) {
304         DCHECK(info()->IsStub());
305         RestoreCallerDoubles();
306       }
307       __ call(entry, RelocInfo::RUNTIME_ENTRY);
308     }
309     info()->LogDeoptCallPosition(masm()->pc_offset(),
310                                  table_entry->deopt_info.inlining_id);
311   }
312 
313   if (needs_frame.is_linked()) {
314     __ bind(&needs_frame);
315     /* stack layout
316        4: return address  <-- rsp
317        3: garbage
318        2: garbage
319        1: garbage
320        0: garbage
321     */
322     // Reserve space for context and stub marker.
323     __ subp(rsp, Immediate(2 * kPointerSize));
324     __ Push(MemOperand(rsp, 2 * kPointerSize));  // Copy return address.
325     __ Push(kScratchRegister);  // Save entry address for ret(0)
326 
327     /* stack layout
328        4: return address
329        3: garbage
330        2: garbage
331        1: return address
332        0: entry address  <-- rsp
333     */
334 
335     // Remember context pointer.
336     __ movp(kScratchRegister,
337             MemOperand(rbp, StandardFrameConstants::kContextOffset));
338     // Save context pointer into the stack frame.
339     __ movp(MemOperand(rsp, 3 * kPointerSize), kScratchRegister);
340 
341     // Create a stack frame.
342     __ movp(MemOperand(rsp, 4 * kPointerSize), rbp);
343     __ leap(rbp, MemOperand(rsp, 4 * kPointerSize));
344 
345     // This variant of deopt can only be used with stubs. Since we don't
346     // have a function pointer to install in the stack frame that we're
347     // building, install a special marker there instead.
348     DCHECK(info()->IsStub());
349     __ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB));
350 
351     /* stack layout
352        4: old rbp
353        3: context pointer
354        2: stub marker
355        1: return address
356        0: entry address  <-- rsp
357     */
358     __ ret(0);
359   }
360 
361   return !is_aborted();
362 }
363 
364 
GenerateDeferredCode()365 bool LCodeGen::GenerateDeferredCode() {
366   DCHECK(is_generating());
367   if (deferred_.length() > 0) {
368     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
369       LDeferredCode* code = deferred_[i];
370 
371       HValue* value =
372           instructions_->at(code->instruction_index())->hydrogen_value();
373       RecordAndWritePosition(
374           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
375 
376       Comment(";;; <@%d,#%d> "
377               "-------------------- Deferred %s --------------------",
378               code->instruction_index(),
379               code->instr()->hydrogen_value()->id(),
380               code->instr()->Mnemonic());
381       __ bind(code->entry());
382       if (NeedsDeferredFrame()) {
383         Comment(";;; Build frame");
384         DCHECK(!frame_is_built_);
385         DCHECK(info()->IsStub());
386         frame_is_built_ = true;
387         // Build the frame in such a way that esi isn't trashed.
388         __ pushq(rbp);  // Caller's frame pointer.
389         __ Push(Operand(rbp, StandardFrameConstants::kContextOffset));
390         __ Push(Smi::FromInt(StackFrame::STUB));
391         __ leap(rbp, Operand(rsp, 2 * kPointerSize));
392         Comment(";;; Deferred code");
393       }
394       code->Generate();
395       if (NeedsDeferredFrame()) {
396         __ bind(code->done());
397         Comment(";;; Destroy frame");
398         DCHECK(frame_is_built_);
399         frame_is_built_ = false;
400         __ movp(rsp, rbp);
401         __ popq(rbp);
402       }
403       __ jmp(code->exit());
404     }
405   }
406 
407   // Deferred code is the last part of the instruction sequence. Mark
408   // the generated code as done unless we bailed out.
409   if (!is_aborted()) status_ = DONE;
410   return !is_aborted();
411 }
412 
413 
GenerateSafepointTable()414 bool LCodeGen::GenerateSafepointTable() {
415   DCHECK(is_done());
416   safepoints_.Emit(masm(), GetStackSlotCount());
417   return !is_aborted();
418 }
419 
420 
ToRegister(int index) const421 Register LCodeGen::ToRegister(int index) const {
422   return Register::from_code(index);
423 }
424 
425 
ToDoubleRegister(int index) const426 XMMRegister LCodeGen::ToDoubleRegister(int index) const {
427   return XMMRegister::from_code(index);
428 }
429 
430 
ToRegister(LOperand * op) const431 Register LCodeGen::ToRegister(LOperand* op) const {
432   DCHECK(op->IsRegister());
433   return ToRegister(op->index());
434 }
435 
436 
ToDoubleRegister(LOperand * op) const437 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
438   DCHECK(op->IsDoubleRegister());
439   return ToDoubleRegister(op->index());
440 }
441 
442 
IsInteger32Constant(LConstantOperand * op) const443 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
444   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
445 }
446 
447 
IsExternalConstant(LConstantOperand * op) const448 bool LCodeGen::IsExternalConstant(LConstantOperand* op) const {
449   return chunk_->LookupLiteralRepresentation(op).IsExternal();
450 }
451 
452 
IsDehoistedKeyConstant(LConstantOperand * op) const453 bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const {
454   return op->IsConstantOperand() &&
455       chunk_->IsDehoistedKey(chunk_->LookupConstant(op));
456 }
457 
458 
IsSmiConstant(LConstantOperand * op) const459 bool LCodeGen::IsSmiConstant(LConstantOperand* op) const {
460   return chunk_->LookupLiteralRepresentation(op).IsSmi();
461 }
462 
463 
ToInteger32(LConstantOperand * op) const464 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
465   return ToRepresentation(op, Representation::Integer32());
466 }
467 
468 
ToRepresentation(LConstantOperand * op,const Representation & r) const469 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
470                                    const Representation& r) const {
471   HConstant* constant = chunk_->LookupConstant(op);
472   int32_t value = constant->Integer32Value();
473   if (r.IsInteger32()) return value;
474   DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged());
475   return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value)));
476 }
477 
478 
ToSmi(LConstantOperand * op) const479 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
480   HConstant* constant = chunk_->LookupConstant(op);
481   return Smi::FromInt(constant->Integer32Value());
482 }
483 
484 
ToDouble(LConstantOperand * op) const485 double LCodeGen::ToDouble(LConstantOperand* op) const {
486   HConstant* constant = chunk_->LookupConstant(op);
487   DCHECK(constant->HasDoubleValue());
488   return constant->DoubleValue();
489 }
490 
491 
ToExternalReference(LConstantOperand * op) const492 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
493   HConstant* constant = chunk_->LookupConstant(op);
494   DCHECK(constant->HasExternalReferenceValue());
495   return constant->ExternalReferenceValue();
496 }
497 
498 
ToHandle(LConstantOperand * op) const499 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
500   HConstant* constant = chunk_->LookupConstant(op);
501   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
502   return constant->handle(isolate());
503 }
504 
505 
ArgumentsOffsetWithoutFrame(int index)506 static int ArgumentsOffsetWithoutFrame(int index) {
507   DCHECK(index < 0);
508   return -(index + 1) * kPointerSize + kPCOnStackSize;
509 }
510 
511 
ToOperand(LOperand * op) const512 Operand LCodeGen::ToOperand(LOperand* op) const {
513   // Does not handle registers. In X64 assembler, plain registers are not
514   // representable as an Operand.
515   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
516   if (NeedsEagerFrame()) {
517     return Operand(rbp, StackSlotOffset(op->index()));
518   } else {
519     // Retrieve parameter without eager stack-frame relative to the
520     // stack-pointer.
521     return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index()));
522   }
523 }
524 
525 
WriteTranslation(LEnvironment * environment,Translation * translation)526 void LCodeGen::WriteTranslation(LEnvironment* environment,
527                                 Translation* translation) {
528   if (environment == NULL) return;
529 
530   // The translation includes one command per value in the environment.
531   int translation_size = environment->translation_size();
532 
533   WriteTranslation(environment->outer(), translation);
534   WriteTranslationFrame(environment, translation);
535 
536   int object_index = 0;
537   int dematerialized_index = 0;
538   for (int i = 0; i < translation_size; ++i) {
539     LOperand* value = environment->values()->at(i);
540     AddToTranslation(
541         environment, translation, value, environment->HasTaggedValueAt(i),
542         environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
543   }
544 }
545 
546 
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)547 void LCodeGen::AddToTranslation(LEnvironment* environment,
548                                 Translation* translation,
549                                 LOperand* op,
550                                 bool is_tagged,
551                                 bool is_uint32,
552                                 int* object_index_pointer,
553                                 int* dematerialized_index_pointer) {
554   if (op == LEnvironment::materialization_marker()) {
555     int object_index = (*object_index_pointer)++;
556     if (environment->ObjectIsDuplicateAt(object_index)) {
557       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
558       translation->DuplicateObject(dupe_of);
559       return;
560     }
561     int object_length = environment->ObjectLengthAt(object_index);
562     if (environment->ObjectIsArgumentsAt(object_index)) {
563       translation->BeginArgumentsObject(object_length);
564     } else {
565       translation->BeginCapturedObject(object_length);
566     }
567     int dematerialized_index = *dematerialized_index_pointer;
568     int env_offset = environment->translation_size() + dematerialized_index;
569     *dematerialized_index_pointer += object_length;
570     for (int i = 0; i < object_length; ++i) {
571       LOperand* value = environment->values()->at(env_offset + i);
572       AddToTranslation(environment,
573                        translation,
574                        value,
575                        environment->HasTaggedValueAt(env_offset + i),
576                        environment->HasUint32ValueAt(env_offset + i),
577                        object_index_pointer,
578                        dematerialized_index_pointer);
579     }
580     return;
581   }
582 
583   if (op->IsStackSlot()) {
584     int index = op->index();
585     if (index >= 0) {
586       index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
587     }
588     if (is_tagged) {
589       translation->StoreStackSlot(index);
590     } else if (is_uint32) {
591       translation->StoreUint32StackSlot(index);
592     } else {
593       translation->StoreInt32StackSlot(index);
594     }
595   } else if (op->IsDoubleStackSlot()) {
596     int index = op->index();
597     if (index >= 0) {
598       index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
599     }
600     translation->StoreDoubleStackSlot(index);
601   } else if (op->IsRegister()) {
602     Register reg = ToRegister(op);
603     if (is_tagged) {
604       translation->StoreRegister(reg);
605     } else if (is_uint32) {
606       translation->StoreUint32Register(reg);
607     } else {
608       translation->StoreInt32Register(reg);
609     }
610   } else if (op->IsDoubleRegister()) {
611     XMMRegister reg = ToDoubleRegister(op);
612     translation->StoreDoubleRegister(reg);
613   } else if (op->IsConstantOperand()) {
614     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
615     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
616     translation->StoreLiteral(src_index);
617   } else {
618     UNREACHABLE();
619   }
620 }
621 
622 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode,int argc)623 void LCodeGen::CallCodeGeneric(Handle<Code> code,
624                                RelocInfo::Mode mode,
625                                LInstruction* instr,
626                                SafepointMode safepoint_mode,
627                                int argc) {
628   DCHECK(instr != NULL);
629   __ call(code, mode);
630   RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
631 
632   // Signal that we don't inline smi code before these stubs in the
633   // optimizing code generator.
634   if (code->kind() == Code::BINARY_OP_IC ||
635       code->kind() == Code::COMPARE_IC) {
636     __ nop();
637   }
638 }
639 
640 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)641 void LCodeGen::CallCode(Handle<Code> code,
642                         RelocInfo::Mode mode,
643                         LInstruction* instr) {
644   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
645 }
646 
647 
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)648 void LCodeGen::CallRuntime(const Runtime::Function* function,
649                            int num_arguments,
650                            LInstruction* instr,
651                            SaveFPRegsMode save_doubles) {
652   DCHECK(instr != NULL);
653   DCHECK(instr->HasPointerMap());
654 
655   __ CallRuntime(function, num_arguments, save_doubles);
656 
657   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
658 }
659 
660 
LoadContextFromDeferred(LOperand * context)661 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
662   if (context->IsRegister()) {
663     if (!ToRegister(context).is(rsi)) {
664       __ movp(rsi, ToRegister(context));
665     }
666   } else if (context->IsStackSlot()) {
667     __ movp(rsi, ToOperand(context));
668   } else if (context->IsConstantOperand()) {
669     HConstant* constant =
670         chunk_->LookupConstant(LConstantOperand::cast(context));
671     __ Move(rsi, Handle<Object>::cast(constant->handle(isolate())));
672   } else {
673     UNREACHABLE();
674   }
675 }
676 
677 
678 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)679 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
680                                        int argc,
681                                        LInstruction* instr,
682                                        LOperand* context) {
683   LoadContextFromDeferred(context);
684 
685   __ CallRuntimeSaveDoubles(id);
686   RecordSafepointWithRegisters(
687       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
688 }
689 
690 
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)691 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
692                                                     Safepoint::DeoptMode mode) {
693   environment->set_has_been_used();
694   if (!environment->HasBeenRegistered()) {
695     // Physical stack frame layout:
696     // -x ............. -4  0 ..................................... y
697     // [incoming arguments] [spill slots] [pushed outgoing arguments]
698 
699     // Layout of the environment:
700     // 0 ..................................................... size-1
701     // [parameters] [locals] [expression stack including arguments]
702 
703     // Layout of the translation:
704     // 0 ........................................................ size - 1 + 4
705     // [expression stack including arguments] [locals] [4 words] [parameters]
706     // |>------------  translation_size ------------<|
707 
708     int frame_count = 0;
709     int jsframe_count = 0;
710     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
711       ++frame_count;
712       if (e->frame_type() == JS_FUNCTION) {
713         ++jsframe_count;
714       }
715     }
716     Translation translation(&translations_, frame_count, jsframe_count, zone());
717     WriteTranslation(environment, &translation);
718     int deoptimization_index = deoptimizations_.length();
719     int pc_offset = masm()->pc_offset();
720     environment->Register(deoptimization_index,
721                           translation.index(),
722                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
723     deoptimizations_.Add(environment, environment->zone());
724   }
725 }
726 
727 
DeoptimizeIf(Condition cc,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,Deoptimizer::BailoutType bailout_type)728 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
729                             Deoptimizer::DeoptReason deopt_reason,
730                             Deoptimizer::BailoutType bailout_type) {
731   LEnvironment* environment = instr->environment();
732   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
733   DCHECK(environment->HasBeenRegistered());
734   int id = environment->deoptimization_index();
735   Address entry =
736       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
737   if (entry == NULL) {
738     Abort(kBailoutWasNotPrepared);
739     return;
740   }
741 
742   if (DeoptEveryNTimes()) {
743     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
744     Label no_deopt;
745     __ pushfq();
746     __ pushq(rax);
747     Operand count_operand = masm()->ExternalOperand(count, kScratchRegister);
748     __ movl(rax, count_operand);
749     __ subl(rax, Immediate(1));
750     __ j(not_zero, &no_deopt, Label::kNear);
751     if (FLAG_trap_on_deopt) __ int3();
752     __ movl(rax, Immediate(FLAG_deopt_every_n_times));
753     __ movl(count_operand, rax);
754     __ popq(rax);
755     __ popfq();
756     DCHECK(frame_is_built_);
757     __ call(entry, RelocInfo::RUNTIME_ENTRY);
758     __ bind(&no_deopt);
759     __ movl(count_operand, rax);
760     __ popq(rax);
761     __ popfq();
762   }
763 
764   if (info()->ShouldTrapOnDeopt()) {
765     Label done;
766     if (cc != no_condition) {
767       __ j(NegateCondition(cc), &done, Label::kNear);
768     }
769     __ int3();
770     __ bind(&done);
771   }
772 
773   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
774 
775   DCHECK(info()->IsStub() || frame_is_built_);
776   // Go through jump table if we need to handle condition, build frame, or
777   // restore caller doubles.
778   if (cc == no_condition && frame_is_built_ &&
779       !info()->saves_caller_doubles()) {
780     DeoptComment(deopt_info);
781     __ call(entry, RelocInfo::RUNTIME_ENTRY);
782     info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
783   } else {
784     Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
785                                             !frame_is_built_);
786     // We often have several deopts to the same entry, reuse the last
787     // jump entry if this is the case.
788     if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
789         jump_table_.is_empty() ||
790         !table_entry.IsEquivalentTo(jump_table_.last())) {
791       jump_table_.Add(table_entry, zone());
792     }
793     if (cc == no_condition) {
794       __ jmp(&jump_table_.last().label);
795     } else {
796       __ j(cc, &jump_table_.last().label);
797     }
798   }
799 }
800 
801 
DeoptimizeIf(Condition cc,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)802 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
803                             Deoptimizer::DeoptReason deopt_reason) {
804   Deoptimizer::BailoutType bailout_type = info()->IsStub()
805       ? Deoptimizer::LAZY
806       : Deoptimizer::EAGER;
807   DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
808 }
809 
810 
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode,int argc)811 void LCodeGen::RecordSafepointWithLazyDeopt(
812     LInstruction* instr, SafepointMode safepoint_mode, int argc) {
813   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
814     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
815   } else {
816     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
817     RecordSafepointWithRegisters(
818         instr->pointer_map(), argc, Safepoint::kLazyDeopt);
819   }
820 }
821 
822 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)823 void LCodeGen::RecordSafepoint(
824     LPointerMap* pointers,
825     Safepoint::Kind kind,
826     int arguments,
827     Safepoint::DeoptMode deopt_mode) {
828   DCHECK(kind == expected_safepoint_kind_);
829 
830   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
831 
832   Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
833       kind, arguments, deopt_mode);
834   for (int i = 0; i < operands->length(); i++) {
835     LOperand* pointer = operands->at(i);
836     if (pointer->IsStackSlot()) {
837       safepoint.DefinePointerSlot(pointer->index(), zone());
838     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
839       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
840     }
841   }
842 }
843 
844 
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)845 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
846                                Safepoint::DeoptMode deopt_mode) {
847   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
848 }
849 
850 
RecordSafepoint(Safepoint::DeoptMode deopt_mode)851 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
852   LPointerMap empty_pointers(zone());
853   RecordSafepoint(&empty_pointers, deopt_mode);
854 }
855 
856 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)857 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
858                                             int arguments,
859                                             Safepoint::DeoptMode deopt_mode) {
860   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
861 }
862 
863 
RecordAndWritePosition(int position)864 void LCodeGen::RecordAndWritePosition(int position) {
865   if (position == RelocInfo::kNoPosition) return;
866   masm()->positions_recorder()->RecordPosition(position);
867   masm()->positions_recorder()->WriteRecordedPositions();
868 }
869 
870 
LabelType(LLabel * label)871 static const char* LabelType(LLabel* label) {
872   if (label->is_loop_header()) return " (loop header)";
873   if (label->is_osr_entry()) return " (OSR entry)";
874   return "";
875 }
876 
877 
DoLabel(LLabel * label)878 void LCodeGen::DoLabel(LLabel* label) {
879   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
880           current_instruction_,
881           label->hydrogen_value()->id(),
882           label->block_id(),
883           LabelType(label));
884   __ bind(label->label());
885   current_block_ = label->block_id();
886   DoGap(label);
887 }
888 
889 
DoParallelMove(LParallelMove * move)890 void LCodeGen::DoParallelMove(LParallelMove* move) {
891   resolver_.Resolve(move);
892 }
893 
894 
DoGap(LGap * gap)895 void LCodeGen::DoGap(LGap* gap) {
896   for (int i = LGap::FIRST_INNER_POSITION;
897        i <= LGap::LAST_INNER_POSITION;
898        i++) {
899     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
900     LParallelMove* move = gap->GetParallelMove(inner_pos);
901     if (move != NULL) DoParallelMove(move);
902   }
903 }
904 
905 
DoInstructionGap(LInstructionGap * instr)906 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
907   DoGap(instr);
908 }
909 
910 
DoParameter(LParameter * instr)911 void LCodeGen::DoParameter(LParameter* instr) {
912   // Nothing to do.
913 }
914 
915 
DoCallStub(LCallStub * instr)916 void LCodeGen::DoCallStub(LCallStub* instr) {
917   DCHECK(ToRegister(instr->context()).is(rsi));
918   DCHECK(ToRegister(instr->result()).is(rax));
919   switch (instr->hydrogen()->major_key()) {
920     case CodeStub::RegExpExec: {
921       RegExpExecStub stub(isolate());
922       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
923       break;
924     }
925     case CodeStub::SubString: {
926       SubStringStub stub(isolate());
927       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
928       break;
929     }
930     default:
931       UNREACHABLE();
932   }
933 }
934 
935 
DoUnknownOSRValue(LUnknownOSRValue * instr)936 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
937   GenerateOsrPrologue();
938 }
939 
940 
DoModByPowerOf2I(LModByPowerOf2I * instr)941 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
942   Register dividend = ToRegister(instr->dividend());
943   int32_t divisor = instr->divisor();
944   DCHECK(dividend.is(ToRegister(instr->result())));
945 
946   // Theoretically, a variation of the branch-free code for integer division by
947   // a power of 2 (calculating the remainder via an additional multiplication
948   // (which gets simplified to an 'and') and subtraction) should be faster, and
949   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
950   // indicate that positive dividends are heavily favored, so the branching
951   // version performs better.
952   HMod* hmod = instr->hydrogen();
953   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
954   Label dividend_is_not_negative, done;
955   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
956     __ testl(dividend, dividend);
957     __ j(not_sign, &dividend_is_not_negative, Label::kNear);
958     // Note that this is correct even for kMinInt operands.
959     __ negl(dividend);
960     __ andl(dividend, Immediate(mask));
961     __ negl(dividend);
962     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
963       DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
964     }
965     __ jmp(&done, Label::kNear);
966   }
967 
968   __ bind(&dividend_is_not_negative);
969   __ andl(dividend, Immediate(mask));
970   __ bind(&done);
971 }
972 
973 
DoModByConstI(LModByConstI * instr)974 void LCodeGen::DoModByConstI(LModByConstI* instr) {
975   Register dividend = ToRegister(instr->dividend());
976   int32_t divisor = instr->divisor();
977   DCHECK(ToRegister(instr->result()).is(rax));
978 
979   if (divisor == 0) {
980     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
981     return;
982   }
983 
984   __ TruncatingDiv(dividend, Abs(divisor));
985   __ imull(rdx, rdx, Immediate(Abs(divisor)));
986   __ movl(rax, dividend);
987   __ subl(rax, rdx);
988 
989   // Check for negative zero.
990   HMod* hmod = instr->hydrogen();
991   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
992     Label remainder_not_zero;
993     __ j(not_zero, &remainder_not_zero, Label::kNear);
994     __ cmpl(dividend, Immediate(0));
995     DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
996     __ bind(&remainder_not_zero);
997   }
998 }
999 
1000 
DoModI(LModI * instr)1001 void LCodeGen::DoModI(LModI* instr) {
1002   HMod* hmod = instr->hydrogen();
1003 
1004   Register left_reg = ToRegister(instr->left());
1005   DCHECK(left_reg.is(rax));
1006   Register right_reg = ToRegister(instr->right());
1007   DCHECK(!right_reg.is(rax));
1008   DCHECK(!right_reg.is(rdx));
1009   Register result_reg = ToRegister(instr->result());
1010   DCHECK(result_reg.is(rdx));
1011 
1012   Label done;
1013   // Check for x % 0, idiv would signal a divide error. We have to
1014   // deopt in this case because we can't return a NaN.
1015   if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1016     __ testl(right_reg, right_reg);
1017     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
1018   }
1019 
1020   // Check for kMinInt % -1, idiv would signal a divide error. We
1021   // have to deopt if we care about -0, because we can't return that.
1022   if (hmod->CheckFlag(HValue::kCanOverflow)) {
1023     Label no_overflow_possible;
1024     __ cmpl(left_reg, Immediate(kMinInt));
1025     __ j(not_zero, &no_overflow_possible, Label::kNear);
1026     __ cmpl(right_reg, Immediate(-1));
1027     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1028       DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero);
1029     } else {
1030       __ j(not_equal, &no_overflow_possible, Label::kNear);
1031       __ Set(result_reg, 0);
1032       __ jmp(&done, Label::kNear);
1033     }
1034     __ bind(&no_overflow_possible);
1035   }
1036 
1037   // Sign extend dividend in eax into edx:eax, since we are using only the low
1038   // 32 bits of the values.
1039   __ cdq();
1040 
1041   // If we care about -0, test if the dividend is <0 and the result is 0.
1042   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1043     Label positive_left;
1044     __ testl(left_reg, left_reg);
1045     __ j(not_sign, &positive_left, Label::kNear);
1046     __ idivl(right_reg);
1047     __ testl(result_reg, result_reg);
1048     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1049     __ jmp(&done, Label::kNear);
1050     __ bind(&positive_left);
1051   }
1052   __ idivl(right_reg);
1053   __ bind(&done);
1054 }
1055 
1056 
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1057 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1058   Register dividend = ToRegister(instr->dividend());
1059   int32_t divisor = instr->divisor();
1060   DCHECK(dividend.is(ToRegister(instr->result())));
1061 
1062   // If the divisor is positive, things are easy: There can be no deopts and we
1063   // can simply do an arithmetic right shift.
1064   if (divisor == 1) return;
1065   int32_t shift = WhichPowerOf2Abs(divisor);
1066   if (divisor > 1) {
1067     __ sarl(dividend, Immediate(shift));
1068     return;
1069   }
1070 
1071   // If the divisor is negative, we have to negate and handle edge cases.
1072   __ negl(dividend);
1073   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1074     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1075   }
1076 
1077   // Dividing by -1 is basically negation, unless we overflow.
1078   if (divisor == -1) {
1079     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1080       DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1081     }
1082     return;
1083   }
1084 
1085   // If the negation could not overflow, simply shifting is OK.
1086   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1087     __ sarl(dividend, Immediate(shift));
1088     return;
1089   }
1090 
1091   Label not_kmin_int, done;
1092   __ j(no_overflow, &not_kmin_int, Label::kNear);
1093   __ movl(dividend, Immediate(kMinInt / divisor));
1094   __ jmp(&done, Label::kNear);
1095   __ bind(&not_kmin_int);
1096   __ sarl(dividend, Immediate(shift));
1097   __ bind(&done);
1098 }
1099 
1100 
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1101 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1102   Register dividend = ToRegister(instr->dividend());
1103   int32_t divisor = instr->divisor();
1104   DCHECK(ToRegister(instr->result()).is(rdx));
1105 
1106   if (divisor == 0) {
1107     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
1108     return;
1109   }
1110 
1111   // Check for (0 / -x) that will produce negative zero.
1112   HMathFloorOfDiv* hdiv = instr->hydrogen();
1113   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1114     __ testl(dividend, dividend);
1115     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1116   }
1117 
1118   // Easy case: We need no dynamic check for the dividend and the flooring
1119   // division is the same as the truncating division.
1120   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1121       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1122     __ TruncatingDiv(dividend, Abs(divisor));
1123     if (divisor < 0) __ negl(rdx);
1124     return;
1125   }
1126 
1127   // In the general case we may need to adjust before and after the truncating
1128   // division to get a flooring division.
1129   Register temp = ToRegister(instr->temp3());
1130   DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx));
1131   Label needs_adjustment, done;
1132   __ cmpl(dividend, Immediate(0));
1133   __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
1134   __ TruncatingDiv(dividend, Abs(divisor));
1135   if (divisor < 0) __ negl(rdx);
1136   __ jmp(&done, Label::kNear);
1137   __ bind(&needs_adjustment);
1138   __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1));
1139   __ TruncatingDiv(temp, Abs(divisor));
1140   if (divisor < 0) __ negl(rdx);
1141   __ decl(rdx);
1142   __ bind(&done);
1143 }
1144 
1145 
1146 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1147 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1148   HBinaryOperation* hdiv = instr->hydrogen();
1149   Register dividend = ToRegister(instr->dividend());
1150   Register divisor = ToRegister(instr->divisor());
1151   Register remainder = ToRegister(instr->temp());
1152   Register result = ToRegister(instr->result());
1153   DCHECK(dividend.is(rax));
1154   DCHECK(remainder.is(rdx));
1155   DCHECK(result.is(rax));
1156   DCHECK(!divisor.is(rax));
1157   DCHECK(!divisor.is(rdx));
1158 
1159   // Check for x / 0.
1160   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1161     __ testl(divisor, divisor);
1162     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
1163   }
1164 
1165   // Check for (0 / -x) that will produce negative zero.
1166   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1167     Label dividend_not_zero;
1168     __ testl(dividend, dividend);
1169     __ j(not_zero, &dividend_not_zero, Label::kNear);
1170     __ testl(divisor, divisor);
1171     DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1172     __ bind(&dividend_not_zero);
1173   }
1174 
1175   // Check for (kMinInt / -1).
1176   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1177     Label dividend_not_min_int;
1178     __ cmpl(dividend, Immediate(kMinInt));
1179     __ j(not_zero, &dividend_not_min_int, Label::kNear);
1180     __ cmpl(divisor, Immediate(-1));
1181     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1182     __ bind(&dividend_not_min_int);
1183   }
1184 
1185   // Sign extend to rdx (= remainder).
1186   __ cdq();
1187   __ idivl(divisor);
1188 
1189   Label done;
1190   __ testl(remainder, remainder);
1191   __ j(zero, &done, Label::kNear);
1192   __ xorl(remainder, divisor);
1193   __ sarl(remainder, Immediate(31));
1194   __ addl(result, remainder);
1195   __ bind(&done);
1196 }
1197 
1198 
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1199 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1200   Register dividend = ToRegister(instr->dividend());
1201   int32_t divisor = instr->divisor();
1202   Register result = ToRegister(instr->result());
1203   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1204   DCHECK(!result.is(dividend));
1205 
1206   // Check for (0 / -x) that will produce negative zero.
1207   HDiv* hdiv = instr->hydrogen();
1208   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1209     __ testl(dividend, dividend);
1210     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1211   }
1212   // Check for (kMinInt / -1).
1213   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1214     __ cmpl(dividend, Immediate(kMinInt));
1215     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1216   }
1217   // Deoptimize if remainder will not be 0.
1218   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1219       divisor != 1 && divisor != -1) {
1220     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1221     __ testl(dividend, Immediate(mask));
1222     DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
1223   }
1224   __ Move(result, dividend);
1225   int32_t shift = WhichPowerOf2Abs(divisor);
1226   if (shift > 0) {
1227     // The arithmetic shift is always OK, the 'if' is an optimization only.
1228     if (shift > 1) __ sarl(result, Immediate(31));
1229     __ shrl(result, Immediate(32 - shift));
1230     __ addl(result, dividend);
1231     __ sarl(result, Immediate(shift));
1232   }
1233   if (divisor < 0) __ negl(result);
1234 }
1235 
1236 
DoDivByConstI(LDivByConstI * instr)1237 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1238   Register dividend = ToRegister(instr->dividend());
1239   int32_t divisor = instr->divisor();
1240   DCHECK(ToRegister(instr->result()).is(rdx));
1241 
1242   if (divisor == 0) {
1243     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
1244     return;
1245   }
1246 
1247   // Check for (0 / -x) that will produce negative zero.
1248   HDiv* hdiv = instr->hydrogen();
1249   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1250     __ testl(dividend, dividend);
1251     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1252   }
1253 
1254   __ TruncatingDiv(dividend, Abs(divisor));
1255   if (divisor < 0) __ negl(rdx);
1256 
1257   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1258     __ movl(rax, rdx);
1259     __ imull(rax, rax, Immediate(divisor));
1260     __ subl(rax, dividend);
1261     DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
1262   }
1263 }
1264 
1265 
1266 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1267 void LCodeGen::DoDivI(LDivI* instr) {
1268   HBinaryOperation* hdiv = instr->hydrogen();
1269   Register dividend = ToRegister(instr->dividend());
1270   Register divisor = ToRegister(instr->divisor());
1271   Register remainder = ToRegister(instr->temp());
1272   DCHECK(dividend.is(rax));
1273   DCHECK(remainder.is(rdx));
1274   DCHECK(ToRegister(instr->result()).is(rax));
1275   DCHECK(!divisor.is(rax));
1276   DCHECK(!divisor.is(rdx));
1277 
1278   // Check for x / 0.
1279   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1280     __ testl(divisor, divisor);
1281     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
1282   }
1283 
1284   // Check for (0 / -x) that will produce negative zero.
1285   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1286     Label dividend_not_zero;
1287     __ testl(dividend, dividend);
1288     __ j(not_zero, &dividend_not_zero, Label::kNear);
1289     __ testl(divisor, divisor);
1290     DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1291     __ bind(&dividend_not_zero);
1292   }
1293 
1294   // Check for (kMinInt / -1).
1295   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1296     Label dividend_not_min_int;
1297     __ cmpl(dividend, Immediate(kMinInt));
1298     __ j(not_zero, &dividend_not_min_int, Label::kNear);
1299     __ cmpl(divisor, Immediate(-1));
1300     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1301     __ bind(&dividend_not_min_int);
1302   }
1303 
1304   // Sign extend to rdx (= remainder).
1305   __ cdq();
1306   __ idivl(divisor);
1307 
1308   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1309     // Deoptimize if remainder is not 0.
1310     __ testl(remainder, remainder);
1311     DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
1312   }
1313 }
1314 
1315 
DoMulI(LMulI * instr)1316 void LCodeGen::DoMulI(LMulI* instr) {
1317   Register left = ToRegister(instr->left());
1318   LOperand* right = instr->right();
1319 
1320   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1321     if (instr->hydrogen_value()->representation().IsSmi()) {
1322       __ movp(kScratchRegister, left);
1323     } else {
1324       __ movl(kScratchRegister, left);
1325     }
1326   }
1327 
1328   bool can_overflow =
1329       instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1330   if (right->IsConstantOperand()) {
1331     int32_t right_value = ToInteger32(LConstantOperand::cast(right));
1332     if (right_value == -1) {
1333       __ negl(left);
1334     } else if (right_value == 0) {
1335       __ xorl(left, left);
1336     } else if (right_value == 2) {
1337       __ addl(left, left);
1338     } else if (!can_overflow) {
1339       // If the multiplication is known to not overflow, we
1340       // can use operations that don't set the overflow flag
1341       // correctly.
1342       switch (right_value) {
1343         case 1:
1344           // Do nothing.
1345           break;
1346         case 3:
1347           __ leal(left, Operand(left, left, times_2, 0));
1348           break;
1349         case 4:
1350           __ shll(left, Immediate(2));
1351           break;
1352         case 5:
1353           __ leal(left, Operand(left, left, times_4, 0));
1354           break;
1355         case 8:
1356           __ shll(left, Immediate(3));
1357           break;
1358         case 9:
1359           __ leal(left, Operand(left, left, times_8, 0));
1360           break;
1361         case 16:
1362           __ shll(left, Immediate(4));
1363           break;
1364         default:
1365           __ imull(left, left, Immediate(right_value));
1366           break;
1367       }
1368     } else {
1369       __ imull(left, left, Immediate(right_value));
1370     }
1371   } else if (right->IsStackSlot()) {
1372     if (instr->hydrogen_value()->representation().IsSmi()) {
1373       __ SmiToInteger64(left, left);
1374       __ imulp(left, ToOperand(right));
1375     } else {
1376       __ imull(left, ToOperand(right));
1377     }
1378   } else {
1379     if (instr->hydrogen_value()->representation().IsSmi()) {
1380       __ SmiToInteger64(left, left);
1381       __ imulp(left, ToRegister(right));
1382     } else {
1383       __ imull(left, ToRegister(right));
1384     }
1385   }
1386 
1387   if (can_overflow) {
1388     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1389   }
1390 
1391   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1392     // Bail out if the result is supposed to be negative zero.
1393     Label done;
1394     if (instr->hydrogen_value()->representation().IsSmi()) {
1395       __ testp(left, left);
1396     } else {
1397       __ testl(left, left);
1398     }
1399     __ j(not_zero, &done, Label::kNear);
1400     if (right->IsConstantOperand()) {
1401       // Constant can't be represented as 32-bit Smi due to immediate size
1402       // limit.
1403       DCHECK(SmiValuesAre32Bits()
1404           ? !instr->hydrogen_value()->representation().IsSmi()
1405           : SmiValuesAre31Bits());
1406       if (ToInteger32(LConstantOperand::cast(right)) < 0) {
1407         DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
1408       } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
1409         __ cmpl(kScratchRegister, Immediate(0));
1410         DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
1411       }
1412     } else if (right->IsStackSlot()) {
1413       if (instr->hydrogen_value()->representation().IsSmi()) {
1414         __ orp(kScratchRegister, ToOperand(right));
1415       } else {
1416         __ orl(kScratchRegister, ToOperand(right));
1417       }
1418       DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1419     } else {
1420       // Test the non-zero operand for negative sign.
1421       if (instr->hydrogen_value()->representation().IsSmi()) {
1422         __ orp(kScratchRegister, ToRegister(right));
1423       } else {
1424         __ orl(kScratchRegister, ToRegister(right));
1425       }
1426       DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1427     }
1428     __ bind(&done);
1429   }
1430 }
1431 
1432 
DoBitI(LBitI * instr)1433 void LCodeGen::DoBitI(LBitI* instr) {
1434   LOperand* left = instr->left();
1435   LOperand* right = instr->right();
1436   DCHECK(left->Equals(instr->result()));
1437   DCHECK(left->IsRegister());
1438 
1439   if (right->IsConstantOperand()) {
1440     int32_t right_operand =
1441         ToRepresentation(LConstantOperand::cast(right),
1442                          instr->hydrogen()->right()->representation());
1443     switch (instr->op()) {
1444       case Token::BIT_AND:
1445         __ andl(ToRegister(left), Immediate(right_operand));
1446         break;
1447       case Token::BIT_OR:
1448         __ orl(ToRegister(left), Immediate(right_operand));
1449         break;
1450       case Token::BIT_XOR:
1451         if (right_operand == int32_t(~0)) {
1452           __ notl(ToRegister(left));
1453         } else {
1454           __ xorl(ToRegister(left), Immediate(right_operand));
1455         }
1456         break;
1457       default:
1458         UNREACHABLE();
1459         break;
1460     }
1461   } else if (right->IsStackSlot()) {
1462     switch (instr->op()) {
1463       case Token::BIT_AND:
1464         if (instr->IsInteger32()) {
1465           __ andl(ToRegister(left), ToOperand(right));
1466         } else {
1467           __ andp(ToRegister(left), ToOperand(right));
1468         }
1469         break;
1470       case Token::BIT_OR:
1471         if (instr->IsInteger32()) {
1472           __ orl(ToRegister(left), ToOperand(right));
1473         } else {
1474           __ orp(ToRegister(left), ToOperand(right));
1475         }
1476         break;
1477       case Token::BIT_XOR:
1478         if (instr->IsInteger32()) {
1479           __ xorl(ToRegister(left), ToOperand(right));
1480         } else {
1481           __ xorp(ToRegister(left), ToOperand(right));
1482         }
1483         break;
1484       default:
1485         UNREACHABLE();
1486         break;
1487     }
1488   } else {
1489     DCHECK(right->IsRegister());
1490     switch (instr->op()) {
1491       case Token::BIT_AND:
1492         if (instr->IsInteger32()) {
1493           __ andl(ToRegister(left), ToRegister(right));
1494         } else {
1495           __ andp(ToRegister(left), ToRegister(right));
1496         }
1497         break;
1498       case Token::BIT_OR:
1499         if (instr->IsInteger32()) {
1500           __ orl(ToRegister(left), ToRegister(right));
1501         } else {
1502           __ orp(ToRegister(left), ToRegister(right));
1503         }
1504         break;
1505       case Token::BIT_XOR:
1506         if (instr->IsInteger32()) {
1507           __ xorl(ToRegister(left), ToRegister(right));
1508         } else {
1509           __ xorp(ToRegister(left), ToRegister(right));
1510         }
1511         break;
1512       default:
1513         UNREACHABLE();
1514         break;
1515     }
1516   }
1517 }
1518 
1519 
DoShiftI(LShiftI * instr)1520 void LCodeGen::DoShiftI(LShiftI* instr) {
1521   LOperand* left = instr->left();
1522   LOperand* right = instr->right();
1523   DCHECK(left->Equals(instr->result()));
1524   DCHECK(left->IsRegister());
1525   if (right->IsRegister()) {
1526     DCHECK(ToRegister(right).is(rcx));
1527 
1528     switch (instr->op()) {
1529       case Token::ROR:
1530         __ rorl_cl(ToRegister(left));
1531         break;
1532       case Token::SAR:
1533         __ sarl_cl(ToRegister(left));
1534         break;
1535       case Token::SHR:
1536         __ shrl_cl(ToRegister(left));
1537         if (instr->can_deopt()) {
1538           __ testl(ToRegister(left), ToRegister(left));
1539           DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
1540         }
1541         break;
1542       case Token::SHL:
1543         __ shll_cl(ToRegister(left));
1544         break;
1545       default:
1546         UNREACHABLE();
1547         break;
1548     }
1549   } else {
1550     int32_t value = ToInteger32(LConstantOperand::cast(right));
1551     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1552     switch (instr->op()) {
1553       case Token::ROR:
1554         if (shift_count != 0) {
1555           __ rorl(ToRegister(left), Immediate(shift_count));
1556         }
1557         break;
1558       case Token::SAR:
1559         if (shift_count != 0) {
1560           __ sarl(ToRegister(left), Immediate(shift_count));
1561         }
1562         break;
1563       case Token::SHR:
1564         if (shift_count != 0) {
1565           __ shrl(ToRegister(left), Immediate(shift_count));
1566         } else if (instr->can_deopt()) {
1567           __ testl(ToRegister(left), ToRegister(left));
1568           DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
1569         }
1570         break;
1571       case Token::SHL:
1572         if (shift_count != 0) {
1573           if (instr->hydrogen_value()->representation().IsSmi()) {
1574             if (SmiValuesAre32Bits()) {
1575               __ shlp(ToRegister(left), Immediate(shift_count));
1576             } else {
1577               DCHECK(SmiValuesAre31Bits());
1578               if (instr->can_deopt()) {
1579                 if (shift_count != 1) {
1580                   __ shll(ToRegister(left), Immediate(shift_count - 1));
1581                 }
1582                 __ Integer32ToSmi(ToRegister(left), ToRegister(left));
1583                 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1584               } else {
1585                 __ shll(ToRegister(left), Immediate(shift_count));
1586               }
1587             }
1588           } else {
1589             __ shll(ToRegister(left), Immediate(shift_count));
1590           }
1591         }
1592         break;
1593       default:
1594         UNREACHABLE();
1595         break;
1596     }
1597   }
1598 }
1599 
1600 
DoSubI(LSubI * instr)1601 void LCodeGen::DoSubI(LSubI* instr) {
1602   LOperand* left = instr->left();
1603   LOperand* right = instr->right();
1604   DCHECK(left->Equals(instr->result()));
1605 
1606   if (right->IsConstantOperand()) {
1607     int32_t right_operand =
1608         ToRepresentation(LConstantOperand::cast(right),
1609                          instr->hydrogen()->right()->representation());
1610     __ subl(ToRegister(left), Immediate(right_operand));
1611   } else if (right->IsRegister()) {
1612     if (instr->hydrogen_value()->representation().IsSmi()) {
1613       __ subp(ToRegister(left), ToRegister(right));
1614     } else {
1615       __ subl(ToRegister(left), ToRegister(right));
1616     }
1617   } else {
1618     if (instr->hydrogen_value()->representation().IsSmi()) {
1619       __ subp(ToRegister(left), ToOperand(right));
1620     } else {
1621       __ subl(ToRegister(left), ToOperand(right));
1622     }
1623   }
1624 
1625   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1626     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1627   }
1628 }
1629 
1630 
DoConstantI(LConstantI * instr)1631 void LCodeGen::DoConstantI(LConstantI* instr) {
1632   Register dst = ToRegister(instr->result());
1633   if (instr->value() == 0) {
1634     __ xorl(dst, dst);
1635   } else {
1636     __ movl(dst, Immediate(instr->value()));
1637   }
1638 }
1639 
1640 
DoConstantS(LConstantS * instr)1641 void LCodeGen::DoConstantS(LConstantS* instr) {
1642   __ Move(ToRegister(instr->result()), instr->value());
1643 }
1644 
1645 
DoConstantD(LConstantD * instr)1646 void LCodeGen::DoConstantD(LConstantD* instr) {
1647   __ Move(ToDoubleRegister(instr->result()), instr->bits());
1648 }
1649 
1650 
DoConstantE(LConstantE * instr)1651 void LCodeGen::DoConstantE(LConstantE* instr) {
1652   __ LoadAddress(ToRegister(instr->result()), instr->value());
1653 }
1654 
1655 
DoConstantT(LConstantT * instr)1656 void LCodeGen::DoConstantT(LConstantT* instr) {
1657   Handle<Object> object = instr->value(isolate());
1658   AllowDeferredHandleDereference smi_check;
1659   __ Move(ToRegister(instr->result()), object);
1660 }
1661 
1662 
DoMapEnumLength(LMapEnumLength * instr)1663 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1664   Register result = ToRegister(instr->result());
1665   Register map = ToRegister(instr->value());
1666   __ EnumLength(result, map);
1667 }
1668 
1669 
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1670 Operand LCodeGen::BuildSeqStringOperand(Register string,
1671                                         LOperand* index,
1672                                         String::Encoding encoding) {
1673   if (index->IsConstantOperand()) {
1674     int offset = ToInteger32(LConstantOperand::cast(index));
1675     if (encoding == String::TWO_BYTE_ENCODING) {
1676       offset *= kUC16Size;
1677     }
1678     STATIC_ASSERT(kCharSize == 1);
1679     return FieldOperand(string, SeqString::kHeaderSize + offset);
1680   }
1681   return FieldOperand(
1682       string, ToRegister(index),
1683       encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
1684       SeqString::kHeaderSize);
1685 }
1686 
1687 
DoSeqStringGetChar(LSeqStringGetChar * instr)1688 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1689   String::Encoding encoding = instr->hydrogen()->encoding();
1690   Register result = ToRegister(instr->result());
1691   Register string = ToRegister(instr->string());
1692 
1693   if (FLAG_debug_code) {
1694     __ Push(string);
1695     __ movp(string, FieldOperand(string, HeapObject::kMapOffset));
1696     __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset));
1697 
1698     __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
1699     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1700     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1701     __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
1702                               ? one_byte_seq_type : two_byte_seq_type));
1703     __ Check(equal, kUnexpectedStringType);
1704     __ Pop(string);
1705   }
1706 
1707   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1708   if (encoding == String::ONE_BYTE_ENCODING) {
1709     __ movzxbl(result, operand);
1710   } else {
1711     __ movzxwl(result, operand);
1712   }
1713 }
1714 
1715 
DoSeqStringSetChar(LSeqStringSetChar * instr)1716 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1717   String::Encoding encoding = instr->hydrogen()->encoding();
1718   Register string = ToRegister(instr->string());
1719 
1720   if (FLAG_debug_code) {
1721     Register value = ToRegister(instr->value());
1722     Register index = ToRegister(instr->index());
1723     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1724     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1725     int encoding_mask =
1726         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1727         ? one_byte_seq_type : two_byte_seq_type;
1728     __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1729   }
1730 
1731   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1732   if (instr->value()->IsConstantOperand()) {
1733     int value = ToInteger32(LConstantOperand::cast(instr->value()));
1734     DCHECK_LE(0, value);
1735     if (encoding == String::ONE_BYTE_ENCODING) {
1736       DCHECK_LE(value, String::kMaxOneByteCharCode);
1737       __ movb(operand, Immediate(value));
1738     } else {
1739       DCHECK_LE(value, String::kMaxUtf16CodeUnit);
1740       __ movw(operand, Immediate(value));
1741     }
1742   } else {
1743     Register value = ToRegister(instr->value());
1744     if (encoding == String::ONE_BYTE_ENCODING) {
1745       __ movb(operand, value);
1746     } else {
1747       __ movw(operand, value);
1748     }
1749   }
1750 }
1751 
1752 
DoAddI(LAddI * instr)1753 void LCodeGen::DoAddI(LAddI* instr) {
1754   LOperand* left = instr->left();
1755   LOperand* right = instr->right();
1756 
1757   Representation target_rep = instr->hydrogen()->representation();
1758   bool is_p = target_rep.IsSmi() || target_rep.IsExternal();
1759 
1760   if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
1761     if (right->IsConstantOperand()) {
1762       // No support for smi-immediates for 32-bit SMI.
1763       DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
1764       int32_t offset =
1765           ToRepresentation(LConstantOperand::cast(right),
1766                            instr->hydrogen()->right()->representation());
1767       if (is_p) {
1768         __ leap(ToRegister(instr->result()),
1769                 MemOperand(ToRegister(left), offset));
1770       } else {
1771         __ leal(ToRegister(instr->result()),
1772                 MemOperand(ToRegister(left), offset));
1773       }
1774     } else {
1775       Operand address(ToRegister(left), ToRegister(right), times_1, 0);
1776       if (is_p) {
1777         __ leap(ToRegister(instr->result()), address);
1778       } else {
1779         __ leal(ToRegister(instr->result()), address);
1780       }
1781     }
1782   } else {
1783     if (right->IsConstantOperand()) {
1784       // No support for smi-immediates for 32-bit SMI.
1785       DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
1786       int32_t right_operand =
1787           ToRepresentation(LConstantOperand::cast(right),
1788                            instr->hydrogen()->right()->representation());
1789       if (is_p) {
1790         __ addp(ToRegister(left), Immediate(right_operand));
1791       } else {
1792         __ addl(ToRegister(left), Immediate(right_operand));
1793       }
1794     } else if (right->IsRegister()) {
1795       if (is_p) {
1796         __ addp(ToRegister(left), ToRegister(right));
1797       } else {
1798         __ addl(ToRegister(left), ToRegister(right));
1799       }
1800     } else {
1801       if (is_p) {
1802         __ addp(ToRegister(left), ToOperand(right));
1803       } else {
1804         __ addl(ToRegister(left), ToOperand(right));
1805       }
1806     }
1807     if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1808       DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1809     }
1810   }
1811 }
1812 
1813 
DoMathMinMax(LMathMinMax * instr)1814 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1815   LOperand* left = instr->left();
1816   LOperand* right = instr->right();
1817   DCHECK(left->Equals(instr->result()));
1818   HMathMinMax::Operation operation = instr->hydrogen()->operation();
1819   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1820     Label return_left;
1821     Condition condition = (operation == HMathMinMax::kMathMin)
1822         ? less_equal
1823         : greater_equal;
1824     Register left_reg = ToRegister(left);
1825     if (right->IsConstantOperand()) {
1826       Immediate right_imm = Immediate(
1827           ToRepresentation(LConstantOperand::cast(right),
1828                            instr->hydrogen()->right()->representation()));
1829       DCHECK(SmiValuesAre32Bits()
1830           ? !instr->hydrogen()->representation().IsSmi()
1831           : SmiValuesAre31Bits());
1832       __ cmpl(left_reg, right_imm);
1833       __ j(condition, &return_left, Label::kNear);
1834       __ movp(left_reg, right_imm);
1835     } else if (right->IsRegister()) {
1836       Register right_reg = ToRegister(right);
1837       if (instr->hydrogen_value()->representation().IsSmi()) {
1838         __ cmpp(left_reg, right_reg);
1839       } else {
1840         __ cmpl(left_reg, right_reg);
1841       }
1842       __ j(condition, &return_left, Label::kNear);
1843       __ movp(left_reg, right_reg);
1844     } else {
1845       Operand right_op = ToOperand(right);
1846       if (instr->hydrogen_value()->representation().IsSmi()) {
1847         __ cmpp(left_reg, right_op);
1848       } else {
1849         __ cmpl(left_reg, right_op);
1850       }
1851       __ j(condition, &return_left, Label::kNear);
1852       __ movp(left_reg, right_op);
1853     }
1854     __ bind(&return_left);
1855   } else {
1856     DCHECK(instr->hydrogen()->representation().IsDouble());
1857     Label not_nan, distinct, return_left, return_right;
1858     Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
1859     XMMRegister left_reg = ToDoubleRegister(left);
1860     XMMRegister right_reg = ToDoubleRegister(right);
1861     __ Ucomisd(left_reg, right_reg);
1862     __ j(parity_odd, &not_nan, Label::kNear);  // Both are not NaN.
1863 
1864     // One of the numbers is NaN. Find which one and return it.
1865     __ Ucomisd(left_reg, left_reg);
1866     __ j(parity_even, &return_left, Label::kNear);  // left is NaN.
1867     __ jmp(&return_right, Label::kNear);            // right is NaN.
1868 
1869     __ bind(&not_nan);
1870     __ j(not_equal, &distinct, Label::kNear);  // left != right.
1871 
1872     // left == right
1873     XMMRegister xmm_scratch = double_scratch0();
1874     __ Xorpd(xmm_scratch, xmm_scratch);
1875     __ Ucomisd(left_reg, xmm_scratch);
1876     __ j(not_equal, &return_left, Label::kNear);  // left == right != 0.
1877 
1878     // At this point, both left and right are either +0 or -0.
1879     if (operation == HMathMinMax::kMathMin) {
1880       __ Orpd(left_reg, right_reg);
1881     } else {
1882       __ Andpd(left_reg, right_reg);
1883     }
1884     __ jmp(&return_left, Label::kNear);
1885 
1886     __ bind(&distinct);
1887     __ j(condition, &return_left, Label::kNear);
1888 
1889     __ bind(&return_right);
1890     __ Movapd(left_reg, right_reg);
1891 
1892     __ bind(&return_left);
1893   }
1894 }
1895 
1896 
DoArithmeticD(LArithmeticD * instr)1897 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1898   XMMRegister left = ToDoubleRegister(instr->left());
1899   XMMRegister right = ToDoubleRegister(instr->right());
1900   XMMRegister result = ToDoubleRegister(instr->result());
1901   switch (instr->op()) {
1902     case Token::ADD:
1903       if (CpuFeatures::IsSupported(AVX)) {
1904         CpuFeatureScope scope(masm(), AVX);
1905         __ vaddsd(result, left, right);
1906       } else {
1907         DCHECK(result.is(left));
1908         __ addsd(left, right);
1909       }
1910       break;
1911     case Token::SUB:
1912       if (CpuFeatures::IsSupported(AVX)) {
1913         CpuFeatureScope scope(masm(), AVX);
1914         __ vsubsd(result, left, right);
1915       } else {
1916         DCHECK(result.is(left));
1917         __ subsd(left, right);
1918       }
1919        break;
1920     case Token::MUL:
1921       if (CpuFeatures::IsSupported(AVX)) {
1922         CpuFeatureScope scope(masm(), AVX);
1923         __ vmulsd(result, left, right);
1924       } else {
1925         DCHECK(result.is(left));
1926         __ mulsd(left, right);
1927       }
1928       break;
1929     case Token::DIV:
1930       if (CpuFeatures::IsSupported(AVX)) {
1931         CpuFeatureScope scope(masm(), AVX);
1932         __ vdivsd(result, left, right);
1933       } else {
1934         DCHECK(result.is(left));
1935         __ divsd(left, right);
1936       }
1937       // Don't delete this mov. It may improve performance on some CPUs,
1938       // when there is a (v)mulsd depending on the result
1939       __ Movapd(result, result);
1940       break;
1941     case Token::MOD: {
1942       XMMRegister xmm_scratch = double_scratch0();
1943       __ PrepareCallCFunction(2);
1944       __ Movapd(xmm_scratch, left);
1945       DCHECK(right.is(xmm1));
1946       __ CallCFunction(
1947           ExternalReference::mod_two_doubles_operation(isolate()), 2);
1948       __ Movapd(result, xmm_scratch);
1949       break;
1950     }
1951     default:
1952       UNREACHABLE();
1953       break;
1954   }
1955 }
1956 
1957 
DoArithmeticT(LArithmeticT * instr)1958 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1959   DCHECK(ToRegister(instr->context()).is(rsi));
1960   DCHECK(ToRegister(instr->left()).is(rdx));
1961   DCHECK(ToRegister(instr->right()).is(rax));
1962   DCHECK(ToRegister(instr->result()).is(rax));
1963 
1964   Handle<Code> code =
1965       CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
1966   CallCode(code, RelocInfo::CODE_TARGET, instr);
1967 }
1968 
1969 
1970 template<class InstrType>
EmitBranch(InstrType instr,Condition cc)1971 void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
1972   int left_block = instr->TrueDestination(chunk_);
1973   int right_block = instr->FalseDestination(chunk_);
1974 
1975   int next_block = GetNextEmittedBlock();
1976 
1977   if (right_block == left_block || cc == no_condition) {
1978     EmitGoto(left_block);
1979   } else if (left_block == next_block) {
1980     __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1981   } else if (right_block == next_block) {
1982     __ j(cc, chunk_->GetAssemblyLabel(left_block));
1983   } else {
1984     __ j(cc, chunk_->GetAssemblyLabel(left_block));
1985     if (cc != always) {
1986       __ jmp(chunk_->GetAssemblyLabel(right_block));
1987     }
1988   }
1989 }
1990 
1991 
1992 template <class InstrType>
EmitTrueBranch(InstrType instr,Condition cc)1993 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
1994   int true_block = instr->TrueDestination(chunk_);
1995   __ j(cc, chunk_->GetAssemblyLabel(true_block));
1996 }
1997 
1998 
1999 template <class InstrType>
EmitFalseBranch(InstrType instr,Condition cc)2000 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
2001   int false_block = instr->FalseDestination(chunk_);
2002   __ j(cc, chunk_->GetAssemblyLabel(false_block));
2003 }
2004 
2005 
DoDebugBreak(LDebugBreak * instr)2006 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
2007   __ int3();
2008 }
2009 
2010 
DoBranch(LBranch * instr)2011 void LCodeGen::DoBranch(LBranch* instr) {
2012   Representation r = instr->hydrogen()->value()->representation();
2013   if (r.IsInteger32()) {
2014     DCHECK(!info()->IsStub());
2015     Register reg = ToRegister(instr->value());
2016     __ testl(reg, reg);
2017     EmitBranch(instr, not_zero);
2018   } else if (r.IsSmi()) {
2019     DCHECK(!info()->IsStub());
2020     Register reg = ToRegister(instr->value());
2021     __ testp(reg, reg);
2022     EmitBranch(instr, not_zero);
2023   } else if (r.IsDouble()) {
2024     DCHECK(!info()->IsStub());
2025     XMMRegister reg = ToDoubleRegister(instr->value());
2026     XMMRegister xmm_scratch = double_scratch0();
2027     __ Xorpd(xmm_scratch, xmm_scratch);
2028     __ Ucomisd(reg, xmm_scratch);
2029     EmitBranch(instr, not_equal);
2030   } else {
2031     DCHECK(r.IsTagged());
2032     Register reg = ToRegister(instr->value());
2033     HType type = instr->hydrogen()->value()->type();
2034     if (type.IsBoolean()) {
2035       DCHECK(!info()->IsStub());
2036       __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2037       EmitBranch(instr, equal);
2038     } else if (type.IsSmi()) {
2039       DCHECK(!info()->IsStub());
2040       __ SmiCompare(reg, Smi::FromInt(0));
2041       EmitBranch(instr, not_equal);
2042     } else if (type.IsJSArray()) {
2043       DCHECK(!info()->IsStub());
2044       EmitBranch(instr, no_condition);
2045     } else if (type.IsHeapNumber()) {
2046       DCHECK(!info()->IsStub());
2047       XMMRegister xmm_scratch = double_scratch0();
2048       __ Xorpd(xmm_scratch, xmm_scratch);
2049       __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2050       EmitBranch(instr, not_equal);
2051     } else if (type.IsString()) {
2052       DCHECK(!info()->IsStub());
2053       __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2054       EmitBranch(instr, not_equal);
2055     } else {
2056       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2057       // Avoid deopts in the case where we've never executed this path before.
2058       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2059 
2060       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2061         // undefined -> false.
2062         __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2063         __ j(equal, instr->FalseLabel(chunk_));
2064       }
2065       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2066         // true -> true.
2067         __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2068         __ j(equal, instr->TrueLabel(chunk_));
2069         // false -> false.
2070         __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2071         __ j(equal, instr->FalseLabel(chunk_));
2072       }
2073       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2074         // 'null' -> false.
2075         __ CompareRoot(reg, Heap::kNullValueRootIndex);
2076         __ j(equal, instr->FalseLabel(chunk_));
2077       }
2078 
2079       if (expected.Contains(ToBooleanStub::SMI)) {
2080         // Smis: 0 -> false, all other -> true.
2081         __ Cmp(reg, Smi::FromInt(0));
2082         __ j(equal, instr->FalseLabel(chunk_));
2083         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2084       } else if (expected.NeedsMap()) {
2085         // If we need a map later and have a Smi -> deopt.
2086         __ testb(reg, Immediate(kSmiTagMask));
2087         DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
2088       }
2089 
2090       const Register map = kScratchRegister;
2091       if (expected.NeedsMap()) {
2092         __ movp(map, FieldOperand(reg, HeapObject::kMapOffset));
2093 
2094         if (expected.CanBeUndetectable()) {
2095           // Undetectable -> false.
2096           __ testb(FieldOperand(map, Map::kBitFieldOffset),
2097                    Immediate(1 << Map::kIsUndetectable));
2098           __ j(not_zero, instr->FalseLabel(chunk_));
2099         }
2100       }
2101 
2102       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2103         // spec object -> true.
2104         __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
2105         __ j(above_equal, instr->TrueLabel(chunk_));
2106       }
2107 
2108       if (expected.Contains(ToBooleanStub::STRING)) {
2109         // String value -> false iff empty.
2110         Label not_string;
2111         __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2112         __ j(above_equal, &not_string, Label::kNear);
2113         __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2114         __ j(not_zero, instr->TrueLabel(chunk_));
2115         __ jmp(instr->FalseLabel(chunk_));
2116         __ bind(&not_string);
2117       }
2118 
2119       if (expected.Contains(ToBooleanStub::SYMBOL)) {
2120         // Symbol value -> true.
2121         __ CmpInstanceType(map, SYMBOL_TYPE);
2122         __ j(equal, instr->TrueLabel(chunk_));
2123       }
2124 
2125       if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
2126         // SIMD value -> true.
2127         __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
2128         __ j(equal, instr->TrueLabel(chunk_));
2129       }
2130 
2131       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2132         // heap number -> false iff +0, -0, or NaN.
2133         Label not_heap_number;
2134         __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2135         __ j(not_equal, &not_heap_number, Label::kNear);
2136         XMMRegister xmm_scratch = double_scratch0();
2137         __ Xorpd(xmm_scratch, xmm_scratch);
2138         __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2139         __ j(zero, instr->FalseLabel(chunk_));
2140         __ jmp(instr->TrueLabel(chunk_));
2141         __ bind(&not_heap_number);
2142       }
2143 
2144       if (!expected.IsGeneric()) {
2145         // We've seen something for the first time -> deopt.
2146         // This can only happen if we are not generic already.
2147         DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject);
2148       }
2149     }
2150   }
2151 }
2152 
2153 
EmitGoto(int block)2154 void LCodeGen::EmitGoto(int block) {
2155   if (!IsNextEmittedBlock(block)) {
2156     __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block)));
2157   }
2158 }
2159 
2160 
DoGoto(LGoto * instr)2161 void LCodeGen::DoGoto(LGoto* instr) {
2162   EmitGoto(instr->block_id());
2163 }
2164 
2165 
TokenToCondition(Token::Value op,bool is_unsigned)2166 inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2167   Condition cond = no_condition;
2168   switch (op) {
2169     case Token::EQ:
2170     case Token::EQ_STRICT:
2171       cond = equal;
2172       break;
2173     case Token::NE:
2174     case Token::NE_STRICT:
2175       cond = not_equal;
2176       break;
2177     case Token::LT:
2178       cond = is_unsigned ? below : less;
2179       break;
2180     case Token::GT:
2181       cond = is_unsigned ? above : greater;
2182       break;
2183     case Token::LTE:
2184       cond = is_unsigned ? below_equal : less_equal;
2185       break;
2186     case Token::GTE:
2187       cond = is_unsigned ? above_equal : greater_equal;
2188       break;
2189     case Token::IN:
2190     case Token::INSTANCEOF:
2191     default:
2192       UNREACHABLE();
2193   }
2194   return cond;
2195 }
2196 
2197 
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2198 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2199   LOperand* left = instr->left();
2200   LOperand* right = instr->right();
2201   bool is_unsigned =
2202       instr->is_double() ||
2203       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2204       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2205   Condition cc = TokenToCondition(instr->op(), is_unsigned);
2206 
2207   if (left->IsConstantOperand() && right->IsConstantOperand()) {
2208     // We can statically evaluate the comparison.
2209     double left_val = ToDouble(LConstantOperand::cast(left));
2210     double right_val = ToDouble(LConstantOperand::cast(right));
2211     int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2212         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2213     EmitGoto(next_block);
2214   } else {
2215     if (instr->is_double()) {
2216       // Don't base result on EFLAGS when a NaN is involved. Instead
2217       // jump to the false block.
2218       __ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
2219       __ j(parity_even, instr->FalseLabel(chunk_));
2220     } else {
2221       int32_t value;
2222       if (right->IsConstantOperand()) {
2223         value = ToInteger32(LConstantOperand::cast(right));
2224         if (instr->hydrogen_value()->representation().IsSmi()) {
2225           __ Cmp(ToRegister(left), Smi::FromInt(value));
2226         } else {
2227           __ cmpl(ToRegister(left), Immediate(value));
2228         }
2229       } else if (left->IsConstantOperand()) {
2230         value = ToInteger32(LConstantOperand::cast(left));
2231         if (instr->hydrogen_value()->representation().IsSmi()) {
2232           if (right->IsRegister()) {
2233             __ Cmp(ToRegister(right), Smi::FromInt(value));
2234           } else {
2235             __ Cmp(ToOperand(right), Smi::FromInt(value));
2236           }
2237         } else if (right->IsRegister()) {
2238           __ cmpl(ToRegister(right), Immediate(value));
2239         } else {
2240           __ cmpl(ToOperand(right), Immediate(value));
2241         }
2242         // We commuted the operands, so commute the condition.
2243         cc = CommuteCondition(cc);
2244       } else if (instr->hydrogen_value()->representation().IsSmi()) {
2245         if (right->IsRegister()) {
2246           __ cmpp(ToRegister(left), ToRegister(right));
2247         } else {
2248           __ cmpp(ToRegister(left), ToOperand(right));
2249         }
2250       } else {
2251         if (right->IsRegister()) {
2252           __ cmpl(ToRegister(left), ToRegister(right));
2253         } else {
2254           __ cmpl(ToRegister(left), ToOperand(right));
2255         }
2256       }
2257     }
2258     EmitBranch(instr, cc);
2259   }
2260 }
2261 
2262 
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2263 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2264   Register left = ToRegister(instr->left());
2265 
2266   if (instr->right()->IsConstantOperand()) {
2267     Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
2268     __ Cmp(left, right);
2269   } else {
2270     Register right = ToRegister(instr->right());
2271     __ cmpp(left, right);
2272   }
2273   EmitBranch(instr, equal);
2274 }
2275 
2276 
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2277 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2278   if (instr->hydrogen()->representation().IsTagged()) {
2279     Register input_reg = ToRegister(instr->object());
2280     __ Cmp(input_reg, factory()->the_hole_value());
2281     EmitBranch(instr, equal);
2282     return;
2283   }
2284 
2285   XMMRegister input_reg = ToDoubleRegister(instr->object());
2286   __ Ucomisd(input_reg, input_reg);
2287   EmitFalseBranch(instr, parity_odd);
2288 
2289   __ subp(rsp, Immediate(kDoubleSize));
2290   __ Movsd(MemOperand(rsp, 0), input_reg);
2291   __ addp(rsp, Immediate(kDoubleSize));
2292 
2293   int offset = sizeof(kHoleNanUpper32);
2294   __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32));
2295   EmitBranch(instr, equal);
2296 }
2297 
2298 
DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch * instr)2299 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2300   Representation rep = instr->hydrogen()->value()->representation();
2301   DCHECK(!rep.IsInteger32());
2302 
2303   if (rep.IsDouble()) {
2304     XMMRegister value = ToDoubleRegister(instr->value());
2305     XMMRegister xmm_scratch = double_scratch0();
2306     __ Xorpd(xmm_scratch, xmm_scratch);
2307     __ Ucomisd(xmm_scratch, value);
2308     EmitFalseBranch(instr, not_equal);
2309     __ Movmskpd(kScratchRegister, value);
2310     __ testl(kScratchRegister, Immediate(1));
2311     EmitBranch(instr, not_zero);
2312   } else {
2313     Register value = ToRegister(instr->value());
2314     Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
2315     __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
2316     __ cmpl(FieldOperand(value, HeapNumber::kExponentOffset),
2317             Immediate(0x1));
2318     EmitFalseBranch(instr, no_overflow);
2319     __ cmpl(FieldOperand(value, HeapNumber::kMantissaOffset),
2320             Immediate(0x00000000));
2321     EmitBranch(instr, equal);
2322   }
2323 }
2324 
2325 
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2326 Condition LCodeGen::EmitIsString(Register input,
2327                                  Register temp1,
2328                                  Label* is_not_string,
2329                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
2330   if (check_needed == INLINE_SMI_CHECK) {
2331     __ JumpIfSmi(input, is_not_string);
2332   }
2333 
2334   Condition cond =  masm_->IsObjectStringType(input, temp1, temp1);
2335 
2336   return cond;
2337 }
2338 
2339 
DoIsStringAndBranch(LIsStringAndBranch * instr)2340 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2341   Register reg = ToRegister(instr->value());
2342   Register temp = ToRegister(instr->temp());
2343 
2344   SmiCheck check_needed =
2345       instr->hydrogen()->value()->type().IsHeapObject()
2346           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2347 
2348   Condition true_cond = EmitIsString(
2349       reg, temp, instr->FalseLabel(chunk_), check_needed);
2350 
2351   EmitBranch(instr, true_cond);
2352 }
2353 
2354 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2355 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2356   Condition is_smi;
2357   if (instr->value()->IsRegister()) {
2358     Register input = ToRegister(instr->value());
2359     is_smi = masm()->CheckSmi(input);
2360   } else {
2361     Operand input = ToOperand(instr->value());
2362     is_smi = masm()->CheckSmi(input);
2363   }
2364   EmitBranch(instr, is_smi);
2365 }
2366 
2367 
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2368 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2369   Register input = ToRegister(instr->value());
2370   Register temp = ToRegister(instr->temp());
2371 
2372   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2373     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2374   }
2375   __ movp(temp, FieldOperand(input, HeapObject::kMapOffset));
2376   __ testb(FieldOperand(temp, Map::kBitFieldOffset),
2377            Immediate(1 << Map::kIsUndetectable));
2378   EmitBranch(instr, not_zero);
2379 }
2380 
2381 
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2382 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2383   DCHECK(ToRegister(instr->context()).is(rsi));
2384   DCHECK(ToRegister(instr->left()).is(rdx));
2385   DCHECK(ToRegister(instr->right()).is(rax));
2386 
2387   Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
2388   CallCode(code, RelocInfo::CODE_TARGET, instr);
2389   __ testp(rax, rax);
2390 
2391   EmitBranch(instr, TokenToCondition(instr->op(), false));
2392 }
2393 
2394 
TestType(HHasInstanceTypeAndBranch * instr)2395 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2396   InstanceType from = instr->from();
2397   InstanceType to = instr->to();
2398   if (from == FIRST_TYPE) return to;
2399   DCHECK(from == to || to == LAST_TYPE);
2400   return from;
2401 }
2402 
2403 
BranchCondition(HHasInstanceTypeAndBranch * instr)2404 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2405   InstanceType from = instr->from();
2406   InstanceType to = instr->to();
2407   if (from == to) return equal;
2408   if (to == LAST_TYPE) return above_equal;
2409   if (from == FIRST_TYPE) return below_equal;
2410   UNREACHABLE();
2411   return equal;
2412 }
2413 
2414 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2415 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2416   Register input = ToRegister(instr->value());
2417 
2418   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2419     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2420   }
2421 
2422   __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
2423   EmitBranch(instr, BranchCondition(instr->hydrogen()));
2424 }
2425 
2426 
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)2427 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2428   Register input = ToRegister(instr->value());
2429   Register result = ToRegister(instr->result());
2430 
2431   __ AssertString(input);
2432 
2433   __ movl(result, FieldOperand(input, String::kHashFieldOffset));
2434   DCHECK(String::kHashShift >= kSmiTagSize);
2435   __ IndexFromHash(result, result);
2436 }
2437 
2438 
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)2439 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2440     LHasCachedArrayIndexAndBranch* instr) {
2441   Register input = ToRegister(instr->value());
2442 
2443   __ testl(FieldOperand(input, String::kHashFieldOffset),
2444            Immediate(String::kContainsCachedArrayIndexMask));
2445   EmitBranch(instr, equal);
2446 }
2447 
2448 
2449 // Branches to a label or falls through with the answer in the z flag.
2450 // Trashes the temp register.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2451 void LCodeGen::EmitClassOfTest(Label* is_true,
2452                                Label* is_false,
2453                                Handle<String> class_name,
2454                                Register input,
2455                                Register temp,
2456                                Register temp2) {
2457   DCHECK(!input.is(temp));
2458   DCHECK(!input.is(temp2));
2459   DCHECK(!temp.is(temp2));
2460 
2461   __ JumpIfSmi(input, is_false);
2462 
2463   __ CmpObjectType(input, JS_FUNCTION_TYPE, temp);
2464   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2465     __ j(equal, is_true);
2466   } else {
2467     __ j(equal, is_false);
2468   }
2469 
2470   // Check if the constructor in the map is a function.
2471   __ GetMapConstructor(temp, temp, kScratchRegister);
2472 
2473   // Objects with a non-function constructor have class 'Object'.
2474   __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
2475   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2476     __ j(not_equal, is_true);
2477   } else {
2478     __ j(not_equal, is_false);
2479   }
2480 
2481   // temp now contains the constructor function. Grab the
2482   // instance class name from there.
2483   __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2484   __ movp(temp, FieldOperand(temp,
2485                              SharedFunctionInfo::kInstanceClassNameOffset));
2486   // The class name we are testing against is internalized since it's a literal.
2487   // The name in the constructor is internalized because of the way the context
2488   // is booted.  This routine isn't expected to work for random API-created
2489   // classes and it doesn't have to because you can't access it with natives
2490   // syntax.  Since both sides are internalized it is sufficient to use an
2491   // identity comparison.
2492   DCHECK(class_name->IsInternalizedString());
2493   __ Cmp(temp, class_name);
2494   // End with the answer in the z flag.
2495 }
2496 
2497 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2498 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2499   Register input = ToRegister(instr->value());
2500   Register temp = ToRegister(instr->temp());
2501   Register temp2 = ToRegister(instr->temp2());
2502   Handle<String> class_name = instr->hydrogen()->class_name();
2503 
2504   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2505       class_name, input, temp, temp2);
2506 
2507   EmitBranch(instr, equal);
2508 }
2509 
2510 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2511 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2512   Register reg = ToRegister(instr->value());
2513 
2514   __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
2515   EmitBranch(instr, equal);
2516 }
2517 
2518 
DoInstanceOf(LInstanceOf * instr)2519 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2520   DCHECK(ToRegister(instr->context()).is(rsi));
2521   DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2522   DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2523   DCHECK(ToRegister(instr->result()).is(rax));
2524   InstanceOfStub stub(isolate());
2525   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2526 }
2527 
2528 
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2529 void LCodeGen::DoHasInPrototypeChainAndBranch(
2530     LHasInPrototypeChainAndBranch* instr) {
2531   Register const object = ToRegister(instr->object());
2532   Register const object_map = kScratchRegister;
2533   Register const object_prototype = object_map;
2534   Register const prototype = ToRegister(instr->prototype());
2535 
2536   // The {object} must be a spec object.  It's sufficient to know that {object}
2537   // is not a smi, since all other non-spec objects have {null} prototypes and
2538   // will be ruled out below.
2539   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2540     Condition is_smi = __ CheckSmi(object);
2541     EmitFalseBranch(instr, is_smi);
2542   }
2543 
2544   // Loop through the {object}s prototype chain looking for the {prototype}.
2545   __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
2546   Label loop;
2547   __ bind(&loop);
2548 
2549 
2550   // Deoptimize if the object needs to be access checked.
2551   __ testb(FieldOperand(object_map, Map::kBitFieldOffset),
2552            Immediate(1 << Map::kIsAccessCheckNeeded));
2553   DeoptimizeIf(not_zero, instr, Deoptimizer::kAccessCheck);
2554   // Deoptimize for proxies.
2555   __ CmpInstanceType(object_map, JS_PROXY_TYPE);
2556   DeoptimizeIf(equal, instr, Deoptimizer::kProxy);
2557 
2558   __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
2559   __ cmpp(object_prototype, prototype);
2560   EmitTrueBranch(instr, equal);
2561   __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2562   EmitFalseBranch(instr, equal);
2563   __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
2564   __ jmp(&loop);
2565 }
2566 
2567 
DoCmpT(LCmpT * instr)2568 void LCodeGen::DoCmpT(LCmpT* instr) {
2569   DCHECK(ToRegister(instr->context()).is(rsi));
2570   Token::Value op = instr->op();
2571 
2572   Handle<Code> ic =
2573       CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
2574   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2575 
2576   Condition condition = TokenToCondition(op, false);
2577   Label true_value, done;
2578   __ testp(rax, rax);
2579   __ j(condition, &true_value, Label::kNear);
2580   __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2581   __ jmp(&done, Label::kNear);
2582   __ bind(&true_value);
2583   __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2584   __ bind(&done);
2585 }
2586 
2587 
DoReturn(LReturn * instr)2588 void LCodeGen::DoReturn(LReturn* instr) {
2589   if (FLAG_trace && info()->IsOptimizing()) {
2590     // Preserve the return value on the stack and rely on the runtime call
2591     // to return the value in the same register.  We're leaving the code
2592     // managed by the register allocator and tearing down the frame, it's
2593     // safe to write to the context register.
2594     __ Push(rax);
2595     __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2596     __ CallRuntime(Runtime::kTraceExit);
2597   }
2598   if (info()->saves_caller_doubles()) {
2599     RestoreCallerDoubles();
2600   }
2601   if (NeedsEagerFrame()) {
2602     __ movp(rsp, rbp);
2603     __ popq(rbp);
2604   }
2605   if (instr->has_constant_parameter_count()) {
2606     __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize,
2607            rcx);
2608   } else {
2609     DCHECK(info()->IsStub());  // Functions would need to drop one more value.
2610     Register reg = ToRegister(instr->parameter_count());
2611     // The argument count parameter is a smi
2612     __ SmiToInteger32(reg, reg);
2613     Register return_addr_reg = reg.is(rcx) ? rbx : rcx;
2614     __ PopReturnAddressTo(return_addr_reg);
2615     __ shlp(reg, Immediate(kPointerSizeLog2));
2616     __ addp(rsp, reg);
2617     __ jmp(return_addr_reg);
2618   }
2619 }
2620 
2621 
2622 template <class T>
EmitVectorLoadICRegisters(T * instr)2623 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2624   Register vector_register = ToRegister(instr->temp_vector());
2625   Register slot_register = LoadWithVectorDescriptor::SlotRegister();
2626   DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
2627   DCHECK(slot_register.is(rax));
2628 
2629   AllowDeferredHandleDereference vector_structure_check;
2630   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2631   __ Move(vector_register, vector);
2632   // No need to allocate this register.
2633   FeedbackVectorSlot slot = instr->hydrogen()->slot();
2634   int index = vector->GetIndex(slot);
2635   __ Move(slot_register, Smi::FromInt(index));
2636 }
2637 
2638 
2639 template <class T>
EmitVectorStoreICRegisters(T * instr)2640 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
2641   Register vector_register = ToRegister(instr->temp_vector());
2642   Register slot_register = ToRegister(instr->temp_slot());
2643 
2644   AllowDeferredHandleDereference vector_structure_check;
2645   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2646   __ Move(vector_register, vector);
2647   FeedbackVectorSlot slot = instr->hydrogen()->slot();
2648   int index = vector->GetIndex(slot);
2649   __ Move(slot_register, Smi::FromInt(index));
2650 }
2651 
2652 
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)2653 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2654   DCHECK(ToRegister(instr->context()).is(rsi));
2655   DCHECK(ToRegister(instr->global_object())
2656              .is(LoadDescriptor::ReceiverRegister()));
2657   DCHECK(ToRegister(instr->result()).is(rax));
2658 
2659   __ Move(LoadDescriptor::NameRegister(), instr->name());
2660   EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
2661   Handle<Code> ic =
2662       CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
2663                                          SLOPPY, PREMONOMORPHIC).code();
2664   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2665 }
2666 
2667 
DoLoadContextSlot(LLoadContextSlot * instr)2668 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2669   Register context = ToRegister(instr->context());
2670   Register result = ToRegister(instr->result());
2671   __ movp(result, ContextOperand(context, instr->slot_index()));
2672   if (instr->hydrogen()->RequiresHoleCheck()) {
2673     __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2674     if (instr->hydrogen()->DeoptimizesOnHole()) {
2675       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2676     } else {
2677       Label is_not_hole;
2678       __ j(not_equal, &is_not_hole, Label::kNear);
2679       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2680       __ bind(&is_not_hole);
2681     }
2682   }
2683 }
2684 
2685 
DoStoreContextSlot(LStoreContextSlot * instr)2686 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2687   Register context = ToRegister(instr->context());
2688   Register value = ToRegister(instr->value());
2689 
2690   Operand target = ContextOperand(context, instr->slot_index());
2691 
2692   Label skip_assignment;
2693   if (instr->hydrogen()->RequiresHoleCheck()) {
2694     __ CompareRoot(target, Heap::kTheHoleValueRootIndex);
2695     if (instr->hydrogen()->DeoptimizesOnHole()) {
2696       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2697     } else {
2698       __ j(not_equal, &skip_assignment);
2699     }
2700   }
2701   __ movp(target, value);
2702 
2703   if (instr->hydrogen()->NeedsWriteBarrier()) {
2704     SmiCheck check_needed =
2705       instr->hydrogen()->value()->type().IsHeapObject()
2706           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2707     int offset = Context::SlotOffset(instr->slot_index());
2708     Register scratch = ToRegister(instr->temp());
2709     __ RecordWriteContextSlot(context,
2710                               offset,
2711                               value,
2712                               scratch,
2713                               kSaveFPRegs,
2714                               EMIT_REMEMBERED_SET,
2715                               check_needed);
2716   }
2717 
2718   __ bind(&skip_assignment);
2719 }
2720 
2721 
DoLoadNamedField(LLoadNamedField * instr)2722 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2723   HObjectAccess access = instr->hydrogen()->access();
2724   int offset = access.offset();
2725 
2726   if (access.IsExternalMemory()) {
2727     Register result = ToRegister(instr->result());
2728     if (instr->object()->IsConstantOperand()) {
2729       DCHECK(result.is(rax));
2730       __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object())));
2731     } else {
2732       Register object = ToRegister(instr->object());
2733       __ Load(result, MemOperand(object, offset), access.representation());
2734     }
2735     return;
2736   }
2737 
2738   Register object = ToRegister(instr->object());
2739   if (instr->hydrogen()->representation().IsDouble()) {
2740     DCHECK(access.IsInobject());
2741     XMMRegister result = ToDoubleRegister(instr->result());
2742     __ Movsd(result, FieldOperand(object, offset));
2743     return;
2744   }
2745 
2746   Register result = ToRegister(instr->result());
2747   if (!access.IsInobject()) {
2748     __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset));
2749     object = result;
2750   }
2751 
2752   Representation representation = access.representation();
2753   if (representation.IsSmi() && SmiValuesAre32Bits() &&
2754       instr->hydrogen()->representation().IsInteger32()) {
2755     if (FLAG_debug_code) {
2756       Register scratch = kScratchRegister;
2757       __ Load(scratch, FieldOperand(object, offset), representation);
2758       __ AssertSmi(scratch);
2759     }
2760 
2761     // Read int value directly from upper half of the smi.
2762     STATIC_ASSERT(kSmiTag == 0);
2763     DCHECK(kSmiTagSize + kSmiShiftSize == 32);
2764     offset += kPointerSize / 2;
2765     representation = Representation::Integer32();
2766   }
2767   __ Load(result, FieldOperand(object, offset), representation);
2768 }
2769 
2770 
DoLoadNamedGeneric(LLoadNamedGeneric * instr)2771 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2772   DCHECK(ToRegister(instr->context()).is(rsi));
2773   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2774   DCHECK(ToRegister(instr->result()).is(rax));
2775 
2776   __ Move(LoadDescriptor::NameRegister(), instr->name());
2777   EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
2778   Handle<Code> ic =
2779       CodeFactory::LoadICInOptimizedCode(
2780           isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
2781           instr->hydrogen()->initialization_state()).code();
2782   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2783 }
2784 
2785 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2786 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2787   Register function = ToRegister(instr->function());
2788   Register result = ToRegister(instr->result());
2789 
2790   // Get the prototype or initial map from the function.
2791   __ movp(result,
2792          FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2793 
2794   // Check that the function has a prototype or an initial map.
2795   __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2796   DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2797 
2798   // If the function does not have an initial map, we're done.
2799   Label done;
2800   __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
2801   __ j(not_equal, &done, Label::kNear);
2802 
2803   // Get the prototype from the initial map.
2804   __ movp(result, FieldOperand(result, Map::kPrototypeOffset));
2805 
2806   // All done.
2807   __ bind(&done);
2808 }
2809 
2810 
DoLoadRoot(LLoadRoot * instr)2811 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2812   Register result = ToRegister(instr->result());
2813   __ LoadRoot(result, instr->index());
2814 }
2815 
2816 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2817 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2818   Register arguments = ToRegister(instr->arguments());
2819   Register result = ToRegister(instr->result());
2820 
2821   if (instr->length()->IsConstantOperand() &&
2822       instr->index()->IsConstantOperand()) {
2823     int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2824     int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2825     if (const_index >= 0 && const_index < const_length) {
2826       StackArgumentsAccessor args(arguments, const_length,
2827                                   ARGUMENTS_DONT_CONTAIN_RECEIVER);
2828       __ movp(result, args.GetArgumentOperand(const_index));
2829     } else if (FLAG_debug_code) {
2830       __ int3();
2831     }
2832   } else {
2833     Register length = ToRegister(instr->length());
2834     // There are two words between the frame pointer and the last argument.
2835     // Subtracting from length accounts for one of them add one more.
2836     if (instr->index()->IsRegister()) {
2837       __ subl(length, ToRegister(instr->index()));
2838     } else {
2839       __ subl(length, ToOperand(instr->index()));
2840     }
2841     StackArgumentsAccessor args(arguments, length,
2842                                 ARGUMENTS_DONT_CONTAIN_RECEIVER);
2843     __ movp(result, args.GetArgumentOperand(0));
2844   }
2845 }
2846 
2847 
DoLoadKeyedExternalArray(LLoadKeyed * instr)2848 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2849   ElementsKind elements_kind = instr->elements_kind();
2850   LOperand* key = instr->key();
2851   if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
2852     Register key_reg = ToRegister(key);
2853     Representation key_representation =
2854         instr->hydrogen()->key()->representation();
2855     if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
2856       __ SmiToInteger64(key_reg, key_reg);
2857     } else if (instr->hydrogen()->IsDehoisted()) {
2858       // Sign extend key because it could be a 32 bit negative value
2859       // and the dehoisted address computation happens in 64 bits
2860       __ movsxlq(key_reg, key_reg);
2861     }
2862   }
2863   Operand operand(BuildFastArrayOperand(
2864       instr->elements(),
2865       key,
2866       instr->hydrogen()->key()->representation(),
2867       elements_kind,
2868       instr->base_offset()));
2869 
2870   if (elements_kind == FLOAT32_ELEMENTS) {
2871     XMMRegister result(ToDoubleRegister(instr->result()));
2872     __ Cvtss2sd(result, operand);
2873   } else if (elements_kind == FLOAT64_ELEMENTS) {
2874     __ Movsd(ToDoubleRegister(instr->result()), operand);
2875   } else {
2876     Register result(ToRegister(instr->result()));
2877     switch (elements_kind) {
2878       case INT8_ELEMENTS:
2879         __ movsxbl(result, operand);
2880         break;
2881       case UINT8_ELEMENTS:
2882       case UINT8_CLAMPED_ELEMENTS:
2883         __ movzxbl(result, operand);
2884         break;
2885       case INT16_ELEMENTS:
2886         __ movsxwl(result, operand);
2887         break;
2888       case UINT16_ELEMENTS:
2889         __ movzxwl(result, operand);
2890         break;
2891       case INT32_ELEMENTS:
2892         __ movl(result, operand);
2893         break;
2894       case UINT32_ELEMENTS:
2895         __ movl(result, operand);
2896         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2897           __ testl(result, result);
2898           DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
2899         }
2900         break;
2901       case FLOAT32_ELEMENTS:
2902       case FLOAT64_ELEMENTS:
2903       case FAST_ELEMENTS:
2904       case FAST_SMI_ELEMENTS:
2905       case FAST_DOUBLE_ELEMENTS:
2906       case FAST_HOLEY_ELEMENTS:
2907       case FAST_HOLEY_SMI_ELEMENTS:
2908       case FAST_HOLEY_DOUBLE_ELEMENTS:
2909       case DICTIONARY_ELEMENTS:
2910       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2911       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2912         UNREACHABLE();
2913         break;
2914     }
2915   }
2916 }
2917 
2918 
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)2919 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2920   XMMRegister result(ToDoubleRegister(instr->result()));
2921   LOperand* key = instr->key();
2922   if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
2923       instr->hydrogen()->IsDehoisted()) {
2924     // Sign extend key because it could be a 32 bit negative value
2925     // and the dehoisted address computation happens in 64 bits
2926     __ movsxlq(ToRegister(key), ToRegister(key));
2927   }
2928   if (instr->hydrogen()->RequiresHoleCheck()) {
2929     Operand hole_check_operand = BuildFastArrayOperand(
2930         instr->elements(),
2931         key,
2932         instr->hydrogen()->key()->representation(),
2933         FAST_DOUBLE_ELEMENTS,
2934         instr->base_offset() + sizeof(kHoleNanLower32));
2935     __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
2936     DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2937   }
2938 
2939   Operand double_load_operand = BuildFastArrayOperand(
2940       instr->elements(),
2941       key,
2942       instr->hydrogen()->key()->representation(),
2943       FAST_DOUBLE_ELEMENTS,
2944       instr->base_offset());
2945   __ Movsd(result, double_load_operand);
2946 }
2947 
2948 
DoLoadKeyedFixedArray(LLoadKeyed * instr)2949 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2950   HLoadKeyed* hinstr = instr->hydrogen();
2951   Register result = ToRegister(instr->result());
2952   LOperand* key = instr->key();
2953   bool requires_hole_check = hinstr->RequiresHoleCheck();
2954   Representation representation = hinstr->representation();
2955   int offset = instr->base_offset();
2956 
2957   if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
2958       instr->hydrogen()->IsDehoisted()) {
2959     // Sign extend key because it could be a 32 bit negative value
2960     // and the dehoisted address computation happens in 64 bits
2961     __ movsxlq(ToRegister(key), ToRegister(key));
2962   }
2963   if (representation.IsInteger32() && SmiValuesAre32Bits() &&
2964       hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
2965     DCHECK(!requires_hole_check);
2966     if (FLAG_debug_code) {
2967       Register scratch = kScratchRegister;
2968       __ Load(scratch,
2969               BuildFastArrayOperand(instr->elements(),
2970                                     key,
2971                                     instr->hydrogen()->key()->representation(),
2972                                     FAST_ELEMENTS,
2973                                     offset),
2974               Representation::Smi());
2975       __ AssertSmi(scratch);
2976     }
2977     // Read int value directly from upper half of the smi.
2978     STATIC_ASSERT(kSmiTag == 0);
2979     DCHECK(kSmiTagSize + kSmiShiftSize == 32);
2980     offset += kPointerSize / 2;
2981   }
2982 
2983   __ Load(result,
2984           BuildFastArrayOperand(instr->elements(), key,
2985                                 instr->hydrogen()->key()->representation(),
2986                                 FAST_ELEMENTS, offset),
2987           representation);
2988 
2989   // Check for the hole value.
2990   if (requires_hole_check) {
2991     if (IsFastSmiElementsKind(hinstr->elements_kind())) {
2992       Condition smi = __ CheckSmi(result);
2993       DeoptimizeIf(NegateCondition(smi), instr, Deoptimizer::kNotASmi);
2994     } else {
2995       __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2996       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2997     }
2998   } else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2999     DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS);
3000     Label done;
3001     __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
3002     __ j(not_equal, &done);
3003     if (info()->IsStub()) {
3004       // A stub can safely convert the hole to undefined only if the array
3005       // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
3006       // it needs to bail out.
3007       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3008       __ Cmp(FieldOperand(result, Cell::kValueOffset),
3009              Smi::FromInt(Isolate::kArrayProtectorValid));
3010       DeoptimizeIf(not_equal, instr, Deoptimizer::kHole);
3011     }
3012     __ Move(result, isolate()->factory()->undefined_value());
3013     __ bind(&done);
3014   }
3015 }
3016 
3017 
DoLoadKeyed(LLoadKeyed * instr)3018 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3019   if (instr->is_fixed_typed_array()) {
3020     DoLoadKeyedExternalArray(instr);
3021   } else if (instr->hydrogen()->representation().IsDouble()) {
3022     DoLoadKeyedFixedDoubleArray(instr);
3023   } else {
3024     DoLoadKeyedFixedArray(instr);
3025   }
3026 }
3027 
3028 
BuildFastArrayOperand(LOperand * elements_pointer,LOperand * key,Representation key_representation,ElementsKind elements_kind,uint32_t offset)3029 Operand LCodeGen::BuildFastArrayOperand(
3030     LOperand* elements_pointer,
3031     LOperand* key,
3032     Representation key_representation,
3033     ElementsKind elements_kind,
3034     uint32_t offset) {
3035   Register elements_pointer_reg = ToRegister(elements_pointer);
3036   int shift_size = ElementsKindToShiftSize(elements_kind);
3037   if (key->IsConstantOperand()) {
3038     int32_t constant_value = ToInteger32(LConstantOperand::cast(key));
3039     if (constant_value & 0xF0000000) {
3040       Abort(kArrayIndexConstantValueTooBig);
3041     }
3042     return Operand(elements_pointer_reg,
3043                    (constant_value << shift_size) + offset);
3044   } else {
3045     // Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement().
3046     DCHECK(key_representation.IsInteger32());
3047 
3048     ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
3049     return Operand(elements_pointer_reg,
3050                    ToRegister(key),
3051                    scale_factor,
3052                    offset);
3053   }
3054 }
3055 
3056 
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)3057 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3058   DCHECK(ToRegister(instr->context()).is(rsi));
3059   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3060   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3061 
3062   if (instr->hydrogen()->HasVectorAndSlot()) {
3063     EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3064   }
3065 
3066   Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
3067                         isolate(), instr->hydrogen()->language_mode(),
3068                         instr->hydrogen()->initialization_state()).code();
3069   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3070 }
3071 
3072 
DoArgumentsElements(LArgumentsElements * instr)3073 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3074   Register result = ToRegister(instr->result());
3075 
3076   if (instr->hydrogen()->from_inlined()) {
3077     __ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize));
3078   } else {
3079     // Check for arguments adapter frame.
3080     Label done, adapted;
3081     __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3082     __ Cmp(Operand(result, StandardFrameConstants::kContextOffset),
3083            Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3084     __ j(equal, &adapted, Label::kNear);
3085 
3086     // No arguments adaptor frame.
3087     __ movp(result, rbp);
3088     __ jmp(&done, Label::kNear);
3089 
3090     // Arguments adaptor frame present.
3091     __ bind(&adapted);
3092     __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3093 
3094     // Result is the frame pointer for the frame if not adapted and for the real
3095     // frame below the adaptor frame if adapted.
3096     __ bind(&done);
3097   }
3098 }
3099 
3100 
DoArgumentsLength(LArgumentsLength * instr)3101 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3102   Register result = ToRegister(instr->result());
3103 
3104   Label done;
3105 
3106   // If no arguments adaptor frame the number of arguments is fixed.
3107   if (instr->elements()->IsRegister()) {
3108     __ cmpp(rbp, ToRegister(instr->elements()));
3109   } else {
3110     __ cmpp(rbp, ToOperand(instr->elements()));
3111   }
3112   __ movl(result, Immediate(scope()->num_parameters()));
3113   __ j(equal, &done, Label::kNear);
3114 
3115   // Arguments adaptor frame present. Get argument length from there.
3116   __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3117   __ SmiToInteger32(result,
3118                     Operand(result,
3119                             ArgumentsAdaptorFrameConstants::kLengthOffset));
3120 
3121   // Argument length is in result register.
3122   __ bind(&done);
3123 }
3124 
3125 
DoWrapReceiver(LWrapReceiver * instr)3126 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3127   Register receiver = ToRegister(instr->receiver());
3128   Register function = ToRegister(instr->function());
3129 
3130   // If the receiver is null or undefined, we have to pass the global
3131   // object as a receiver to normal functions. Values have to be
3132   // passed unchanged to builtins and strict-mode functions.
3133   Label global_object, receiver_ok;
3134   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3135 
3136   if (!instr->hydrogen()->known_function()) {
3137     // Do not transform the receiver to object for strict mode
3138     // functions.
3139     __ movp(kScratchRegister,
3140             FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3141     __ testb(FieldOperand(kScratchRegister,
3142                           SharedFunctionInfo::kStrictModeByteOffset),
3143              Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
3144     __ j(not_equal, &receiver_ok, dist);
3145 
3146     // Do not transform the receiver to object for builtins.
3147     __ testb(FieldOperand(kScratchRegister,
3148                           SharedFunctionInfo::kNativeByteOffset),
3149              Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
3150     __ j(not_equal, &receiver_ok, dist);
3151   }
3152 
3153   // Normal function. Replace undefined or null with global receiver.
3154   __ CompareRoot(receiver, Heap::kNullValueRootIndex);
3155   __ j(equal, &global_object, Label::kNear);
3156   __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
3157   __ j(equal, &global_object, Label::kNear);
3158 
3159   // The receiver should be a JS object.
3160   Condition is_smi = __ CheckSmi(receiver);
3161   DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
3162   __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, kScratchRegister);
3163   DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject);
3164 
3165   __ jmp(&receiver_ok, Label::kNear);
3166   __ bind(&global_object);
3167   __ movp(receiver, FieldOperand(function, JSFunction::kContextOffset));
3168   __ movp(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
3169   __ movp(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
3170 
3171   __ bind(&receiver_ok);
3172 }
3173 
3174 
DoApplyArguments(LApplyArguments * instr)3175 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3176   Register receiver = ToRegister(instr->receiver());
3177   Register function = ToRegister(instr->function());
3178   Register length = ToRegister(instr->length());
3179   Register elements = ToRegister(instr->elements());
3180   DCHECK(receiver.is(rax));  // Used for parameter count.
3181   DCHECK(function.is(rdi));  // Required by InvokeFunction.
3182   DCHECK(ToRegister(instr->result()).is(rax));
3183 
3184   // Copy the arguments to this function possibly from the
3185   // adaptor frame below it.
3186   const uint32_t kArgumentsLimit = 1 * KB;
3187   __ cmpp(length, Immediate(kArgumentsLimit));
3188   DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments);
3189 
3190   __ Push(receiver);
3191   __ movp(receiver, length);
3192 
3193   // Loop through the arguments pushing them onto the execution
3194   // stack.
3195   Label invoke, loop;
3196   // length is a small non-negative integer, due to the test above.
3197   __ testl(length, length);
3198   __ j(zero, &invoke, Label::kNear);
3199   __ bind(&loop);
3200   StackArgumentsAccessor args(elements, length,
3201                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
3202   __ Push(args.GetArgumentOperand(0));
3203   __ decl(length);
3204   __ j(not_zero, &loop);
3205 
3206   // Invoke the function.
3207   __ bind(&invoke);
3208   DCHECK(instr->HasPointerMap());
3209   LPointerMap* pointers = instr->pointer_map();
3210   SafepointGenerator safepoint_generator(
3211       this, pointers, Safepoint::kLazyDeopt);
3212   ParameterCount actual(rax);
3213   __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
3214                     safepoint_generator);
3215 }
3216 
3217 
DoPushArgument(LPushArgument * instr)3218 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3219   LOperand* argument = instr->value();
3220   EmitPushTaggedOperand(argument);
3221 }
3222 
3223 
DoDrop(LDrop * instr)3224 void LCodeGen::DoDrop(LDrop* instr) {
3225   __ Drop(instr->count());
3226 }
3227 
3228 
DoThisFunction(LThisFunction * instr)3229 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3230   Register result = ToRegister(instr->result());
3231   __ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3232 }
3233 
3234 
DoContext(LContext * instr)3235 void LCodeGen::DoContext(LContext* instr) {
3236   Register result = ToRegister(instr->result());
3237   if (info()->IsOptimizing()) {
3238     __ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset));
3239   } else {
3240     // If there is no frame, the context must be in rsi.
3241     DCHECK(result.is(rsi));
3242   }
3243 }
3244 
3245 
DoDeclareGlobals(LDeclareGlobals * instr)3246 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3247   DCHECK(ToRegister(instr->context()).is(rsi));
3248   __ Push(instr->hydrogen()->pairs());
3249   __ Push(Smi::FromInt(instr->hydrogen()->flags()));
3250   CallRuntime(Runtime::kDeclareGlobals, instr);
3251 }
3252 
3253 
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,LInstruction * instr)3254 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3255                                  int formal_parameter_count, int arity,
3256                                  LInstruction* instr) {
3257   bool dont_adapt_arguments =
3258       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3259   bool can_invoke_directly =
3260       dont_adapt_arguments || formal_parameter_count == arity;
3261 
3262   Register function_reg = rdi;
3263   LPointerMap* pointers = instr->pointer_map();
3264 
3265   if (can_invoke_directly) {
3266     // Change context.
3267     __ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset));
3268 
3269     // Always initialize new target and number of actual arguments.
3270     __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
3271     __ Set(rax, arity);
3272 
3273     // Invoke function.
3274     if (function.is_identical_to(info()->closure())) {
3275       __ CallSelf();
3276     } else {
3277       __ Call(FieldOperand(function_reg, JSFunction::kCodeEntryOffset));
3278     }
3279 
3280     // Set up deoptimization.
3281     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
3282   } else {
3283     // We need to adapt arguments.
3284     SafepointGenerator generator(
3285         this, pointers, Safepoint::kLazyDeopt);
3286     ParameterCount count(arity);
3287     ParameterCount expected(formal_parameter_count);
3288     __ InvokeFunction(function_reg, no_reg, expected, count, CALL_FUNCTION,
3289                       generator);
3290   }
3291 }
3292 
3293 
DoCallWithDescriptor(LCallWithDescriptor * instr)3294 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3295   DCHECK(ToRegister(instr->result()).is(rax));
3296 
3297   if (instr->hydrogen()->IsTailCall()) {
3298     if (NeedsEagerFrame()) __ leave();
3299 
3300     if (instr->target()->IsConstantOperand()) {
3301       LConstantOperand* target = LConstantOperand::cast(instr->target());
3302       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3303       __ jmp(code, RelocInfo::CODE_TARGET);
3304     } else {
3305       DCHECK(instr->target()->IsRegister());
3306       Register target = ToRegister(instr->target());
3307       __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3308       __ jmp(target);
3309     }
3310   } else {
3311     LPointerMap* pointers = instr->pointer_map();
3312     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3313 
3314     if (instr->target()->IsConstantOperand()) {
3315       LConstantOperand* target = LConstantOperand::cast(instr->target());
3316       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3317       generator.BeforeCall(__ CallSize(code));
3318       __ call(code, RelocInfo::CODE_TARGET);
3319     } else {
3320       DCHECK(instr->target()->IsRegister());
3321       Register target = ToRegister(instr->target());
3322       generator.BeforeCall(__ CallSize(target));
3323       __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3324       __ call(target);
3325     }
3326     generator.AfterCall();
3327   }
3328 }
3329 
3330 
DoCallJSFunction(LCallJSFunction * instr)3331 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3332   DCHECK(ToRegister(instr->function()).is(rdi));
3333   DCHECK(ToRegister(instr->result()).is(rax));
3334 
3335   // Change context.
3336   __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
3337 
3338   // Always initialize new target and number of actual arguments.
3339   __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
3340   __ Set(rax, instr->arity());
3341 
3342   LPointerMap* pointers = instr->pointer_map();
3343   SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3344 
3345   bool is_self_call = false;
3346   if (instr->hydrogen()->function()->IsConstant()) {
3347     Handle<JSFunction> jsfun = Handle<JSFunction>::null();
3348     HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
3349     jsfun = Handle<JSFunction>::cast(fun_const->handle(isolate()));
3350     is_self_call = jsfun.is_identical_to(info()->closure());
3351   }
3352 
3353   if (is_self_call) {
3354     __ CallSelf();
3355   } else {
3356     Operand target = FieldOperand(rdi, JSFunction::kCodeEntryOffset);
3357     generator.BeforeCall(__ CallSize(target));
3358     __ Call(target);
3359   }
3360   generator.AfterCall();
3361 }
3362 
3363 
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3364 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3365   Register input_reg = ToRegister(instr->value());
3366   __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3367                  Heap::kHeapNumberMapRootIndex);
3368   DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
3369 
3370   Label slow, allocated, done;
3371   Register tmp = input_reg.is(rax) ? rcx : rax;
3372   Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx;
3373 
3374   // Preserve the value of all registers.
3375   PushSafepointRegistersScope scope(this);
3376 
3377   __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3378   // Check the sign of the argument. If the argument is positive, just
3379   // return it. We do not need to patch the stack since |input| and
3380   // |result| are the same register and |input| will be restored
3381   // unchanged by popping safepoint registers.
3382   __ testl(tmp, Immediate(HeapNumber::kSignMask));
3383   __ j(zero, &done);
3384 
3385   __ AllocateHeapNumber(tmp, tmp2, &slow);
3386   __ jmp(&allocated, Label::kNear);
3387 
3388   // Slow case: Call the runtime system to do the number allocation.
3389   __ bind(&slow);
3390   CallRuntimeFromDeferred(
3391       Runtime::kAllocateHeapNumber, 0, instr, instr->context());
3392   // Set the pointer to the new heap number in tmp.
3393   if (!tmp.is(rax)) __ movp(tmp, rax);
3394   // Restore input_reg after call to runtime.
3395   __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
3396 
3397   __ bind(&allocated);
3398   __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
3399   __ shlq(tmp2, Immediate(1));
3400   __ shrq(tmp2, Immediate(1));
3401   __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
3402   __ StoreToSafepointRegisterSlot(input_reg, tmp);
3403 
3404   __ bind(&done);
3405 }
3406 
3407 
EmitIntegerMathAbs(LMathAbs * instr)3408 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3409   Register input_reg = ToRegister(instr->value());
3410   __ testl(input_reg, input_reg);
3411   Label is_positive;
3412   __ j(not_sign, &is_positive, Label::kNear);
3413   __ negl(input_reg);  // Sets flags.
3414   DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
3415   __ bind(&is_positive);
3416 }
3417 
3418 
EmitSmiMathAbs(LMathAbs * instr)3419 void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
3420   Register input_reg = ToRegister(instr->value());
3421   __ testp(input_reg, input_reg);
3422   Label is_positive;
3423   __ j(not_sign, &is_positive, Label::kNear);
3424   __ negp(input_reg);  // Sets flags.
3425   DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
3426   __ bind(&is_positive);
3427 }
3428 
3429 
DoMathAbs(LMathAbs * instr)3430 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3431   // Class for deferred case.
3432   class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3433    public:
3434     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3435         : LDeferredCode(codegen), instr_(instr) { }
3436     void Generate() override {
3437       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3438     }
3439     LInstruction* instr() override { return instr_; }
3440 
3441    private:
3442     LMathAbs* instr_;
3443   };
3444 
3445   DCHECK(instr->value()->Equals(instr->result()));
3446   Representation r = instr->hydrogen()->value()->representation();
3447 
3448   if (r.IsDouble()) {
3449     XMMRegister scratch = double_scratch0();
3450     XMMRegister input_reg = ToDoubleRegister(instr->value());
3451     __ Xorpd(scratch, scratch);
3452     __ Subsd(scratch, input_reg);
3453     __ Andpd(input_reg, scratch);
3454   } else if (r.IsInteger32()) {
3455     EmitIntegerMathAbs(instr);
3456   } else if (r.IsSmi()) {
3457     EmitSmiMathAbs(instr);
3458   } else {  // Tagged case.
3459     DeferredMathAbsTaggedHeapNumber* deferred =
3460         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3461     Register input_reg = ToRegister(instr->value());
3462     // Smi check.
3463     __ JumpIfNotSmi(input_reg, deferred->entry());
3464     EmitSmiMathAbs(instr);
3465     __ bind(deferred->exit());
3466   }
3467 }
3468 
3469 
DoMathFloor(LMathFloor * instr)3470 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3471   XMMRegister xmm_scratch = double_scratch0();
3472   Register output_reg = ToRegister(instr->result());
3473   XMMRegister input_reg = ToDoubleRegister(instr->value());
3474 
3475   if (CpuFeatures::IsSupported(SSE4_1)) {
3476     CpuFeatureScope scope(masm(), SSE4_1);
3477     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3478       // Deoptimize if minus zero.
3479       __ Movq(output_reg, input_reg);
3480       __ subq(output_reg, Immediate(1));
3481       DeoptimizeIf(overflow, instr, Deoptimizer::kMinusZero);
3482     }
3483     __ Roundsd(xmm_scratch, input_reg, kRoundDown);
3484     __ Cvttsd2si(output_reg, xmm_scratch);
3485     __ cmpl(output_reg, Immediate(0x1));
3486     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3487   } else {
3488     Label negative_sign, done;
3489     // Deoptimize on unordered.
3490     __ Xorpd(xmm_scratch, xmm_scratch);  // Zero the register.
3491     __ Ucomisd(input_reg, xmm_scratch);
3492     DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
3493     __ j(below, &negative_sign, Label::kNear);
3494 
3495     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3496       // Check for negative zero.
3497       Label positive_sign;
3498       __ j(above, &positive_sign, Label::kNear);
3499       __ Movmskpd(output_reg, input_reg);
3500       __ testl(output_reg, Immediate(1));
3501       DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
3502       __ Set(output_reg, 0);
3503       __ jmp(&done);
3504       __ bind(&positive_sign);
3505     }
3506 
3507     // Use truncating instruction (OK because input is positive).
3508     __ Cvttsd2si(output_reg, input_reg);
3509     // Overflow is signalled with minint.
3510     __ cmpl(output_reg, Immediate(0x1));
3511     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3512     __ jmp(&done, Label::kNear);
3513 
3514     // Non-zero negative reaches here.
3515     __ bind(&negative_sign);
3516     // Truncate, then compare and compensate.
3517     __ Cvttsd2si(output_reg, input_reg);
3518     __ Cvtlsi2sd(xmm_scratch, output_reg);
3519     __ Ucomisd(input_reg, xmm_scratch);
3520     __ j(equal, &done, Label::kNear);
3521     __ subl(output_reg, Immediate(1));
3522     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3523 
3524     __ bind(&done);
3525   }
3526 }
3527 
3528 
DoMathRound(LMathRound * instr)3529 void LCodeGen::DoMathRound(LMathRound* instr) {
3530   const XMMRegister xmm_scratch = double_scratch0();
3531   Register output_reg = ToRegister(instr->result());
3532   XMMRegister input_reg = ToDoubleRegister(instr->value());
3533   XMMRegister input_temp = ToDoubleRegister(instr->temp());
3534   static int64_t one_half = V8_INT64_C(0x3FE0000000000000);  // 0.5
3535   static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000);  // -0.5
3536 
3537   Label done, round_to_zero, below_one_half;
3538   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3539   __ movq(kScratchRegister, one_half);
3540   __ Movq(xmm_scratch, kScratchRegister);
3541   __ Ucomisd(xmm_scratch, input_reg);
3542   __ j(above, &below_one_half, Label::kNear);
3543 
3544   // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
3545   __ Addsd(xmm_scratch, input_reg);
3546   __ Cvttsd2si(output_reg, xmm_scratch);
3547   // Overflow is signalled with minint.
3548   __ cmpl(output_reg, Immediate(0x1));
3549   DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3550   __ jmp(&done, dist);
3551 
3552   __ bind(&below_one_half);
3553   __ movq(kScratchRegister, minus_one_half);
3554   __ Movq(xmm_scratch, kScratchRegister);
3555   __ Ucomisd(xmm_scratch, input_reg);
3556   __ j(below_equal, &round_to_zero, Label::kNear);
3557 
3558   // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
3559   // compare and compensate.
3560   __ Movapd(input_temp, input_reg);  // Do not alter input_reg.
3561   __ Subsd(input_temp, xmm_scratch);
3562   __ Cvttsd2si(output_reg, input_temp);
3563   // Catch minint due to overflow, and to prevent overflow when compensating.
3564   __ cmpl(output_reg, Immediate(0x1));
3565   DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3566 
3567   __ Cvtlsi2sd(xmm_scratch, output_reg);
3568   __ Ucomisd(xmm_scratch, input_temp);
3569   __ j(equal, &done, dist);
3570   __ subl(output_reg, Immediate(1));
3571   // No overflow because we already ruled out minint.
3572   __ jmp(&done, dist);
3573 
3574   __ bind(&round_to_zero);
3575   // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
3576   // we can ignore the difference between a result of -0 and +0.
3577   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3578     __ Movq(output_reg, input_reg);
3579     __ testq(output_reg, output_reg);
3580     DeoptimizeIf(negative, instr, Deoptimizer::kMinusZero);
3581   }
3582   __ Set(output_reg, 0);
3583   __ bind(&done);
3584 }
3585 
3586 
DoMathFround(LMathFround * instr)3587 void LCodeGen::DoMathFround(LMathFround* instr) {
3588   XMMRegister input_reg = ToDoubleRegister(instr->value());
3589   XMMRegister output_reg = ToDoubleRegister(instr->result());
3590   __ Cvtsd2ss(output_reg, input_reg);
3591   __ Cvtss2sd(output_reg, output_reg);
3592 }
3593 
3594 
DoMathSqrt(LMathSqrt * instr)3595 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3596   XMMRegister output = ToDoubleRegister(instr->result());
3597   if (instr->value()->IsDoubleRegister()) {
3598     XMMRegister input = ToDoubleRegister(instr->value());
3599     __ Sqrtsd(output, input);
3600   } else {
3601     Operand input = ToOperand(instr->value());
3602     __ Sqrtsd(output, input);
3603   }
3604 }
3605 
3606 
DoMathPowHalf(LMathPowHalf * instr)3607 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3608   XMMRegister xmm_scratch = double_scratch0();
3609   XMMRegister input_reg = ToDoubleRegister(instr->value());
3610   DCHECK(ToDoubleRegister(instr->result()).is(input_reg));
3611 
3612   // Note that according to ECMA-262 15.8.2.13:
3613   // Math.pow(-Infinity, 0.5) == Infinity
3614   // Math.sqrt(-Infinity) == NaN
3615   Label done, sqrt;
3616   // Check base for -Infinity.  According to IEEE-754, double-precision
3617   // -Infinity has the highest 12 bits set and the lowest 52 bits cleared.
3618   __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000));
3619   __ Movq(xmm_scratch, kScratchRegister);
3620   __ Ucomisd(xmm_scratch, input_reg);
3621   // Comparing -Infinity with NaN results in "unordered", which sets the
3622   // zero flag as if both were equal.  However, it also sets the carry flag.
3623   __ j(not_equal, &sqrt, Label::kNear);
3624   __ j(carry, &sqrt, Label::kNear);
3625   // If input is -Infinity, return Infinity.
3626   __ Xorpd(input_reg, input_reg);
3627   __ Subsd(input_reg, xmm_scratch);
3628   __ jmp(&done, Label::kNear);
3629 
3630   // Square root.
3631   __ bind(&sqrt);
3632   __ Xorpd(xmm_scratch, xmm_scratch);
3633   __ Addsd(input_reg, xmm_scratch);  // Convert -0 to +0.
3634   __ Sqrtsd(input_reg, input_reg);
3635   __ bind(&done);
3636 }
3637 
3638 
DoPower(LPower * instr)3639 void LCodeGen::DoPower(LPower* instr) {
3640   Representation exponent_type = instr->hydrogen()->right()->representation();
3641   // Having marked this as a call, we can use any registers.
3642   // Just make sure that the input/output registers are the expected ones.
3643 
3644   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3645   DCHECK(!instr->right()->IsRegister() ||
3646          ToRegister(instr->right()).is(tagged_exponent));
3647   DCHECK(!instr->right()->IsDoubleRegister() ||
3648          ToDoubleRegister(instr->right()).is(xmm1));
3649   DCHECK(ToDoubleRegister(instr->left()).is(xmm2));
3650   DCHECK(ToDoubleRegister(instr->result()).is(xmm3));
3651 
3652   if (exponent_type.IsSmi()) {
3653     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3654     __ CallStub(&stub);
3655   } else if (exponent_type.IsTagged()) {
3656     Label no_deopt;
3657     __ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear);
3658     __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx);
3659     DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
3660     __ bind(&no_deopt);
3661     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3662     __ CallStub(&stub);
3663   } else if (exponent_type.IsInteger32()) {
3664     MathPowStub stub(isolate(), MathPowStub::INTEGER);
3665     __ CallStub(&stub);
3666   } else {
3667     DCHECK(exponent_type.IsDouble());
3668     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3669     __ CallStub(&stub);
3670   }
3671 }
3672 
3673 
DoMathExp(LMathExp * instr)3674 void LCodeGen::DoMathExp(LMathExp* instr) {
3675   XMMRegister input = ToDoubleRegister(instr->value());
3676   XMMRegister result = ToDoubleRegister(instr->result());
3677   XMMRegister temp0 = double_scratch0();
3678   Register temp1 = ToRegister(instr->temp1());
3679   Register temp2 = ToRegister(instr->temp2());
3680 
3681   MathExpGenerator::EmitMathExp(masm(), input, result, temp0, temp1, temp2);
3682 }
3683 
3684 
DoMathLog(LMathLog * instr)3685 void LCodeGen::DoMathLog(LMathLog* instr) {
3686   DCHECK(instr->value()->Equals(instr->result()));
3687   XMMRegister input_reg = ToDoubleRegister(instr->value());
3688   XMMRegister xmm_scratch = double_scratch0();
3689   Label positive, done, zero;
3690   __ Xorpd(xmm_scratch, xmm_scratch);
3691   __ Ucomisd(input_reg, xmm_scratch);
3692   __ j(above, &positive, Label::kNear);
3693   __ j(not_carry, &zero, Label::kNear);
3694   __ Pcmpeqd(input_reg, input_reg);
3695   __ jmp(&done, Label::kNear);
3696   __ bind(&zero);
3697   ExternalReference ninf =
3698       ExternalReference::address_of_negative_infinity();
3699   Operand ninf_operand = masm()->ExternalOperand(ninf);
3700   __ Movsd(input_reg, ninf_operand);
3701   __ jmp(&done, Label::kNear);
3702   __ bind(&positive);
3703   __ fldln2();
3704   __ subp(rsp, Immediate(kDoubleSize));
3705   __ Movsd(Operand(rsp, 0), input_reg);
3706   __ fld_d(Operand(rsp, 0));
3707   __ fyl2x();
3708   __ fstp_d(Operand(rsp, 0));
3709   __ Movsd(input_reg, Operand(rsp, 0));
3710   __ addp(rsp, Immediate(kDoubleSize));
3711   __ bind(&done);
3712 }
3713 
3714 
DoMathClz32(LMathClz32 * instr)3715 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3716   Register input = ToRegister(instr->value());
3717   Register result = ToRegister(instr->result());
3718 
3719   __ Lzcntl(result, input);
3720 }
3721 
3722 
DoInvokeFunction(LInvokeFunction * instr)3723 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3724   DCHECK(ToRegister(instr->context()).is(rsi));
3725   DCHECK(ToRegister(instr->function()).is(rdi));
3726   DCHECK(instr->HasPointerMap());
3727 
3728   Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3729   if (known_function.is_null()) {
3730     LPointerMap* pointers = instr->pointer_map();
3731     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3732     ParameterCount count(instr->arity());
3733     __ InvokeFunction(rdi, no_reg, count, CALL_FUNCTION, generator);
3734   } else {
3735     CallKnownFunction(known_function,
3736                       instr->hydrogen()->formal_parameter_count(),
3737                       instr->arity(), instr);
3738   }
3739 }
3740 
3741 
DoCallFunction(LCallFunction * instr)3742 void LCodeGen::DoCallFunction(LCallFunction* instr) {
3743   DCHECK(ToRegister(instr->context()).is(rsi));
3744   DCHECK(ToRegister(instr->function()).is(rdi));
3745   DCHECK(ToRegister(instr->result()).is(rax));
3746 
3747   int arity = instr->arity();
3748   ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
3749   if (instr->hydrogen()->HasVectorAndSlot()) {
3750     Register slot_register = ToRegister(instr->temp_slot());
3751     Register vector_register = ToRegister(instr->temp_vector());
3752     DCHECK(slot_register.is(rdx));
3753     DCHECK(vector_register.is(rbx));
3754 
3755     AllowDeferredHandleDereference vector_structure_check;
3756     Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3757     int index = vector->GetIndex(instr->hydrogen()->slot());
3758 
3759     __ Move(vector_register, vector);
3760     __ Move(slot_register, Smi::FromInt(index));
3761 
3762     Handle<Code> ic =
3763         CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
3764     CallCode(ic, RelocInfo::CODE_TARGET, instr);
3765   } else {
3766     __ Set(rax, arity);
3767     CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
3768   }
3769 }
3770 
3771 
DoCallNewArray(LCallNewArray * instr)3772 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3773   DCHECK(ToRegister(instr->context()).is(rsi));
3774   DCHECK(ToRegister(instr->constructor()).is(rdi));
3775   DCHECK(ToRegister(instr->result()).is(rax));
3776 
3777   __ Set(rax, instr->arity());
3778   if (instr->arity() == 1) {
3779     // We only need the allocation site for the case we have a length argument.
3780     // The case may bail out to the runtime, which will determine the correct
3781     // elements kind with the site.
3782     __ Move(rbx, instr->hydrogen()->site());
3783   } else {
3784     __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
3785   }
3786 
3787   ElementsKind kind = instr->hydrogen()->elements_kind();
3788   AllocationSiteOverrideMode override_mode =
3789       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3790           ? DISABLE_ALLOCATION_SITES
3791           : DONT_OVERRIDE;
3792 
3793   if (instr->arity() == 0) {
3794     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3795     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3796   } else if (instr->arity() == 1) {
3797     Label done;
3798     if (IsFastPackedElementsKind(kind)) {
3799       Label packed_case;
3800       // We might need a change here
3801       // look at the first argument
3802       __ movp(rcx, Operand(rsp, 0));
3803       __ testp(rcx, rcx);
3804       __ j(zero, &packed_case, Label::kNear);
3805 
3806       ElementsKind holey_kind = GetHoleyElementsKind(kind);
3807       ArraySingleArgumentConstructorStub stub(isolate(),
3808                                               holey_kind,
3809                                               override_mode);
3810       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3811       __ jmp(&done, Label::kNear);
3812       __ bind(&packed_case);
3813     }
3814 
3815     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3816     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3817     __ bind(&done);
3818   } else {
3819     ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
3820     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3821   }
3822 }
3823 
3824 
DoCallRuntime(LCallRuntime * instr)3825 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3826   DCHECK(ToRegister(instr->context()).is(rsi));
3827   CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
3828 }
3829 
3830 
DoStoreCodeEntry(LStoreCodeEntry * instr)3831 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3832   Register function = ToRegister(instr->function());
3833   Register code_object = ToRegister(instr->code_object());
3834   __ leap(code_object, FieldOperand(code_object, Code::kHeaderSize));
3835   __ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
3836 }
3837 
3838 
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3839 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3840   Register result = ToRegister(instr->result());
3841   Register base = ToRegister(instr->base_object());
3842   if (instr->offset()->IsConstantOperand()) {
3843     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3844     __ leap(result, Operand(base, ToInteger32(offset)));
3845   } else {
3846     Register offset = ToRegister(instr->offset());
3847     __ leap(result, Operand(base, offset, times_1, 0));
3848   }
3849 }
3850 
3851 
DoStoreNamedField(LStoreNamedField * instr)3852 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3853   HStoreNamedField* hinstr = instr->hydrogen();
3854   Representation representation = instr->representation();
3855 
3856   HObjectAccess access = hinstr->access();
3857   int offset = access.offset();
3858 
3859   if (access.IsExternalMemory()) {
3860     DCHECK(!hinstr->NeedsWriteBarrier());
3861     Register value = ToRegister(instr->value());
3862     if (instr->object()->IsConstantOperand()) {
3863       DCHECK(value.is(rax));
3864       LConstantOperand* object = LConstantOperand::cast(instr->object());
3865       __ store_rax(ToExternalReference(object));
3866     } else {
3867       Register object = ToRegister(instr->object());
3868       __ Store(MemOperand(object, offset), value, representation);
3869     }
3870     return;
3871   }
3872 
3873   Register object = ToRegister(instr->object());
3874   __ AssertNotSmi(object);
3875 
3876   DCHECK(!representation.IsSmi() ||
3877          !instr->value()->IsConstantOperand() ||
3878          IsInteger32Constant(LConstantOperand::cast(instr->value())));
3879   if (!FLAG_unbox_double_fields && representation.IsDouble()) {
3880     DCHECK(access.IsInobject());
3881     DCHECK(!hinstr->has_transition());
3882     DCHECK(!hinstr->NeedsWriteBarrier());
3883     XMMRegister value = ToDoubleRegister(instr->value());
3884     __ Movsd(FieldOperand(object, offset), value);
3885     return;
3886   }
3887 
3888   if (hinstr->has_transition()) {
3889     Handle<Map> transition = hinstr->transition_map();
3890     AddDeprecationDependency(transition);
3891     if (!hinstr->NeedsWriteBarrierForMap()) {
3892       __ Move(FieldOperand(object, HeapObject::kMapOffset), transition);
3893     } else {
3894       Register temp = ToRegister(instr->temp());
3895       __ Move(kScratchRegister, transition);
3896       __ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister);
3897       // Update the write barrier for the map field.
3898       __ RecordWriteForMap(object,
3899                            kScratchRegister,
3900                            temp,
3901                            kSaveFPRegs);
3902     }
3903   }
3904 
3905   // Do the store.
3906   Register write_register = object;
3907   if (!access.IsInobject()) {
3908     write_register = ToRegister(instr->temp());
3909     __ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
3910   }
3911 
3912   if (representation.IsSmi() && SmiValuesAre32Bits() &&
3913       hinstr->value()->representation().IsInteger32()) {
3914     DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
3915     if (FLAG_debug_code) {
3916       Register scratch = kScratchRegister;
3917       __ Load(scratch, FieldOperand(write_register, offset), representation);
3918       __ AssertSmi(scratch);
3919     }
3920     // Store int value directly to upper half of the smi.
3921     STATIC_ASSERT(kSmiTag == 0);
3922     DCHECK(kSmiTagSize + kSmiShiftSize == 32);
3923     offset += kPointerSize / 2;
3924     representation = Representation::Integer32();
3925   }
3926 
3927   Operand operand = FieldOperand(write_register, offset);
3928 
3929   if (FLAG_unbox_double_fields && representation.IsDouble()) {
3930     DCHECK(access.IsInobject());
3931     XMMRegister value = ToDoubleRegister(instr->value());
3932     __ Movsd(operand, value);
3933 
3934   } else if (instr->value()->IsRegister()) {
3935     Register value = ToRegister(instr->value());
3936     __ Store(operand, value, representation);
3937   } else {
3938     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3939     if (IsInteger32Constant(operand_value)) {
3940       DCHECK(!hinstr->NeedsWriteBarrier());
3941       int32_t value = ToInteger32(operand_value);
3942       if (representation.IsSmi()) {
3943         __ Move(operand, Smi::FromInt(value));
3944 
3945       } else {
3946         __ movl(operand, Immediate(value));
3947       }
3948 
3949     } else if (IsExternalConstant(operand_value)) {
3950       DCHECK(!hinstr->NeedsWriteBarrier());
3951       ExternalReference ptr = ToExternalReference(operand_value);
3952       __ Move(kScratchRegister, ptr);
3953       __ movp(operand, kScratchRegister);
3954     } else {
3955       Handle<Object> handle_value = ToHandle(operand_value);
3956       DCHECK(!hinstr->NeedsWriteBarrier());
3957       __ Move(operand, handle_value);
3958     }
3959   }
3960 
3961   if (hinstr->NeedsWriteBarrier()) {
3962     Register value = ToRegister(instr->value());
3963     Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
3964     // Update the write barrier for the object for in-object properties.
3965     __ RecordWriteField(write_register,
3966                         offset,
3967                         value,
3968                         temp,
3969                         kSaveFPRegs,
3970                         EMIT_REMEMBERED_SET,
3971                         hinstr->SmiCheckForWriteBarrier(),
3972                         hinstr->PointersToHereCheckForValue());
3973   }
3974 }
3975 
3976 
DoStoreNamedGeneric(LStoreNamedGeneric * instr)3977 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3978   DCHECK(ToRegister(instr->context()).is(rsi));
3979   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
3980   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
3981 
3982   if (instr->hydrogen()->HasVectorAndSlot()) {
3983     EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
3984   }
3985 
3986   __ Move(StoreDescriptor::NameRegister(), instr->hydrogen()->name());
3987   Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
3988                         isolate(), instr->language_mode(),
3989                         instr->hydrogen()->initialization_state()).code();
3990   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3991 }
3992 
3993 
DoBoundsCheck(LBoundsCheck * instr)3994 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3995   Representation representation = instr->hydrogen()->length()->representation();
3996   DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
3997   DCHECK(representation.IsSmiOrInteger32());
3998 
3999   Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal;
4000   if (instr->length()->IsConstantOperand()) {
4001     int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
4002     Register index = ToRegister(instr->index());
4003     if (representation.IsSmi()) {
4004       __ Cmp(index, Smi::FromInt(length));
4005     } else {
4006       __ cmpl(index, Immediate(length));
4007     }
4008     cc = CommuteCondition(cc);
4009   } else if (instr->index()->IsConstantOperand()) {
4010     int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
4011     if (instr->length()->IsRegister()) {
4012       Register length = ToRegister(instr->length());
4013       if (representation.IsSmi()) {
4014         __ Cmp(length, Smi::FromInt(index));
4015       } else {
4016         __ cmpl(length, Immediate(index));
4017       }
4018     } else {
4019       Operand length = ToOperand(instr->length());
4020       if (representation.IsSmi()) {
4021         __ Cmp(length, Smi::FromInt(index));
4022       } else {
4023         __ cmpl(length, Immediate(index));
4024       }
4025     }
4026   } else {
4027     Register index = ToRegister(instr->index());
4028     if (instr->length()->IsRegister()) {
4029       Register length = ToRegister(instr->length());
4030       if (representation.IsSmi()) {
4031         __ cmpp(length, index);
4032       } else {
4033         __ cmpl(length, index);
4034       }
4035     } else {
4036       Operand length = ToOperand(instr->length());
4037       if (representation.IsSmi()) {
4038         __ cmpp(length, index);
4039       } else {
4040         __ cmpl(length, index);
4041       }
4042     }
4043   }
4044   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
4045     Label done;
4046     __ j(NegateCondition(cc), &done, Label::kNear);
4047     __ int3();
4048     __ bind(&done);
4049   } else {
4050     DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
4051   }
4052 }
4053 
4054 
DoStoreKeyedExternalArray(LStoreKeyed * instr)4055 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4056   ElementsKind elements_kind = instr->elements_kind();
4057   LOperand* key = instr->key();
4058   if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
4059     Register key_reg = ToRegister(key);
4060     Representation key_representation =
4061         instr->hydrogen()->key()->representation();
4062     if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
4063       __ SmiToInteger64(key_reg, key_reg);
4064     } else if (instr->hydrogen()->IsDehoisted()) {
4065       // Sign extend key because it could be a 32 bit negative value
4066       // and the dehoisted address computation happens in 64 bits
4067       __ movsxlq(key_reg, key_reg);
4068     }
4069   }
4070   Operand operand(BuildFastArrayOperand(
4071       instr->elements(),
4072       key,
4073       instr->hydrogen()->key()->representation(),
4074       elements_kind,
4075       instr->base_offset()));
4076 
4077   if (elements_kind == FLOAT32_ELEMENTS) {
4078     XMMRegister value(ToDoubleRegister(instr->value()));
4079     __ Cvtsd2ss(value, value);
4080     __ Movss(operand, value);
4081   } else if (elements_kind == FLOAT64_ELEMENTS) {
4082     __ Movsd(operand, ToDoubleRegister(instr->value()));
4083   } else {
4084     Register value(ToRegister(instr->value()));
4085     switch (elements_kind) {
4086       case INT8_ELEMENTS:
4087       case UINT8_ELEMENTS:
4088       case UINT8_CLAMPED_ELEMENTS:
4089         __ movb(operand, value);
4090         break;
4091       case INT16_ELEMENTS:
4092       case UINT16_ELEMENTS:
4093         __ movw(operand, value);
4094         break;
4095       case INT32_ELEMENTS:
4096       case UINT32_ELEMENTS:
4097         __ movl(operand, value);
4098         break;
4099       case FLOAT32_ELEMENTS:
4100       case FLOAT64_ELEMENTS:
4101       case FAST_ELEMENTS:
4102       case FAST_SMI_ELEMENTS:
4103       case FAST_DOUBLE_ELEMENTS:
4104       case FAST_HOLEY_ELEMENTS:
4105       case FAST_HOLEY_SMI_ELEMENTS:
4106       case FAST_HOLEY_DOUBLE_ELEMENTS:
4107       case DICTIONARY_ELEMENTS:
4108       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4109       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4110         UNREACHABLE();
4111         break;
4112     }
4113   }
4114 }
4115 
4116 
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)4117 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4118   XMMRegister value = ToDoubleRegister(instr->value());
4119   LOperand* key = instr->key();
4120   if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
4121       instr->hydrogen()->IsDehoisted()) {
4122     // Sign extend key because it could be a 32 bit negative value
4123     // and the dehoisted address computation happens in 64 bits
4124     __ movsxlq(ToRegister(key), ToRegister(key));
4125   }
4126   if (instr->NeedsCanonicalization()) {
4127     XMMRegister xmm_scratch = double_scratch0();
4128     // Turn potential sNaN value into qNaN.
4129     __ Xorpd(xmm_scratch, xmm_scratch);
4130     __ Subsd(value, xmm_scratch);
4131   }
4132 
4133   Operand double_store_operand = BuildFastArrayOperand(
4134       instr->elements(),
4135       key,
4136       instr->hydrogen()->key()->representation(),
4137       FAST_DOUBLE_ELEMENTS,
4138       instr->base_offset());
4139 
4140   __ Movsd(double_store_operand, value);
4141 }
4142 
4143 
DoStoreKeyedFixedArray(LStoreKeyed * instr)4144 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4145   HStoreKeyed* hinstr = instr->hydrogen();
4146   LOperand* key = instr->key();
4147   int offset = instr->base_offset();
4148   Representation representation = hinstr->value()->representation();
4149 
4150   if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
4151       instr->hydrogen()->IsDehoisted()) {
4152     // Sign extend key because it could be a 32 bit negative value
4153     // and the dehoisted address computation happens in 64 bits
4154     __ movsxlq(ToRegister(key), ToRegister(key));
4155   }
4156   if (representation.IsInteger32() && SmiValuesAre32Bits()) {
4157     DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4158     DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
4159     if (FLAG_debug_code) {
4160       Register scratch = kScratchRegister;
4161       __ Load(scratch,
4162               BuildFastArrayOperand(instr->elements(),
4163                                     key,
4164                                     instr->hydrogen()->key()->representation(),
4165                                     FAST_ELEMENTS,
4166                                     offset),
4167               Representation::Smi());
4168       __ AssertSmi(scratch);
4169     }
4170     // Store int value directly to upper half of the smi.
4171     STATIC_ASSERT(kSmiTag == 0);
4172     DCHECK(kSmiTagSize + kSmiShiftSize == 32);
4173     offset += kPointerSize / 2;
4174   }
4175 
4176   Operand operand =
4177       BuildFastArrayOperand(instr->elements(),
4178                             key,
4179                             instr->hydrogen()->key()->representation(),
4180                             FAST_ELEMENTS,
4181                             offset);
4182   if (instr->value()->IsRegister()) {
4183     __ Store(operand, ToRegister(instr->value()), representation);
4184   } else {
4185     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4186     if (IsInteger32Constant(operand_value)) {
4187       int32_t value = ToInteger32(operand_value);
4188       if (representation.IsSmi()) {
4189         __ Move(operand, Smi::FromInt(value));
4190 
4191       } else {
4192         __ movl(operand, Immediate(value));
4193       }
4194     } else {
4195       Handle<Object> handle_value = ToHandle(operand_value);
4196       __ Move(operand, handle_value);
4197     }
4198   }
4199 
4200   if (hinstr->NeedsWriteBarrier()) {
4201     Register elements = ToRegister(instr->elements());
4202     DCHECK(instr->value()->IsRegister());
4203     Register value = ToRegister(instr->value());
4204     DCHECK(!key->IsConstantOperand());
4205     SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
4206             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4207     // Compute address of modified element and store it into key register.
4208     Register key_reg(ToRegister(key));
4209     __ leap(key_reg, operand);
4210     __ RecordWrite(elements,
4211                    key_reg,
4212                    value,
4213                    kSaveFPRegs,
4214                    EMIT_REMEMBERED_SET,
4215                    check_needed,
4216                    hinstr->PointersToHereCheckForValue());
4217   }
4218 }
4219 
4220 
DoStoreKeyed(LStoreKeyed * instr)4221 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4222   if (instr->is_fixed_typed_array()) {
4223     DoStoreKeyedExternalArray(instr);
4224   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4225     DoStoreKeyedFixedDoubleArray(instr);
4226   } else {
4227     DoStoreKeyedFixedArray(instr);
4228   }
4229 }
4230 
4231 
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)4232 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4233   DCHECK(ToRegister(instr->context()).is(rsi));
4234   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4235   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4236   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4237 
4238   if (instr->hydrogen()->HasVectorAndSlot()) {
4239     EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4240   }
4241 
4242   Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4243                         isolate(), instr->language_mode(),
4244                         instr->hydrogen()->initialization_state()).code();
4245   CallCode(ic, RelocInfo::CODE_TARGET, instr);
4246 }
4247 
4248 
DoMaybeGrowElements(LMaybeGrowElements * instr)4249 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4250   class DeferredMaybeGrowElements final : public LDeferredCode {
4251    public:
4252     DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4253         : LDeferredCode(codegen), instr_(instr) {}
4254     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4255     LInstruction* instr() override { return instr_; }
4256 
4257    private:
4258     LMaybeGrowElements* instr_;
4259   };
4260 
4261   Register result = rax;
4262   DeferredMaybeGrowElements* deferred =
4263       new (zone()) DeferredMaybeGrowElements(this, instr);
4264   LOperand* key = instr->key();
4265   LOperand* current_capacity = instr->current_capacity();
4266 
4267   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4268   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4269   DCHECK(key->IsConstantOperand() || key->IsRegister());
4270   DCHECK(current_capacity->IsConstantOperand() ||
4271          current_capacity->IsRegister());
4272 
4273   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4274     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4275     int32_t constant_capacity =
4276         ToInteger32(LConstantOperand::cast(current_capacity));
4277     if (constant_key >= constant_capacity) {
4278       // Deferred case.
4279       __ jmp(deferred->entry());
4280     }
4281   } else if (key->IsConstantOperand()) {
4282     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4283     __ cmpl(ToRegister(current_capacity), Immediate(constant_key));
4284     __ j(less_equal, deferred->entry());
4285   } else if (current_capacity->IsConstantOperand()) {
4286     int32_t constant_capacity =
4287         ToInteger32(LConstantOperand::cast(current_capacity));
4288     __ cmpl(ToRegister(key), Immediate(constant_capacity));
4289     __ j(greater_equal, deferred->entry());
4290   } else {
4291     __ cmpl(ToRegister(key), ToRegister(current_capacity));
4292     __ j(greater_equal, deferred->entry());
4293   }
4294 
4295   if (instr->elements()->IsRegister()) {
4296     __ movp(result, ToRegister(instr->elements()));
4297   } else {
4298     __ movp(result, ToOperand(instr->elements()));
4299   }
4300 
4301   __ bind(deferred->exit());
4302 }
4303 
4304 
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)4305 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4306   // TODO(3095996): Get rid of this. For now, we need to make the
4307   // result register contain a valid pointer because it is already
4308   // contained in the register pointer map.
4309   Register result = rax;
4310   __ Move(result, Smi::FromInt(0));
4311 
4312   // We have to call a stub.
4313   {
4314     PushSafepointRegistersScope scope(this);
4315     if (instr->object()->IsConstantOperand()) {
4316       LConstantOperand* constant_object =
4317           LConstantOperand::cast(instr->object());
4318       if (IsSmiConstant(constant_object)) {
4319         Smi* immediate = ToSmi(constant_object);
4320         __ Move(result, immediate);
4321       } else {
4322         Handle<Object> handle_value = ToHandle(constant_object);
4323         __ Move(result, handle_value);
4324       }
4325     } else if (instr->object()->IsRegister()) {
4326       __ Move(result, ToRegister(instr->object()));
4327     } else {
4328       __ movp(result, ToOperand(instr->object()));
4329     }
4330 
4331     LOperand* key = instr->key();
4332     if (key->IsConstantOperand()) {
4333       __ Move(rbx, ToSmi(LConstantOperand::cast(key)));
4334     } else {
4335       __ Move(rbx, ToRegister(key));
4336       __ Integer32ToSmi(rbx, rbx);
4337     }
4338 
4339     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
4340                                instr->hydrogen()->kind());
4341     __ CallStub(&stub);
4342     RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4343     __ StoreToSafepointRegisterSlot(result, result);
4344   }
4345 
4346   // Deopt on smi, which means the elements array changed to dictionary mode.
4347   Condition is_smi = __ CheckSmi(result);
4348   DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
4349 }
4350 
4351 
DoTransitionElementsKind(LTransitionElementsKind * instr)4352 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4353   Register object_reg = ToRegister(instr->object());
4354 
4355   Handle<Map> from_map = instr->original_map();
4356   Handle<Map> to_map = instr->transitioned_map();
4357   ElementsKind from_kind = instr->from_kind();
4358   ElementsKind to_kind = instr->to_kind();
4359 
4360   Label not_applicable;
4361   __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
4362   __ j(not_equal, &not_applicable);
4363   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4364     Register new_map_reg = ToRegister(instr->new_map_temp());
4365     __ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
4366     __ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
4367     // Write barrier.
4368     __ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()),
4369                          kDontSaveFPRegs);
4370   } else {
4371     DCHECK(object_reg.is(rax));
4372     DCHECK(ToRegister(instr->context()).is(rsi));
4373     PushSafepointRegistersScope scope(this);
4374     __ Move(rbx, to_map);
4375     bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4376     TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4377     __ CallStub(&stub);
4378     RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4379   }
4380   __ bind(&not_applicable);
4381 }
4382 
4383 
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4384 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4385   Register object = ToRegister(instr->object());
4386   Register temp = ToRegister(instr->temp());
4387   Label no_memento_found;
4388   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4389   DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound);
4390   __ bind(&no_memento_found);
4391 }
4392 
4393 
DoStringAdd(LStringAdd * instr)4394 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4395   DCHECK(ToRegister(instr->context()).is(rsi));
4396   DCHECK(ToRegister(instr->left()).is(rdx));
4397   DCHECK(ToRegister(instr->right()).is(rax));
4398   StringAddStub stub(isolate(),
4399                      instr->hydrogen()->flags(),
4400                      instr->hydrogen()->pretenure_flag());
4401   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4402 }
4403 
4404 
DoStringCharCodeAt(LStringCharCodeAt * instr)4405 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4406   class DeferredStringCharCodeAt final : public LDeferredCode {
4407    public:
4408     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4409         : LDeferredCode(codegen), instr_(instr) { }
4410     void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4411     LInstruction* instr() override { return instr_; }
4412 
4413    private:
4414     LStringCharCodeAt* instr_;
4415   };
4416 
4417   DeferredStringCharCodeAt* deferred =
4418       new(zone()) DeferredStringCharCodeAt(this, instr);
4419 
4420   StringCharLoadGenerator::Generate(masm(),
4421                                     ToRegister(instr->string()),
4422                                     ToRegister(instr->index()),
4423                                     ToRegister(instr->result()),
4424                                     deferred->entry());
4425   __ bind(deferred->exit());
4426 }
4427 
4428 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4429 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4430   Register string = ToRegister(instr->string());
4431   Register result = ToRegister(instr->result());
4432 
4433   // TODO(3095996): Get rid of this. For now, we need to make the
4434   // result register contain a valid pointer because it is already
4435   // contained in the register pointer map.
4436   __ Set(result, 0);
4437 
4438   PushSafepointRegistersScope scope(this);
4439   __ Push(string);
4440   // Push the index as a smi. This is safe because of the checks in
4441   // DoStringCharCodeAt above.
4442   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
4443   if (instr->index()->IsConstantOperand()) {
4444     int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4445     __ Push(Smi::FromInt(const_index));
4446   } else {
4447     Register index = ToRegister(instr->index());
4448     __ Integer32ToSmi(index, index);
4449     __ Push(index);
4450   }
4451   CallRuntimeFromDeferred(
4452       Runtime::kStringCharCodeAtRT, 2, instr, instr->context());
4453   __ AssertSmi(rax);
4454   __ SmiToInteger32(rax, rax);
4455   __ StoreToSafepointRegisterSlot(result, rax);
4456 }
4457 
4458 
DoStringCharFromCode(LStringCharFromCode * instr)4459 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4460   class DeferredStringCharFromCode final : public LDeferredCode {
4461    public:
4462     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4463         : LDeferredCode(codegen), instr_(instr) { }
4464     void Generate() override {
4465       codegen()->DoDeferredStringCharFromCode(instr_);
4466     }
4467     LInstruction* instr() override { return instr_; }
4468 
4469    private:
4470     LStringCharFromCode* instr_;
4471   };
4472 
4473   DeferredStringCharFromCode* deferred =
4474       new(zone()) DeferredStringCharFromCode(this, instr);
4475 
4476   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4477   Register char_code = ToRegister(instr->char_code());
4478   Register result = ToRegister(instr->result());
4479   DCHECK(!char_code.is(result));
4480 
4481   __ cmpl(char_code, Immediate(String::kMaxOneByteCharCode));
4482   __ j(above, deferred->entry());
4483   __ movsxlq(char_code, char_code);
4484   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4485   __ movp(result, FieldOperand(result,
4486                                char_code, times_pointer_size,
4487                                FixedArray::kHeaderSize));
4488   __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
4489   __ j(equal, deferred->entry());
4490   __ bind(deferred->exit());
4491 }
4492 
4493 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4494 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4495   Register char_code = ToRegister(instr->char_code());
4496   Register result = ToRegister(instr->result());
4497 
4498   // TODO(3095996): Get rid of this. For now, we need to make the
4499   // result register contain a valid pointer because it is already
4500   // contained in the register pointer map.
4501   __ Set(result, 0);
4502 
4503   PushSafepointRegistersScope scope(this);
4504   __ Integer32ToSmi(char_code, char_code);
4505   __ Push(char_code);
4506   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4507                           instr->context());
4508   __ StoreToSafepointRegisterSlot(result, rax);
4509 }
4510 
4511 
DoInteger32ToDouble(LInteger32ToDouble * instr)4512 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4513   LOperand* input = instr->value();
4514   DCHECK(input->IsRegister() || input->IsStackSlot());
4515   LOperand* output = instr->result();
4516   DCHECK(output->IsDoubleRegister());
4517   if (input->IsRegister()) {
4518     __ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
4519   } else {
4520     __ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
4521   }
4522 }
4523 
4524 
DoUint32ToDouble(LUint32ToDouble * instr)4525 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4526   LOperand* input = instr->value();
4527   LOperand* output = instr->result();
4528 
4529   __ LoadUint32(ToDoubleRegister(output), ToRegister(input));
4530 }
4531 
4532 
DoNumberTagI(LNumberTagI * instr)4533 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4534   class DeferredNumberTagI final : public LDeferredCode {
4535    public:
4536     DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4537         : LDeferredCode(codegen), instr_(instr) { }
4538     void Generate() override {
4539       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4540                                        instr_->temp2(), SIGNED_INT32);
4541     }
4542     LInstruction* instr() override { return instr_; }
4543 
4544    private:
4545     LNumberTagI* instr_;
4546   };
4547 
4548   LOperand* input = instr->value();
4549   DCHECK(input->IsRegister() && input->Equals(instr->result()));
4550   Register reg = ToRegister(input);
4551 
4552   if (SmiValuesAre32Bits()) {
4553     __ Integer32ToSmi(reg, reg);
4554   } else {
4555     DCHECK(SmiValuesAre31Bits());
4556     DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4557     __ Integer32ToSmi(reg, reg);
4558     __ j(overflow, deferred->entry());
4559     __ bind(deferred->exit());
4560   }
4561 }
4562 
4563 
DoNumberTagU(LNumberTagU * instr)4564 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4565   class DeferredNumberTagU final : public LDeferredCode {
4566    public:
4567     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4568         : LDeferredCode(codegen), instr_(instr) { }
4569     void Generate() override {
4570       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4571                                        instr_->temp2(), UNSIGNED_INT32);
4572     }
4573     LInstruction* instr() override { return instr_; }
4574 
4575    private:
4576     LNumberTagU* instr_;
4577   };
4578 
4579   LOperand* input = instr->value();
4580   DCHECK(input->IsRegister() && input->Equals(instr->result()));
4581   Register reg = ToRegister(input);
4582 
4583   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4584   __ cmpl(reg, Immediate(Smi::kMaxValue));
4585   __ j(above, deferred->entry());
4586   __ Integer32ToSmi(reg, reg);
4587   __ bind(deferred->exit());
4588 }
4589 
4590 
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2,IntegerSignedness signedness)4591 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4592                                      LOperand* value,
4593                                      LOperand* temp1,
4594                                      LOperand* temp2,
4595                                      IntegerSignedness signedness) {
4596   Label done, slow;
4597   Register reg = ToRegister(value);
4598   Register tmp = ToRegister(temp1);
4599   XMMRegister temp_xmm = ToDoubleRegister(temp2);
4600 
4601   // Load value into temp_xmm which will be preserved across potential call to
4602   // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable
4603   // XMM registers on x64).
4604   if (signedness == SIGNED_INT32) {
4605     DCHECK(SmiValuesAre31Bits());
4606     // There was overflow, so bits 30 and 31 of the original integer
4607     // disagree. Try to allocate a heap number in new space and store
4608     // the value in there. If that fails, call the runtime system.
4609     __ SmiToInteger32(reg, reg);
4610     __ xorl(reg, Immediate(0x80000000));
4611     __ Cvtlsi2sd(temp_xmm, reg);
4612   } else {
4613     DCHECK(signedness == UNSIGNED_INT32);
4614     __ LoadUint32(temp_xmm, reg);
4615   }
4616 
4617   if (FLAG_inline_new) {
4618     __ AllocateHeapNumber(reg, tmp, &slow);
4619     __ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar);
4620   }
4621 
4622   // Slow case: Call the runtime system to do the number allocation.
4623   __ bind(&slow);
4624   {
4625     // Put a valid pointer value in the stack slot where the result
4626     // register is stored, as this register is in the pointer map, but contains
4627     // an integer value.
4628     __ Set(reg, 0);
4629 
4630     // Preserve the value of all registers.
4631     PushSafepointRegistersScope scope(this);
4632 
4633     // NumberTagIU uses the context from the frame, rather than
4634     // the environment's HContext or HInlinedContext value.
4635     // They only call Runtime::kAllocateHeapNumber.
4636     // The corresponding HChange instructions are added in a phase that does
4637     // not have easy access to the local context.
4638     __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4639     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4640     RecordSafepointWithRegisters(
4641         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4642     __ StoreToSafepointRegisterSlot(reg, rax);
4643   }
4644 
4645   // Done. Put the value in temp_xmm into the value of the allocated heap
4646   // number.
4647   __ bind(&done);
4648   __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm);
4649 }
4650 
4651 
DoNumberTagD(LNumberTagD * instr)4652 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4653   class DeferredNumberTagD final : public LDeferredCode {
4654    public:
4655     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4656         : LDeferredCode(codegen), instr_(instr) { }
4657     void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4658     LInstruction* instr() override { return instr_; }
4659 
4660    private:
4661     LNumberTagD* instr_;
4662   };
4663 
4664   XMMRegister input_reg = ToDoubleRegister(instr->value());
4665   Register reg = ToRegister(instr->result());
4666   Register tmp = ToRegister(instr->temp());
4667 
4668   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4669   if (FLAG_inline_new) {
4670     __ AllocateHeapNumber(reg, tmp, deferred->entry());
4671   } else {
4672     __ jmp(deferred->entry());
4673   }
4674   __ bind(deferred->exit());
4675   __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
4676 }
4677 
4678 
DoDeferredNumberTagD(LNumberTagD * instr)4679 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4680   // TODO(3095996): Get rid of this. For now, we need to make the
4681   // result register contain a valid pointer because it is already
4682   // contained in the register pointer map.
4683   Register reg = ToRegister(instr->result());
4684   __ Move(reg, Smi::FromInt(0));
4685 
4686   {
4687     PushSafepointRegistersScope scope(this);
4688     // NumberTagD uses the context from the frame, rather than
4689     // the environment's HContext or HInlinedContext value.
4690     // They only call Runtime::kAllocateHeapNumber.
4691     // The corresponding HChange instructions are added in a phase that does
4692     // not have easy access to the local context.
4693     __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4694     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4695     RecordSafepointWithRegisters(
4696         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4697     __ movp(kScratchRegister, rax);
4698   }
4699   __ movp(reg, kScratchRegister);
4700 }
4701 
4702 
DoSmiTag(LSmiTag * instr)4703 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4704   HChange* hchange = instr->hydrogen();
4705   Register input = ToRegister(instr->value());
4706   Register output = ToRegister(instr->result());
4707   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4708       hchange->value()->CheckFlag(HValue::kUint32)) {
4709     Condition is_smi = __ CheckUInteger32ValidSmiValue(input);
4710     DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kOverflow);
4711   }
4712   __ Integer32ToSmi(output, input);
4713   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4714       !hchange->value()->CheckFlag(HValue::kUint32)) {
4715     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
4716   }
4717 }
4718 
4719 
DoSmiUntag(LSmiUntag * instr)4720 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4721   DCHECK(instr->value()->Equals(instr->result()));
4722   Register input = ToRegister(instr->value());
4723   if (instr->needs_check()) {
4724     Condition is_smi = __ CheckSmi(input);
4725     DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kNotASmi);
4726   } else {
4727     __ AssertSmi(input);
4728   }
4729   __ SmiToInteger32(input, input);
4730 }
4731 
4732 
EmitNumberUntagD(LNumberUntagD * instr,Register input_reg,XMMRegister result_reg,NumberUntagDMode mode)4733 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4734                                 XMMRegister result_reg, NumberUntagDMode mode) {
4735   bool can_convert_undefined_to_nan =
4736       instr->hydrogen()->can_convert_undefined_to_nan();
4737   bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4738 
4739   Label convert, load_smi, done;
4740 
4741   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4742     // Smi check.
4743     __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
4744 
4745     // Heap number map check.
4746     __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4747                    Heap::kHeapNumberMapRootIndex);
4748 
4749     // On x64 it is safe to load at heap number offset before evaluating the map
4750     // check, since all heap objects are at least two words long.
4751     __ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
4752 
4753     if (can_convert_undefined_to_nan) {
4754       __ j(not_equal, &convert, Label::kNear);
4755     } else {
4756       DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
4757     }
4758 
4759     if (deoptimize_on_minus_zero) {
4760       XMMRegister xmm_scratch = double_scratch0();
4761       __ Xorpd(xmm_scratch, xmm_scratch);
4762       __ Ucomisd(xmm_scratch, result_reg);
4763       __ j(not_equal, &done, Label::kNear);
4764       __ Movmskpd(kScratchRegister, result_reg);
4765       __ testl(kScratchRegister, Immediate(1));
4766       DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
4767     }
4768     __ jmp(&done, Label::kNear);
4769 
4770     if (can_convert_undefined_to_nan) {
4771       __ bind(&convert);
4772 
4773       // Convert undefined (and hole) to NaN. Compute NaN as 0/0.
4774       __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4775       DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
4776 
4777       __ Pcmpeqd(result_reg, result_reg);
4778       __ jmp(&done, Label::kNear);
4779     }
4780   } else {
4781     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4782   }
4783 
4784   // Smi to XMM conversion
4785   __ bind(&load_smi);
4786   __ SmiToInteger32(kScratchRegister, input_reg);
4787   __ Cvtlsi2sd(result_reg, kScratchRegister);
4788   __ bind(&done);
4789 }
4790 
4791 
DoDeferredTaggedToI(LTaggedToI * instr,Label * done)4792 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
4793   Register input_reg = ToRegister(instr->value());
4794 
4795   if (instr->truncating()) {
4796     Label no_heap_number, check_bools, check_false;
4797 
4798     // Heap number map check.
4799     __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4800                    Heap::kHeapNumberMapRootIndex);
4801     __ j(not_equal, &no_heap_number, Label::kNear);
4802     __ TruncateHeapNumberToI(input_reg, input_reg);
4803     __ jmp(done);
4804 
4805     __ bind(&no_heap_number);
4806     // Check for Oddballs. Undefined/False is converted to zero and True to one
4807     // for truncating conversions.
4808     __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4809     __ j(not_equal, &check_bools, Label::kNear);
4810     __ Set(input_reg, 0);
4811     __ jmp(done);
4812 
4813     __ bind(&check_bools);
4814     __ CompareRoot(input_reg, Heap::kTrueValueRootIndex);
4815     __ j(not_equal, &check_false, Label::kNear);
4816     __ Set(input_reg, 1);
4817     __ jmp(done);
4818 
4819     __ bind(&check_false);
4820     __ CompareRoot(input_reg, Heap::kFalseValueRootIndex);
4821     DeoptimizeIf(not_equal, instr,
4822                  Deoptimizer::kNotAHeapNumberUndefinedBoolean);
4823     __ Set(input_reg, 0);
4824   } else {
4825     XMMRegister scratch = ToDoubleRegister(instr->temp());
4826     DCHECK(!scratch.is(xmm0));
4827     __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4828                    Heap::kHeapNumberMapRootIndex);
4829     DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
4830     __ Movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
4831     __ Cvttsd2si(input_reg, xmm0);
4832     __ Cvtlsi2sd(scratch, input_reg);
4833     __ Ucomisd(xmm0, scratch);
4834     DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
4835     DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
4836     if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
4837       __ testl(input_reg, input_reg);
4838       __ j(not_zero, done);
4839       __ Movmskpd(input_reg, xmm0);
4840       __ andl(input_reg, Immediate(1));
4841       DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
4842     }
4843   }
4844 }
4845 
4846 
DoTaggedToI(LTaggedToI * instr)4847 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4848   class DeferredTaggedToI final : public LDeferredCode {
4849    public:
4850     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4851         : LDeferredCode(codegen), instr_(instr) { }
4852     void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
4853     LInstruction* instr() override { return instr_; }
4854 
4855    private:
4856     LTaggedToI* instr_;
4857   };
4858 
4859   LOperand* input = instr->value();
4860   DCHECK(input->IsRegister());
4861   DCHECK(input->Equals(instr->result()));
4862   Register input_reg = ToRegister(input);
4863 
4864   if (instr->hydrogen()->value()->representation().IsSmi()) {
4865     __ SmiToInteger32(input_reg, input_reg);
4866   } else {
4867     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4868     __ JumpIfNotSmi(input_reg, deferred->entry());
4869     __ SmiToInteger32(input_reg, input_reg);
4870     __ bind(deferred->exit());
4871   }
4872 }
4873 
4874 
DoNumberUntagD(LNumberUntagD * instr)4875 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4876   LOperand* input = instr->value();
4877   DCHECK(input->IsRegister());
4878   LOperand* result = instr->result();
4879   DCHECK(result->IsDoubleRegister());
4880 
4881   Register input_reg = ToRegister(input);
4882   XMMRegister result_reg = ToDoubleRegister(result);
4883 
4884   HValue* value = instr->hydrogen()->value();
4885   NumberUntagDMode mode = value->representation().IsSmi()
4886       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4887 
4888   EmitNumberUntagD(instr, input_reg, result_reg, mode);
4889 }
4890 
4891 
DoDoubleToI(LDoubleToI * instr)4892 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4893   LOperand* input = instr->value();
4894   DCHECK(input->IsDoubleRegister());
4895   LOperand* result = instr->result();
4896   DCHECK(result->IsRegister());
4897 
4898   XMMRegister input_reg = ToDoubleRegister(input);
4899   Register result_reg = ToRegister(result);
4900 
4901   if (instr->truncating()) {
4902     __ TruncateDoubleToI(result_reg, input_reg);
4903   } else {
4904     Label lost_precision, is_nan, minus_zero, done;
4905     XMMRegister xmm_scratch = double_scratch0();
4906     Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4907     __ DoubleToI(result_reg, input_reg, xmm_scratch,
4908                  instr->hydrogen()->GetMinusZeroMode(), &lost_precision,
4909                  &is_nan, &minus_zero, dist);
4910     __ jmp(&done, dist);
4911     __ bind(&lost_precision);
4912     DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
4913     __ bind(&is_nan);
4914     DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
4915     __ bind(&minus_zero);
4916     DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
4917     __ bind(&done);
4918   }
4919 }
4920 
4921 
DoDoubleToSmi(LDoubleToSmi * instr)4922 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4923   LOperand* input = instr->value();
4924   DCHECK(input->IsDoubleRegister());
4925   LOperand* result = instr->result();
4926   DCHECK(result->IsRegister());
4927 
4928   XMMRegister input_reg = ToDoubleRegister(input);
4929   Register result_reg = ToRegister(result);
4930 
4931   Label lost_precision, is_nan, minus_zero, done;
4932   XMMRegister xmm_scratch = double_scratch0();
4933   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4934   __ DoubleToI(result_reg, input_reg, xmm_scratch,
4935                instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan,
4936                &minus_zero, dist);
4937   __ jmp(&done, dist);
4938   __ bind(&lost_precision);
4939   DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
4940   __ bind(&is_nan);
4941   DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
4942   __ bind(&minus_zero);
4943   DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
4944   __ bind(&done);
4945   __ Integer32ToSmi(result_reg, result_reg);
4946   DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
4947 }
4948 
4949 
DoCheckSmi(LCheckSmi * instr)4950 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4951   LOperand* input = instr->value();
4952   Condition cc = masm()->CheckSmi(ToRegister(input));
4953   DeoptimizeIf(NegateCondition(cc), instr, Deoptimizer::kNotASmi);
4954 }
4955 
4956 
DoCheckNonSmi(LCheckNonSmi * instr)4957 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4958   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4959     LOperand* input = instr->value();
4960     Condition cc = masm()->CheckSmi(ToRegister(input));
4961     DeoptimizeIf(cc, instr, Deoptimizer::kSmi);
4962   }
4963 }
4964 
4965 
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)4966 void LCodeGen::DoCheckArrayBufferNotNeutered(
4967     LCheckArrayBufferNotNeutered* instr) {
4968   Register view = ToRegister(instr->view());
4969 
4970   __ movp(kScratchRegister,
4971           FieldOperand(view, JSArrayBufferView::kBufferOffset));
4972   __ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset),
4973            Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
4974   DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds);
4975 }
4976 
4977 
DoCheckInstanceType(LCheckInstanceType * instr)4978 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4979   Register input = ToRegister(instr->value());
4980 
4981   __ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
4982 
4983   if (instr->hydrogen()->is_interval_check()) {
4984     InstanceType first;
4985     InstanceType last;
4986     instr->hydrogen()->GetCheckInterval(&first, &last);
4987 
4988     __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4989             Immediate(static_cast<int8_t>(first)));
4990 
4991     // If there is only one type in the interval check for equality.
4992     if (first == last) {
4993       DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
4994     } else {
4995       DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType);
4996       // Omit check for the last type.
4997       if (last != LAST_TYPE) {
4998         __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4999                 Immediate(static_cast<int8_t>(last)));
5000         DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType);
5001       }
5002     }
5003   } else {
5004     uint8_t mask;
5005     uint8_t tag;
5006     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
5007 
5008     if (base::bits::IsPowerOfTwo32(mask)) {
5009       DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
5010       __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
5011                Immediate(mask));
5012       DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
5013                    Deoptimizer::kWrongInstanceType);
5014     } else {
5015       __ movzxbl(kScratchRegister,
5016                  FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
5017       __ andb(kScratchRegister, Immediate(mask));
5018       __ cmpb(kScratchRegister, Immediate(tag));
5019       DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
5020     }
5021   }
5022 }
5023 
5024 
DoCheckValue(LCheckValue * instr)5025 void LCodeGen::DoCheckValue(LCheckValue* instr) {
5026   Register reg = ToRegister(instr->value());
5027   __ Cmp(reg, instr->hydrogen()->object().handle());
5028   DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch);
5029 }
5030 
5031 
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)5032 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
5033   {
5034     PushSafepointRegistersScope scope(this);
5035     __ Push(object);
5036     __ Set(rsi, 0);
5037     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
5038     RecordSafepointWithRegisters(
5039         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
5040 
5041     __ testp(rax, Immediate(kSmiTagMask));
5042   }
5043   DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed);
5044 }
5045 
5046 
DoCheckMaps(LCheckMaps * instr)5047 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
5048   class DeferredCheckMaps final : public LDeferredCode {
5049    public:
5050     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
5051         : LDeferredCode(codegen), instr_(instr), object_(object) {
5052       SetExit(check_maps());
5053     }
5054     void Generate() override {
5055       codegen()->DoDeferredInstanceMigration(instr_, object_);
5056     }
5057     Label* check_maps() { return &check_maps_; }
5058     LInstruction* instr() override { return instr_; }
5059 
5060    private:
5061     LCheckMaps* instr_;
5062     Label check_maps_;
5063     Register object_;
5064   };
5065 
5066   if (instr->hydrogen()->IsStabilityCheck()) {
5067     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5068     for (int i = 0; i < maps->size(); ++i) {
5069       AddStabilityDependency(maps->at(i).handle());
5070     }
5071     return;
5072   }
5073 
5074   LOperand* input = instr->value();
5075   DCHECK(input->IsRegister());
5076   Register reg = ToRegister(input);
5077 
5078   DeferredCheckMaps* deferred = NULL;
5079   if (instr->hydrogen()->HasMigrationTarget()) {
5080     deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
5081     __ bind(deferred->check_maps());
5082   }
5083 
5084   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5085   Label success;
5086   for (int i = 0; i < maps->size() - 1; i++) {
5087     Handle<Map> map = maps->at(i).handle();
5088     __ CompareMap(reg, map);
5089     __ j(equal, &success, Label::kNear);
5090   }
5091 
5092   Handle<Map> map = maps->at(maps->size() - 1).handle();
5093   __ CompareMap(reg, map);
5094   if (instr->hydrogen()->HasMigrationTarget()) {
5095     __ j(not_equal, deferred->entry());
5096   } else {
5097     DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
5098   }
5099 
5100   __ bind(&success);
5101 }
5102 
5103 
DoClampDToUint8(LClampDToUint8 * instr)5104 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5105   XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
5106   XMMRegister xmm_scratch = double_scratch0();
5107   Register result_reg = ToRegister(instr->result());
5108   __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
5109 }
5110 
5111 
DoClampIToUint8(LClampIToUint8 * instr)5112 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5113   DCHECK(instr->unclamped()->Equals(instr->result()));
5114   Register value_reg = ToRegister(instr->result());
5115   __ ClampUint8(value_reg);
5116 }
5117 
5118 
DoClampTToUint8(LClampTToUint8 * instr)5119 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5120   DCHECK(instr->unclamped()->Equals(instr->result()));
5121   Register input_reg = ToRegister(instr->unclamped());
5122   XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
5123   XMMRegister xmm_scratch = double_scratch0();
5124   Label is_smi, done, heap_number;
5125   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
5126   __ JumpIfSmi(input_reg, &is_smi, dist);
5127 
5128   // Check for heap number
5129   __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
5130          factory()->heap_number_map());
5131   __ j(equal, &heap_number, Label::kNear);
5132 
5133   // Check for undefined. Undefined is converted to zero for clamping
5134   // conversions.
5135   __ Cmp(input_reg, factory()->undefined_value());
5136   DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
5137   __ xorl(input_reg, input_reg);
5138   __ jmp(&done, Label::kNear);
5139 
5140   // Heap number
5141   __ bind(&heap_number);
5142   __ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
5143   __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
5144   __ jmp(&done, Label::kNear);
5145 
5146   // smi
5147   __ bind(&is_smi);
5148   __ SmiToInteger32(input_reg, input_reg);
5149   __ ClampUint8(input_reg);
5150 
5151   __ bind(&done);
5152 }
5153 
5154 
DoDoubleBits(LDoubleBits * instr)5155 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5156   XMMRegister value_reg = ToDoubleRegister(instr->value());
5157   Register result_reg = ToRegister(instr->result());
5158   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5159     __ Movq(result_reg, value_reg);
5160     __ shrq(result_reg, Immediate(32));
5161   } else {
5162     __ Movd(result_reg, value_reg);
5163   }
5164 }
5165 
5166 
DoConstructDouble(LConstructDouble * instr)5167 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5168   Register hi_reg = ToRegister(instr->hi());
5169   Register lo_reg = ToRegister(instr->lo());
5170   XMMRegister result_reg = ToDoubleRegister(instr->result());
5171   __ movl(kScratchRegister, hi_reg);
5172   __ shlq(kScratchRegister, Immediate(32));
5173   __ orq(kScratchRegister, lo_reg);
5174   __ Movq(result_reg, kScratchRegister);
5175 }
5176 
5177 
DoAllocate(LAllocate * instr)5178 void LCodeGen::DoAllocate(LAllocate* instr) {
5179   class DeferredAllocate final : public LDeferredCode {
5180    public:
5181     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5182         : LDeferredCode(codegen), instr_(instr) { }
5183     void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5184     LInstruction* instr() override { return instr_; }
5185 
5186    private:
5187     LAllocate* instr_;
5188   };
5189 
5190   DeferredAllocate* deferred =
5191       new(zone()) DeferredAllocate(this, instr);
5192 
5193   Register result = ToRegister(instr->result());
5194   Register temp = ToRegister(instr->temp());
5195 
5196   // Allocate memory for the object.
5197   AllocationFlags flags = TAG_OBJECT;
5198   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5199     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5200   }
5201   if (instr->hydrogen()->IsOldSpaceAllocation()) {
5202     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5203     flags = static_cast<AllocationFlags>(flags | PRETENURE);
5204   }
5205 
5206   if (instr->size()->IsConstantOperand()) {
5207     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5208     CHECK(size <= Page::kMaxRegularHeapObjectSize);
5209     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5210   } else {
5211     Register size = ToRegister(instr->size());
5212     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5213   }
5214 
5215   __ bind(deferred->exit());
5216 
5217   if (instr->hydrogen()->MustPrefillWithFiller()) {
5218     if (instr->size()->IsConstantOperand()) {
5219       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5220       __ movl(temp, Immediate((size / kPointerSize) - 1));
5221     } else {
5222       temp = ToRegister(instr->size());
5223       __ sarp(temp, Immediate(kPointerSizeLog2));
5224       __ decl(temp);
5225     }
5226     Label loop;
5227     __ bind(&loop);
5228     __ Move(FieldOperand(result, temp, times_pointer_size, 0),
5229         isolate()->factory()->one_pointer_filler_map());
5230     __ decl(temp);
5231     __ j(not_zero, &loop);
5232   }
5233 }
5234 
5235 
DoDeferredAllocate(LAllocate * instr)5236 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5237   Register result = ToRegister(instr->result());
5238 
5239   // TODO(3095996): Get rid of this. For now, we need to make the
5240   // result register contain a valid pointer because it is already
5241   // contained in the register pointer map.
5242   __ Move(result, Smi::FromInt(0));
5243 
5244   PushSafepointRegistersScope scope(this);
5245   if (instr->size()->IsRegister()) {
5246     Register size = ToRegister(instr->size());
5247     DCHECK(!size.is(result));
5248     __ Integer32ToSmi(size, size);
5249     __ Push(size);
5250   } else {
5251     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5252     __ Push(Smi::FromInt(size));
5253   }
5254 
5255   int flags = 0;
5256   if (instr->hydrogen()->IsOldSpaceAllocation()) {
5257     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5258     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5259   } else {
5260     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5261   }
5262   __ Push(Smi::FromInt(flags));
5263 
5264   CallRuntimeFromDeferred(
5265       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5266   __ StoreToSafepointRegisterSlot(result, rax);
5267 }
5268 
5269 
DoToFastProperties(LToFastProperties * instr)5270 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5271   DCHECK(ToRegister(instr->value()).is(rax));
5272   __ Push(rax);
5273   CallRuntime(Runtime::kToFastProperties, 1, instr);
5274 }
5275 
5276 
DoTypeof(LTypeof * instr)5277 void LCodeGen::DoTypeof(LTypeof* instr) {
5278   DCHECK(ToRegister(instr->context()).is(rsi));
5279   DCHECK(ToRegister(instr->value()).is(rbx));
5280   Label end, do_call;
5281   Register value_register = ToRegister(instr->value());
5282   __ JumpIfNotSmi(value_register, &do_call);
5283   __ Move(rax, isolate()->factory()->number_string());
5284   __ jmp(&end);
5285   __ bind(&do_call);
5286   TypeofStub stub(isolate());
5287   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5288   __ bind(&end);
5289 }
5290 
5291 
EmitPushTaggedOperand(LOperand * operand)5292 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
5293   DCHECK(!operand->IsDoubleRegister());
5294   if (operand->IsConstantOperand()) {
5295     __ Push(ToHandle(LConstantOperand::cast(operand)));
5296   } else if (operand->IsRegister()) {
5297     __ Push(ToRegister(operand));
5298   } else {
5299     __ Push(ToOperand(operand));
5300   }
5301 }
5302 
5303 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5304 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5305   Register input = ToRegister(instr->value());
5306   Condition final_branch_condition = EmitTypeofIs(instr, input);
5307   if (final_branch_condition != no_condition) {
5308     EmitBranch(instr, final_branch_condition);
5309   }
5310 }
5311 
5312 
EmitTypeofIs(LTypeofIsAndBranch * instr,Register input)5313 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
5314   Label* true_label = instr->TrueLabel(chunk_);
5315   Label* false_label = instr->FalseLabel(chunk_);
5316   Handle<String> type_name = instr->type_literal();
5317   int left_block = instr->TrueDestination(chunk_);
5318   int right_block = instr->FalseDestination(chunk_);
5319   int next_block = GetNextEmittedBlock();
5320 
5321   Label::Distance true_distance = left_block == next_block ? Label::kNear
5322                                                            : Label::kFar;
5323   Label::Distance false_distance = right_block == next_block ? Label::kNear
5324                                                              : Label::kFar;
5325   Condition final_branch_condition = no_condition;
5326   Factory* factory = isolate()->factory();
5327   if (String::Equals(type_name, factory->number_string())) {
5328     __ JumpIfSmi(input, true_label, true_distance);
5329     __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
5330                    Heap::kHeapNumberMapRootIndex);
5331 
5332     final_branch_condition = equal;
5333 
5334   } else if (String::Equals(type_name, factory->string_string())) {
5335     __ JumpIfSmi(input, false_label, false_distance);
5336     __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
5337     final_branch_condition = below;
5338 
5339   } else if (String::Equals(type_name, factory->symbol_string())) {
5340     __ JumpIfSmi(input, false_label, false_distance);
5341     __ CmpObjectType(input, SYMBOL_TYPE, input);
5342     final_branch_condition = equal;
5343 
5344   } else if (String::Equals(type_name, factory->boolean_string())) {
5345     __ CompareRoot(input, Heap::kTrueValueRootIndex);
5346     __ j(equal, true_label, true_distance);
5347     __ CompareRoot(input, Heap::kFalseValueRootIndex);
5348     final_branch_condition = equal;
5349 
5350   } else if (String::Equals(type_name, factory->undefined_string())) {
5351     __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
5352     __ j(equal, true_label, true_distance);
5353     __ JumpIfSmi(input, false_label, false_distance);
5354     // Check for undetectable objects => true.
5355     __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
5356     __ testb(FieldOperand(input, Map::kBitFieldOffset),
5357              Immediate(1 << Map::kIsUndetectable));
5358     final_branch_condition = not_zero;
5359 
5360   } else if (String::Equals(type_name, factory->function_string())) {
5361     __ JumpIfSmi(input, false_label, false_distance);
5362     // Check for callable and not undetectable objects => true.
5363     __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
5364     __ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset));
5365     __ andb(input,
5366             Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5367     __ cmpb(input, Immediate(1 << Map::kIsCallable));
5368     final_branch_condition = equal;
5369 
5370   } else if (String::Equals(type_name, factory->object_string())) {
5371     __ JumpIfSmi(input, false_label, false_distance);
5372     __ CompareRoot(input, Heap::kNullValueRootIndex);
5373     __ j(equal, true_label, true_distance);
5374     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5375     __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
5376     __ j(below, false_label, false_distance);
5377     // Check for callable or undetectable objects => false.
5378     __ testb(FieldOperand(input, Map::kBitFieldOffset),
5379              Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5380     final_branch_condition = zero;
5381 
5382 // clang-format off
5383 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)       \
5384   } else if (String::Equals(type_name, factory->type##_string())) { \
5385     __ JumpIfSmi(input, false_label, false_distance);               \
5386     __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),     \
5387                    Heap::k##Type##MapRootIndex);                    \
5388     final_branch_condition = equal;
5389   SIMD128_TYPES(SIMD128_TYPE)
5390 #undef SIMD128_TYPE
5391     // clang-format on
5392 
5393   } else {
5394     __ jmp(false_label, false_distance);
5395   }
5396 
5397   return final_branch_condition;
5398 }
5399 
5400 
EnsureSpaceForLazyDeopt(int space_needed)5401 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5402   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5403     // Ensure that we have enough space after the previous lazy-bailout
5404     // instruction for patching the code here.
5405     int current_pc = masm()->pc_offset();
5406     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5407       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5408       __ Nop(padding_size);
5409     }
5410   }
5411   last_lazy_deopt_pc_ = masm()->pc_offset();
5412 }
5413 
5414 
DoLazyBailout(LLazyBailout * instr)5415 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5416   last_lazy_deopt_pc_ = masm()->pc_offset();
5417   DCHECK(instr->HasEnvironment());
5418   LEnvironment* env = instr->environment();
5419   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5420   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5421 }
5422 
5423 
DoDeoptimize(LDeoptimize * instr)5424 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5425   Deoptimizer::BailoutType type = instr->hydrogen()->type();
5426   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5427   // needed return address), even though the implementation of LAZY and EAGER is
5428   // now identical. When LAZY is eventually completely folded into EAGER, remove
5429   // the special case below.
5430   if (info()->IsStub() && type == Deoptimizer::EAGER) {
5431     type = Deoptimizer::LAZY;
5432   }
5433   DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
5434 }
5435 
5436 
DoDummy(LDummy * instr)5437 void LCodeGen::DoDummy(LDummy* instr) {
5438   // Nothing to see here, move on!
5439 }
5440 
5441 
DoDummyUse(LDummyUse * instr)5442 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5443   // Nothing to see here, move on!
5444 }
5445 
5446 
DoDeferredStackCheck(LStackCheck * instr)5447 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5448   PushSafepointRegistersScope scope(this);
5449   __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
5450   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5451   RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
5452   DCHECK(instr->HasEnvironment());
5453   LEnvironment* env = instr->environment();
5454   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5455 }
5456 
5457 
DoStackCheck(LStackCheck * instr)5458 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5459   class DeferredStackCheck final : public LDeferredCode {
5460    public:
5461     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5462         : LDeferredCode(codegen), instr_(instr) { }
5463     void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5464     LInstruction* instr() override { return instr_; }
5465 
5466    private:
5467     LStackCheck* instr_;
5468   };
5469 
5470   DCHECK(instr->HasEnvironment());
5471   LEnvironment* env = instr->environment();
5472   // There is no LLazyBailout instruction for stack-checks. We have to
5473   // prepare for lazy deoptimization explicitly here.
5474   if (instr->hydrogen()->is_function_entry()) {
5475     // Perform stack overflow check.
5476     Label done;
5477     __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
5478     __ j(above_equal, &done, Label::kNear);
5479 
5480     DCHECK(instr->context()->IsRegister());
5481     DCHECK(ToRegister(instr->context()).is(rsi));
5482     CallCode(isolate()->builtins()->StackCheck(),
5483              RelocInfo::CODE_TARGET,
5484              instr);
5485     __ bind(&done);
5486   } else {
5487     DCHECK(instr->hydrogen()->is_backwards_branch());
5488     // Perform stack overflow check if this goto needs it before jumping.
5489     DeferredStackCheck* deferred_stack_check =
5490         new(zone()) DeferredStackCheck(this, instr);
5491     __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
5492     __ j(below, deferred_stack_check->entry());
5493     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5494     __ bind(instr->done_label());
5495     deferred_stack_check->SetExit(instr->done_label());
5496     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5497     // Don't record a deoptimization index for the safepoint here.
5498     // This will be done explicitly when emitting call and the safepoint in
5499     // the deferred code.
5500   }
5501 }
5502 
5503 
DoOsrEntry(LOsrEntry * instr)5504 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5505   // This is a pseudo-instruction that ensures that the environment here is
5506   // properly registered for deoptimization and records the assembler's PC
5507   // offset.
5508   LEnvironment* environment = instr->environment();
5509 
5510   // If the environment were already registered, we would have no way of
5511   // backpatching it with the spill slot operands.
5512   DCHECK(!environment->HasBeenRegistered());
5513   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5514 
5515   GenerateOsrPrologue();
5516 }
5517 
5518 
DoForInPrepareMap(LForInPrepareMap * instr)5519 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5520   DCHECK(ToRegister(instr->context()).is(rsi));
5521 
5522   Condition cc = masm()->CheckSmi(rax);
5523   DeoptimizeIf(cc, instr, Deoptimizer::kSmi);
5524 
5525   STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE);
5526   __ CmpObjectType(rax, JS_PROXY_TYPE, rcx);
5527   DeoptimizeIf(below_equal, instr, Deoptimizer::kWrongInstanceType);
5528 
5529   Label use_cache, call_runtime;
5530   Register null_value = rdi;
5531   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
5532   __ CheckEnumCache(null_value, &call_runtime);
5533 
5534   __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
5535   __ jmp(&use_cache, Label::kNear);
5536 
5537   // Get the set of properties to enumerate.
5538   __ bind(&call_runtime);
5539   __ Push(rax);
5540   CallRuntime(Runtime::kGetPropertyNamesFast, instr);
5541 
5542   __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
5543                  Heap::kMetaMapRootIndex);
5544   DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
5545   __ bind(&use_cache);
5546 }
5547 
5548 
DoForInCacheArray(LForInCacheArray * instr)5549 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5550   Register map = ToRegister(instr->map());
5551   Register result = ToRegister(instr->result());
5552   Label load_cache, done;
5553   __ EnumLength(result, map);
5554   __ Cmp(result, Smi::FromInt(0));
5555   __ j(not_equal, &load_cache, Label::kNear);
5556   __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex);
5557   __ jmp(&done, Label::kNear);
5558   __ bind(&load_cache);
5559   __ LoadInstanceDescriptors(map, result);
5560   __ movp(result,
5561           FieldOperand(result, DescriptorArray::kEnumCacheOffset));
5562   __ movp(result,
5563           FieldOperand(result, FixedArray::SizeFor(instr->idx())));
5564   __ bind(&done);
5565   Condition cc = masm()->CheckSmi(result);
5566   DeoptimizeIf(cc, instr, Deoptimizer::kNoCache);
5567 }
5568 
5569 
DoCheckMapValue(LCheckMapValue * instr)5570 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5571   Register object = ToRegister(instr->value());
5572   __ cmpp(ToRegister(instr->map()),
5573           FieldOperand(object, HeapObject::kMapOffset));
5574   DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
5575 }
5576 
5577 
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register object,Register index)5578 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5579                                            Register object,
5580                                            Register index) {
5581   PushSafepointRegistersScope scope(this);
5582   __ Push(object);
5583   __ Push(index);
5584   __ xorp(rsi, rsi);
5585   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5586   RecordSafepointWithRegisters(
5587       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5588   __ StoreToSafepointRegisterSlot(object, rax);
5589 }
5590 
5591 
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5592 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5593   class DeferredLoadMutableDouble final : public LDeferredCode {
5594    public:
5595     DeferredLoadMutableDouble(LCodeGen* codegen,
5596                               LLoadFieldByIndex* instr,
5597                               Register object,
5598                               Register index)
5599         : LDeferredCode(codegen),
5600           instr_(instr),
5601           object_(object),
5602           index_(index) {
5603     }
5604     void Generate() override {
5605       codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
5606     }
5607     LInstruction* instr() override { return instr_; }
5608 
5609    private:
5610     LLoadFieldByIndex* instr_;
5611     Register object_;
5612     Register index_;
5613   };
5614 
5615   Register object = ToRegister(instr->object());
5616   Register index = ToRegister(instr->index());
5617 
5618   DeferredLoadMutableDouble* deferred;
5619   deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index);
5620 
5621   Label out_of_object, done;
5622   __ Move(kScratchRegister, Smi::FromInt(1));
5623   __ testp(index, kScratchRegister);
5624   __ j(not_zero, deferred->entry());
5625 
5626   __ sarp(index, Immediate(1));
5627 
5628   __ SmiToInteger32(index, index);
5629   __ cmpl(index, Immediate(0));
5630   __ j(less, &out_of_object, Label::kNear);
5631   __ movp(object, FieldOperand(object,
5632                                index,
5633                                times_pointer_size,
5634                                JSObject::kHeaderSize));
5635   __ jmp(&done, Label::kNear);
5636 
5637   __ bind(&out_of_object);
5638   __ movp(object, FieldOperand(object, JSObject::kPropertiesOffset));
5639   __ negl(index);
5640   // Index is now equal to out of object property index plus 1.
5641   __ movp(object, FieldOperand(object,
5642                                index,
5643                                times_pointer_size,
5644                                FixedArray::kHeaderSize - kPointerSize));
5645   __ bind(deferred->exit());
5646   __ bind(&done);
5647 }
5648 
5649 
DoStoreFrameContext(LStoreFrameContext * instr)5650 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5651   Register context = ToRegister(instr->context());
5652   __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), context);
5653 }
5654 
5655 
DoAllocateBlockContext(LAllocateBlockContext * instr)5656 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5657   Handle<ScopeInfo> scope_info = instr->scope_info();
5658   __ Push(scope_info);
5659   __ Push(ToRegister(instr->function()));
5660   CallRuntime(Runtime::kPushBlockContext, instr);
5661   RecordSafepoint(Safepoint::kNoLazyDeopt);
5662 }
5663 
5664 
5665 #undef __
5666 
5667 }  // namespace internal
5668 }  // namespace v8
5669 
5670 #endif  // V8_TARGET_ARCH_X64
5671