1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/CodeGen/RegisterPressure.h"
29 #include "llvm/CodeGen/ScheduleDFS.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <queue>
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "misched"
44
45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
46 cl::ZeroOrMore, cl::init(false),
47 cl::desc("Enable use of AA during MI DAG construction"));
48
49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
50 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
51
ScheduleDAGInstrs(MachineFunction & mf,const MachineLoopInfo * mli,bool RemoveKillFlags)52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
53 const MachineLoopInfo *mli,
54 bool RemoveKillFlags)
55 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
56 RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
57 TrackLaneMasks(false), FirstDbgValue(nullptr) {
58 DbgValues.clear();
59
60 const TargetSubtargetInfo &ST = mf.getSubtarget();
61 SchedModel.init(ST.getSchedModel(), &ST, TII);
62 }
63
64 /// getUnderlyingObjectFromInt - This is the function that does the work of
65 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjectFromInt(const Value * V)66 static const Value *getUnderlyingObjectFromInt(const Value *V) {
67 do {
68 if (const Operator *U = dyn_cast<Operator>(V)) {
69 // If we find a ptrtoint, we can transfer control back to the
70 // regular getUnderlyingObjectFromInt.
71 if (U->getOpcode() == Instruction::PtrToInt)
72 return U->getOperand(0);
73 // If we find an add of a constant, a multiplied value, or a phi, it's
74 // likely that the other operand will lead us to the base
75 // object. We don't have to worry about the case where the
76 // object address is somehow being computed by the multiply,
77 // because our callers only care when the result is an
78 // identifiable object.
79 if (U->getOpcode() != Instruction::Add ||
80 (!isa<ConstantInt>(U->getOperand(1)) &&
81 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
82 !isa<PHINode>(U->getOperand(1))))
83 return V;
84 V = U->getOperand(0);
85 } else {
86 return V;
87 }
88 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
89 } while (1);
90 }
91
92 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
93 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjects(const Value * V,SmallVectorImpl<Value * > & Objects,const DataLayout & DL)94 static void getUnderlyingObjects(const Value *V,
95 SmallVectorImpl<Value *> &Objects,
96 const DataLayout &DL) {
97 SmallPtrSet<const Value *, 16> Visited;
98 SmallVector<const Value *, 4> Working(1, V);
99 do {
100 V = Working.pop_back_val();
101
102 SmallVector<Value *, 4> Objs;
103 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
104
105 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
106 I != IE; ++I) {
107 V = *I;
108 if (!Visited.insert(V).second)
109 continue;
110 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
111 const Value *O =
112 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
113 if (O->getType()->isPointerTy()) {
114 Working.push_back(O);
115 continue;
116 }
117 }
118 Objects.push_back(const_cast<Value *>(V));
119 }
120 } while (!Working.empty());
121 }
122
123 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
124 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
125 UnderlyingObjectsVector;
126
127 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
128 /// information and it can be tracked to a normal reference to a known
129 /// object, return the Value for that object.
getUnderlyingObjectsForInstr(const MachineInstr * MI,const MachineFrameInfo * MFI,UnderlyingObjectsVector & Objects,const DataLayout & DL)130 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
131 const MachineFrameInfo *MFI,
132 UnderlyingObjectsVector &Objects,
133 const DataLayout &DL) {
134 if (!MI->hasOneMemOperand() ||
135 (!(*MI->memoperands_begin())->getValue() &&
136 !(*MI->memoperands_begin())->getPseudoValue()) ||
137 (*MI->memoperands_begin())->isVolatile())
138 return;
139
140 if (const PseudoSourceValue *PSV =
141 (*MI->memoperands_begin())->getPseudoValue()) {
142 // Function that contain tail calls don't have unique PseudoSourceValue
143 // objects. Two PseudoSourceValues might refer to the same or overlapping
144 // locations. The client code calling this function assumes this is not the
145 // case. So return a conservative answer of no known object.
146 if (MFI->hasTailCall())
147 return;
148
149 // For now, ignore PseudoSourceValues which may alias LLVM IR values
150 // because the code that uses this function has no way to cope with
151 // such aliases.
152 if (!PSV->isAliased(MFI)) {
153 bool MayAlias = PSV->mayAlias(MFI);
154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
155 }
156 return;
157 }
158
159 const Value *V = (*MI->memoperands_begin())->getValue();
160 if (!V)
161 return;
162
163 SmallVector<Value *, 4> Objs;
164 getUnderlyingObjects(V, Objs, DL);
165
166 for (Value *V : Objs) {
167 if (!isIdentifiedObject(V)) {
168 Objects.clear();
169 return;
170 }
171
172 Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
173 }
174 }
175
startBlock(MachineBasicBlock * bb)176 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
177 BB = bb;
178 }
179
finishBlock()180 void ScheduleDAGInstrs::finishBlock() {
181 // Subclasses should no longer refer to the old block.
182 BB = nullptr;
183 }
184
185 /// Initialize the DAG and common scheduler state for the current scheduling
186 /// region. This does not actually create the DAG, only clears it. The
187 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
188 /// region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190 MachineBasicBlock::iterator begin,
191 MachineBasicBlock::iterator end,
192 unsigned regioninstrs) {
193 assert(bb == BB && "startBlock should set BB");
194 RegionBegin = begin;
195 RegionEnd = end;
196 NumRegionInstrs = regioninstrs;
197 }
198
199 /// Close the current scheduling region. Don't clear any state in case the
200 /// driver wants to refer to the previous scheduling region.
exitRegion()201 void ScheduleDAGInstrs::exitRegion() {
202 // Nothing to do.
203 }
204
205 /// addSchedBarrierDeps - Add dependencies from instructions in the current
206 /// list of instructions being scheduled to scheduling barrier by adding
207 /// the exit SU to the register defs and use list. This is because we want to
208 /// make sure instructions which define registers that are either used by
209 /// the terminator or are live-out are properly scheduled. This is
210 /// especially important when the definition latency of the return value(s)
211 /// are too high to be hidden by the branch or when the liveout registers
212 /// used by instructions in the fallthrough block.
addSchedBarrierDeps()213 void ScheduleDAGInstrs::addSchedBarrierDeps() {
214 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
215 ExitSU.setInstr(ExitMI);
216 bool AllDepKnown = ExitMI &&
217 (ExitMI->isCall() || ExitMI->isBarrier());
218 if (ExitMI && AllDepKnown) {
219 // If it's a call or a barrier, add dependencies on the defs and uses of
220 // instruction.
221 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
222 const MachineOperand &MO = ExitMI->getOperand(i);
223 if (!MO.isReg() || MO.isDef()) continue;
224 unsigned Reg = MO.getReg();
225 if (Reg == 0) continue;
226
227 if (TRI->isPhysicalRegister(Reg))
228 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
229 else if (MO.readsReg()) // ignore undef operands
230 addVRegUseDeps(&ExitSU, i);
231 }
232 } else {
233 // For others, e.g. fallthrough, conditional branch, assume the exit
234 // uses all the registers that are livein to the successor blocks.
235 assert(Uses.empty() && "Uses in set before adding deps?");
236 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
237 SE = BB->succ_end(); SI != SE; ++SI)
238 for (const auto &LI : (*SI)->liveins()) {
239 if (!Uses.contains(LI.PhysReg))
240 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
241 }
242 }
243 }
244
245 /// MO is an operand of SU's instruction that defines a physical register. Add
246 /// data dependencies from SU to any uses of the physical register.
addPhysRegDataDeps(SUnit * SU,unsigned OperIdx)247 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
248 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
249 assert(MO.isDef() && "expect physreg def");
250
251 // Ask the target if address-backscheduling is desirable, and if so how much.
252 const TargetSubtargetInfo &ST = MF.getSubtarget();
253
254 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
255 Alias.isValid(); ++Alias) {
256 if (!Uses.contains(*Alias))
257 continue;
258 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
259 SUnit *UseSU = I->SU;
260 if (UseSU == SU)
261 continue;
262
263 // Adjust the dependence latency using operand def/use information,
264 // then allow the target to perform its own adjustments.
265 int UseOp = I->OpIdx;
266 MachineInstr *RegUse = nullptr;
267 SDep Dep;
268 if (UseOp < 0)
269 Dep = SDep(SU, SDep::Artificial);
270 else {
271 // Set the hasPhysRegDefs only for physreg defs that have a use within
272 // the scheduling region.
273 SU->hasPhysRegDefs = true;
274 Dep = SDep(SU, SDep::Data, *Alias);
275 RegUse = UseSU->getInstr();
276 }
277 Dep.setLatency(
278 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
279 UseOp));
280
281 ST.adjustSchedDependency(SU, UseSU, Dep);
282 UseSU->addPred(Dep);
283 }
284 }
285 }
286
287 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
288 /// this SUnit to following instructions in the same scheduling region that
289 /// depend the physical register referenced at OperIdx.
addPhysRegDeps(SUnit * SU,unsigned OperIdx)290 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
291 MachineInstr *MI = SU->getInstr();
292 MachineOperand &MO = MI->getOperand(OperIdx);
293
294 // Optionally add output and anti dependencies. For anti
295 // dependencies we use a latency of 0 because for a multi-issue
296 // target we want to allow the defining instruction to issue
297 // in the same cycle as the using instruction.
298 // TODO: Using a latency of 1 here for output dependencies assumes
299 // there's no cost for reusing registers.
300 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
301 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
302 Alias.isValid(); ++Alias) {
303 if (!Defs.contains(*Alias))
304 continue;
305 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
306 SUnit *DefSU = I->SU;
307 if (DefSU == &ExitSU)
308 continue;
309 if (DefSU != SU &&
310 (Kind != SDep::Output || !MO.isDead() ||
311 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
312 if (Kind == SDep::Anti)
313 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
314 else {
315 SDep Dep(SU, Kind, /*Reg=*/*Alias);
316 Dep.setLatency(
317 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
318 DefSU->addPred(Dep);
319 }
320 }
321 }
322 }
323
324 if (!MO.isDef()) {
325 SU->hasPhysRegUses = true;
326 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
327 // retrieve the existing SUnits list for this register's uses.
328 // Push this SUnit on the use list.
329 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
330 if (RemoveKillFlags)
331 MO.setIsKill(false);
332 }
333 else {
334 addPhysRegDataDeps(SU, OperIdx);
335 unsigned Reg = MO.getReg();
336
337 // clear this register's use list
338 if (Uses.contains(Reg))
339 Uses.eraseAll(Reg);
340
341 if (!MO.isDead()) {
342 Defs.eraseAll(Reg);
343 } else if (SU->isCall) {
344 // Calls will not be reordered because of chain dependencies (see
345 // below). Since call operands are dead, calls may continue to be added
346 // to the DefList making dependence checking quadratic in the size of
347 // the block. Instead, we leave only one call at the back of the
348 // DefList.
349 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
350 Reg2SUnitsMap::iterator B = P.first;
351 Reg2SUnitsMap::iterator I = P.second;
352 for (bool isBegin = I == B; !isBegin; /* empty */) {
353 isBegin = (--I) == B;
354 if (!I->SU->isCall)
355 break;
356 I = Defs.erase(I);
357 }
358 }
359
360 // Defs are pushed in the order they are visited and never reordered.
361 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
362 }
363 }
364
getLaneMaskForMO(const MachineOperand & MO) const365 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
366 {
367 unsigned Reg = MO.getReg();
368 // No point in tracking lanemasks if we don't have interesting subregisters.
369 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
370 if (!RC.HasDisjunctSubRegs)
371 return ~0u;
372
373 unsigned SubReg = MO.getSubReg();
374 if (SubReg == 0)
375 return RC.getLaneMask();
376 return TRI->getSubRegIndexLaneMask(SubReg);
377 }
378
379 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
380 /// to instructions that occur later in the same scheduling region if they read
381 /// from or write to the virtual register defined at OperIdx.
382 ///
383 /// TODO: Hoist loop induction variable increments. This has to be
384 /// reevaluated. Generally, IV scheduling should be done before coalescing.
addVRegDefDeps(SUnit * SU,unsigned OperIdx)385 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
386 MachineInstr *MI = SU->getInstr();
387 MachineOperand &MO = MI->getOperand(OperIdx);
388 unsigned Reg = MO.getReg();
389
390 LaneBitmask DefLaneMask;
391 LaneBitmask KillLaneMask;
392 if (TrackLaneMasks) {
393 bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
394 DefLaneMask = getLaneMaskForMO(MO);
395 // If we have a <read-undef> flag, none of the lane values comes from an
396 // earlier instruction.
397 KillLaneMask = IsKill ? ~0u : DefLaneMask;
398
399 // Clear undef flag, we'll re-add it later once we know which subregister
400 // Def is first.
401 MO.setIsUndef(false);
402 } else {
403 DefLaneMask = ~0u;
404 KillLaneMask = ~0u;
405 }
406
407 if (MO.isDead()) {
408 assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
409 "Dead defs should have no uses");
410 } else {
411 // Add data dependence to all uses we found so far.
412 const TargetSubtargetInfo &ST = MF.getSubtarget();
413 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
414 E = CurrentVRegUses.end(); I != E; /*empty*/) {
415 LaneBitmask LaneMask = I->LaneMask;
416 // Ignore uses of other lanes.
417 if ((LaneMask & KillLaneMask) == 0) {
418 ++I;
419 continue;
420 }
421
422 if ((LaneMask & DefLaneMask) != 0) {
423 SUnit *UseSU = I->SU;
424 MachineInstr *Use = UseSU->getInstr();
425 SDep Dep(SU, SDep::Data, Reg);
426 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
427 I->OperandIndex));
428 ST.adjustSchedDependency(SU, UseSU, Dep);
429 UseSU->addPred(Dep);
430 }
431
432 LaneMask &= ~KillLaneMask;
433 // If we found a Def for all lanes of this use, remove it from the list.
434 if (LaneMask != 0) {
435 I->LaneMask = LaneMask;
436 ++I;
437 } else
438 I = CurrentVRegUses.erase(I);
439 }
440 }
441
442 // Shortcut: Singly defined vregs do not have output/anti dependencies.
443 if (MRI.hasOneDef(Reg))
444 return;
445
446 // Add output dependence to the next nearest defs of this vreg.
447 //
448 // Unless this definition is dead, the output dependence should be
449 // transitively redundant with antidependencies from this definition's
450 // uses. We're conservative for now until we have a way to guarantee the uses
451 // are not eliminated sometime during scheduling. The output dependence edge
452 // is also useful if output latency exceeds def-use latency.
453 LaneBitmask LaneMask = DefLaneMask;
454 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
455 CurrentVRegDefs.end())) {
456 // Ignore defs for other lanes.
457 if ((V2SU.LaneMask & LaneMask) == 0)
458 continue;
459 // Add an output dependence.
460 SUnit *DefSU = V2SU.SU;
461 // Ignore additional defs of the same lanes in one instruction. This can
462 // happen because lanemasks are shared for targets with too many
463 // subregisters. We also use some representration tricks/hacks where we
464 // add super-register defs/uses, to imply that although we only access parts
465 // of the reg we care about the full one.
466 if (DefSU == SU)
467 continue;
468 SDep Dep(SU, SDep::Output, Reg);
469 Dep.setLatency(
470 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
471 DefSU->addPred(Dep);
472
473 // Update current definition. This can get tricky if the def was about a
474 // bigger lanemask before. We then have to shrink it and create a new
475 // VReg2SUnit for the non-overlapping part.
476 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
477 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
478 if (NonOverlapMask != 0)
479 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU));
480 V2SU.SU = SU;
481 V2SU.LaneMask = OverlapMask;
482 }
483 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
484 if (LaneMask != 0)
485 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
486 }
487
488 /// addVRegUseDeps - Add a register data dependency if the instruction that
489 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
490 /// register antidependency from this SUnit to instructions that occur later in
491 /// the same scheduling region if they write the virtual register.
492 ///
493 /// TODO: Handle ExitSU "uses" properly.
addVRegUseDeps(SUnit * SU,unsigned OperIdx)494 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
495 const MachineInstr *MI = SU->getInstr();
496 const MachineOperand &MO = MI->getOperand(OperIdx);
497 unsigned Reg = MO.getReg();
498
499 // Remember the use. Data dependencies will be added when we find the def.
500 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
501 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
502
503 // Add antidependences to the following defs of the vreg.
504 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
505 CurrentVRegDefs.end())) {
506 // Ignore defs for unrelated lanes.
507 LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
508 if ((PrevDefLaneMask & LaneMask) == 0)
509 continue;
510 if (V2SU.SU == SU)
511 continue;
512
513 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
514 }
515 }
516
517 /// Return true if MI is an instruction we are unable to reason about
518 /// (like a call or something with unmodeled side effects).
isGlobalMemoryObject(AliasAnalysis * AA,MachineInstr * MI)519 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
520 return MI->isCall() || MI->hasUnmodeledSideEffects() ||
521 (MI->hasOrderedMemoryRef() &&
522 (!MI->mayLoad() || !MI->isInvariantLoad(AA)));
523 }
524
525 // This MI might have either incomplete info, or known to be unsafe
526 // to deal with (i.e. volatile object).
isUnsafeMemoryObject(MachineInstr * MI,const MachineFrameInfo * MFI,const DataLayout & DL)527 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
528 const MachineFrameInfo *MFI,
529 const DataLayout &DL) {
530 if (!MI || MI->memoperands_empty())
531 return true;
532 // We purposefully do no check for hasOneMemOperand() here
533 // in hope to trigger an assert downstream in order to
534 // finish implementation.
535 if ((*MI->memoperands_begin())->isVolatile() ||
536 MI->hasUnmodeledSideEffects())
537 return true;
538
539 if ((*MI->memoperands_begin())->getPseudoValue()) {
540 // Similarly to getUnderlyingObjectForInstr:
541 // For now, ignore PseudoSourceValues which may alias LLVM IR values
542 // because the code that uses this function has no way to cope with
543 // such aliases.
544 return true;
545 }
546
547 const Value *V = (*MI->memoperands_begin())->getValue();
548 if (!V)
549 return true;
550
551 SmallVector<Value *, 4> Objs;
552 getUnderlyingObjects(V, Objs, DL);
553 for (Value *V : Objs) {
554 // Does this pointer refer to a distinct and identifiable object?
555 if (!isIdentifiedObject(V))
556 return true;
557 }
558
559 return false;
560 }
561
562 /// This returns true if the two MIs need a chain edge between them.
563 /// If these are not even memory operations, we still may need
564 /// chain deps between them. The question really is - could
565 /// these two MIs be reordered during scheduling from memory dependency
566 /// point of view.
MIsNeedChainEdge(AliasAnalysis * AA,const MachineFrameInfo * MFI,const DataLayout & DL,MachineInstr * MIa,MachineInstr * MIb)567 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
568 const DataLayout &DL, MachineInstr *MIa,
569 MachineInstr *MIb) {
570 const MachineFunction *MF = MIa->getParent()->getParent();
571 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
572
573 // Cover a trivial case - no edge is need to itself.
574 if (MIa == MIb)
575 return false;
576
577 // Let the target decide if memory accesses cannot possibly overlap.
578 if ((MIa->mayLoad() || MIa->mayStore()) &&
579 (MIb->mayLoad() || MIb->mayStore()))
580 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
581 return false;
582
583 // FIXME: Need to handle multiple memory operands to support all targets.
584 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
585 return true;
586
587 if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL))
588 return true;
589
590 // If we are dealing with two "normal" loads, we do not need an edge
591 // between them - they could be reordered.
592 if (!MIa->mayStore() && !MIb->mayStore())
593 return false;
594
595 // To this point analysis is generic. From here on we do need AA.
596 if (!AA)
597 return true;
598
599 MachineMemOperand *MMOa = *MIa->memoperands_begin();
600 MachineMemOperand *MMOb = *MIb->memoperands_begin();
601
602 if (!MMOa->getValue() || !MMOb->getValue())
603 return true;
604
605 // The following interface to AA is fashioned after DAGCombiner::isAlias
606 // and operates with MachineMemOperand offset with some important
607 // assumptions:
608 // - LLVM fundamentally assumes flat address spaces.
609 // - MachineOperand offset can *only* result from legalization and
610 // cannot affect queries other than the trivial case of overlap
611 // checking.
612 // - These offsets never wrap and never step outside
613 // of allocated objects.
614 // - There should never be any negative offsets here.
615 //
616 // FIXME: Modify API to hide this math from "user"
617 // FIXME: Even before we go to AA we can reason locally about some
618 // memory objects. It can save compile time, and possibly catch some
619 // corner cases not currently covered.
620
621 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
622 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
623
624 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
625 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
626 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
627
628 AliasResult AAResult =
629 AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
630 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
631 MemoryLocation(MMOb->getValue(), Overlapb,
632 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
633
634 return (AAResult != NoAlias);
635 }
636
637 /// This recursive function iterates over chain deps of SUb looking for
638 /// "latest" node that needs a chain edge to SUa.
iterateChainSucc(AliasAnalysis * AA,const MachineFrameInfo * MFI,const DataLayout & DL,SUnit * SUa,SUnit * SUb,SUnit * ExitSU,unsigned * Depth,SmallPtrSetImpl<const SUnit * > & Visited)639 static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
640 const DataLayout &DL, SUnit *SUa, SUnit *SUb,
641 SUnit *ExitSU, unsigned *Depth,
642 SmallPtrSetImpl<const SUnit *> &Visited) {
643 if (!SUa || !SUb || SUb == ExitSU)
644 return *Depth;
645
646 // Remember visited nodes.
647 if (!Visited.insert(SUb).second)
648 return *Depth;
649 // If there is _some_ dependency already in place, do not
650 // descend any further.
651 // TODO: Need to make sure that if that dependency got eliminated or ignored
652 // for any reason in the future, we would not violate DAG topology.
653 // Currently it does not happen, but makes an implicit assumption about
654 // future implementation.
655 //
656 // Independently, if we encounter node that is some sort of global
657 // object (like a call) we already have full set of dependencies to it
658 // and we can stop descending.
659 if (SUa->isSucc(SUb) ||
660 isGlobalMemoryObject(AA, SUb->getInstr()))
661 return *Depth;
662
663 // If we do need an edge, or we have exceeded depth budget,
664 // add that edge to the predecessors chain of SUb,
665 // and stop descending.
666 if (*Depth > 200 ||
667 MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
668 SUb->addPred(SDep(SUa, SDep::MayAliasMem));
669 return *Depth;
670 }
671 // Track current depth.
672 (*Depth)++;
673 // Iterate over memory dependencies only.
674 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
675 I != E; ++I)
676 if (I->isNormalMemoryOrBarrier())
677 iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited);
678 return *Depth;
679 }
680
681 /// This function assumes that "downward" from SU there exist
682 /// tail/leaf of already constructed DAG. It iterates downward and
683 /// checks whether SU can be aliasing any node dominated
684 /// by it.
adjustChainDeps(AliasAnalysis * AA,const MachineFrameInfo * MFI,const DataLayout & DL,SUnit * SU,SUnit * ExitSU,std::set<SUnit * > & CheckList,unsigned LatencyToLoad)685 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
686 const DataLayout &DL, SUnit *SU, SUnit *ExitSU,
687 std::set<SUnit *> &CheckList,
688 unsigned LatencyToLoad) {
689 if (!SU)
690 return;
691
692 SmallPtrSet<const SUnit*, 16> Visited;
693 unsigned Depth = 0;
694
695 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
696 I != IE; ++I) {
697 if (SU == *I)
698 continue;
699 if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) {
700 SDep Dep(SU, SDep::MayAliasMem);
701 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
702 (*I)->addPred(Dep);
703 }
704
705 // Iterate recursively over all previously added memory chain
706 // successors. Keep track of visited nodes.
707 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
708 JE = (*I)->Succs.end(); J != JE; ++J)
709 if (J->isNormalMemoryOrBarrier())
710 iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth,
711 Visited);
712 }
713 }
714
715 /// Check whether two objects need a chain edge, if so, add it
716 /// otherwise remember the rejected SU.
addChainDependency(AliasAnalysis * AA,const MachineFrameInfo * MFI,const DataLayout & DL,SUnit * SUa,SUnit * SUb,std::set<SUnit * > & RejectList,unsigned TrueMemOrderLatency=0,bool isNormalMemory=false)717 static inline void addChainDependency(AliasAnalysis *AA,
718 const MachineFrameInfo *MFI,
719 const DataLayout &DL, SUnit *SUa,
720 SUnit *SUb, std::set<SUnit *> &RejectList,
721 unsigned TrueMemOrderLatency = 0,
722 bool isNormalMemory = false) {
723 // If this is a false dependency,
724 // do not add the edge, but remember the rejected node.
725 if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
726 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
727 Dep.setLatency(TrueMemOrderLatency);
728 SUb->addPred(Dep);
729 }
730 else {
731 // Duplicate entries should be ignored.
732 RejectList.insert(SUb);
733 DEBUG(dbgs() << "\tReject chain dep between SU("
734 << SUa->NodeNum << ") and SU("
735 << SUb->NodeNum << ")\n");
736 }
737 }
738
739 /// Create an SUnit for each real instruction, numbered in top-down topological
740 /// order. The instruction order A < B, implies that no edge exists from B to A.
741 ///
742 /// Map each real instruction to its SUnit.
743 ///
744 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
745 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
746 /// instead of pointers.
747 ///
748 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
749 /// the original instruction list.
initSUnits()750 void ScheduleDAGInstrs::initSUnits() {
751 // We'll be allocating one SUnit for each real instruction in the region,
752 // which is contained within a basic block.
753 SUnits.reserve(NumRegionInstrs);
754
755 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
756 MachineInstr *MI = I;
757 if (MI->isDebugValue())
758 continue;
759
760 SUnit *SU = newSUnit(MI);
761 MISUnitMap[MI] = SU;
762
763 SU->isCall = MI->isCall();
764 SU->isCommutable = MI->isCommutable();
765
766 // Assign the Latency field of SU using target-provided information.
767 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
768
769 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
770 //
771 // Reserved resources block an instruction from issuing and stall the
772 // entire pipeline. These are identified by BufferSize=0.
773 //
774 // Unbuffered resources prevent execution of subsequent instructions that
775 // require the same resources. This is used for in-order execution pipelines
776 // within an out-of-order core. These are identified by BufferSize=1.
777 if (SchedModel.hasInstrSchedModel()) {
778 const MCSchedClassDesc *SC = getSchedClass(SU);
779 for (TargetSchedModel::ProcResIter
780 PI = SchedModel.getWriteProcResBegin(SC),
781 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
782 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
783 case 0:
784 SU->hasReservedResource = true;
785 break;
786 case 1:
787 SU->isUnbuffered = true;
788 break;
789 default:
790 break;
791 }
792 }
793 }
794 }
795 }
796
collectVRegUses(SUnit * SU)797 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
798 const MachineInstr *MI = SU->getInstr();
799 for (const MachineOperand &MO : MI->operands()) {
800 if (!MO.isReg())
801 continue;
802 if (!MO.readsReg())
803 continue;
804 if (TrackLaneMasks && !MO.isUse())
805 continue;
806
807 unsigned Reg = MO.getReg();
808 if (!TargetRegisterInfo::isVirtualRegister(Reg))
809 continue;
810
811 // Record this local VReg use.
812 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
813 for (; UI != VRegUses.end(); ++UI) {
814 if (UI->SU == SU)
815 break;
816 }
817 if (UI == VRegUses.end())
818 VRegUses.insert(VReg2SUnit(Reg, 0, SU));
819 }
820 }
821
822 /// If RegPressure is non-null, compute register pressure as a side effect. The
823 /// DAG builder is an efficient place to do it because it already visits
824 /// operands.
buildSchedGraph(AliasAnalysis * AA,RegPressureTracker * RPTracker,PressureDiffs * PDiffs,bool TrackLaneMasks)825 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
826 RegPressureTracker *RPTracker,
827 PressureDiffs *PDiffs,
828 bool TrackLaneMasks) {
829 const TargetSubtargetInfo &ST = MF.getSubtarget();
830 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
831 : ST.useAA();
832 AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
833
834 this->TrackLaneMasks = TrackLaneMasks;
835 MISUnitMap.clear();
836 ScheduleDAG::clearDAG();
837
838 // Create an SUnit for each real instruction.
839 initSUnits();
840
841 if (PDiffs)
842 PDiffs->init(SUnits.size());
843
844 // We build scheduling units by walking a block's instruction list from bottom
845 // to top.
846
847 // Remember where a generic side-effecting instruction is as we proceed.
848 SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
849
850 // Memory references to specific known memory locations are tracked
851 // so that they can be given more precise dependencies. We track
852 // separately the known memory locations that may alias and those
853 // that are known not to alias
854 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
855 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
856 std::set<SUnit*> RejectMemNodes;
857
858 // Remove any stale debug info; sometimes BuildSchedGraph is called again
859 // without emitting the info from the previous call.
860 DbgValues.clear();
861 FirstDbgValue = nullptr;
862
863 assert(Defs.empty() && Uses.empty() &&
864 "Only BuildGraph should update Defs/Uses");
865 Defs.setUniverse(TRI->getNumRegs());
866 Uses.setUniverse(TRI->getNumRegs());
867
868 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
869 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
870 unsigned NumVirtRegs = MRI.getNumVirtRegs();
871 CurrentVRegDefs.setUniverse(NumVirtRegs);
872 CurrentVRegUses.setUniverse(NumVirtRegs);
873
874 VRegUses.clear();
875 VRegUses.setUniverse(NumVirtRegs);
876
877 // Model data dependencies between instructions being scheduled and the
878 // ExitSU.
879 addSchedBarrierDeps();
880
881 // Walk the list of instructions, from bottom moving up.
882 MachineInstr *DbgMI = nullptr;
883 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
884 MII != MIE; --MII) {
885 MachineInstr *MI = std::prev(MII);
886 if (MI && DbgMI) {
887 DbgValues.push_back(std::make_pair(DbgMI, MI));
888 DbgMI = nullptr;
889 }
890
891 if (MI->isDebugValue()) {
892 DbgMI = MI;
893 continue;
894 }
895 SUnit *SU = MISUnitMap[MI];
896 assert(SU && "No SUnit mapped to this MI");
897
898 if (RPTracker) {
899 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
900 RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
901 assert(RPTracker->getPos() == std::prev(MII) &&
902 "RPTracker can't find MI");
903 collectVRegUses(SU);
904 }
905
906 assert(
907 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
908 "Cannot schedule terminators or labels!");
909
910 // Add register-based dependencies (data, anti, and output).
911 bool HasVRegDef = false;
912 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
913 const MachineOperand &MO = MI->getOperand(j);
914 if (!MO.isReg()) continue;
915 unsigned Reg = MO.getReg();
916 if (Reg == 0) continue;
917
918 if (TRI->isPhysicalRegister(Reg))
919 addPhysRegDeps(SU, j);
920 else {
921 if (MO.isDef()) {
922 HasVRegDef = true;
923 addVRegDefDeps(SU, j);
924 }
925 else if (MO.readsReg()) // ignore undef operands
926 addVRegUseDeps(SU, j);
927 }
928 }
929 // If we haven't seen any uses in this scheduling region, create a
930 // dependence edge to ExitSU to model the live-out latency. This is required
931 // for vreg defs with no in-region use, and prefetches with no vreg def.
932 //
933 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
934 // check currently relies on being called before adding chain deps.
935 if (SU->NumSuccs == 0 && SU->Latency > 1
936 && (HasVRegDef || MI->mayLoad())) {
937 SDep Dep(SU, SDep::Artificial);
938 Dep.setLatency(SU->Latency - 1);
939 ExitSU.addPred(Dep);
940 }
941
942 // Add chain dependencies.
943 // Chain dependencies used to enforce memory order should have
944 // latency of 0 (except for true dependency of Store followed by
945 // aliased Load... we estimate that with a single cycle of latency
946 // assuming the hardware will bypass)
947 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
948 // after stack slots are lowered to actual addresses.
949 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
950 // produce more precise dependence information.
951 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
952 if (isGlobalMemoryObject(AA, MI)) {
953 // Be conservative with these and add dependencies on all memory
954 // references, even those that are known to not alias.
955 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
956 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
957 for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
958 I->second[i]->addPred(SDep(SU, SDep::Barrier));
959 }
960 }
961 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
962 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
963 for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
964 SDep Dep(SU, SDep::Barrier);
965 Dep.setLatency(TrueMemOrderLatency);
966 I->second[i]->addPred(Dep);
967 }
968 }
969 // Add SU to the barrier chain.
970 if (BarrierChain)
971 BarrierChain->addPred(SDep(SU, SDep::Barrier));
972 BarrierChain = SU;
973 // This is a barrier event that acts as a pivotal node in the DAG,
974 // so it is safe to clear list of exposed nodes.
975 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
976 TrueMemOrderLatency);
977 RejectMemNodes.clear();
978 NonAliasMemDefs.clear();
979 NonAliasMemUses.clear();
980
981 // fall-through
982 new_alias_chain:
983 // Chain all possibly aliasing memory references through SU.
984 if (AliasChain) {
985 unsigned ChainLatency = 0;
986 if (AliasChain->getInstr()->mayLoad())
987 ChainLatency = TrueMemOrderLatency;
988 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
989 RejectMemNodes, ChainLatency);
990 }
991 AliasChain = SU;
992 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
993 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
994 PendingLoads[k], RejectMemNodes,
995 TrueMemOrderLatency);
996 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
997 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
998 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
999 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1000 I->second[i], RejectMemNodes);
1001 }
1002 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1003 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
1004 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1005 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1006 I->second[i], RejectMemNodes, TrueMemOrderLatency);
1007 }
1008 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1009 TrueMemOrderLatency);
1010 PendingLoads.clear();
1011 AliasMemDefs.clear();
1012 AliasMemUses.clear();
1013 } else if (MI->mayStore()) {
1014 // Add dependence on barrier chain, if needed.
1015 // There is no point to check aliasing on barrier event. Even if
1016 // SU and barrier _could_ be reordered, they should not. In addition,
1017 // we have lost all RejectMemNodes below barrier.
1018 if (BarrierChain)
1019 BarrierChain->addPred(SDep(SU, SDep::Barrier));
1020
1021 UnderlyingObjectsVector Objs;
1022 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1023
1024 if (Objs.empty()) {
1025 // Treat all other stores conservatively.
1026 goto new_alias_chain;
1027 }
1028
1029 bool MayAlias = false;
1030 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
1031 K != KE; ++K) {
1032 ValueType V = K->getPointer();
1033 bool ThisMayAlias = K->getInt();
1034 if (ThisMayAlias)
1035 MayAlias = true;
1036
1037 // A store to a specific PseudoSourceValue. Add precise dependencies.
1038 // Record the def in MemDefs, first adding a dep if there is
1039 // an existing def.
1040 MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1041 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1042 MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1043 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1044 if (I != IE) {
1045 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1046 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1047 I->second[i], RejectMemNodes, 0, true);
1048
1049 // If we're not using AA, then we only need one store per object.
1050 if (!AAForDep)
1051 I->second.clear();
1052 I->second.push_back(SU);
1053 } else {
1054 if (ThisMayAlias) {
1055 if (!AAForDep)
1056 AliasMemDefs[V].clear();
1057 AliasMemDefs[V].push_back(SU);
1058 } else {
1059 if (!AAForDep)
1060 NonAliasMemDefs[V].clear();
1061 NonAliasMemDefs[V].push_back(SU);
1062 }
1063 }
1064 // Handle the uses in MemUses, if there are any.
1065 MapVector<ValueType, std::vector<SUnit *> >::iterator J =
1066 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
1067 MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
1068 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
1069 if (J != JE) {
1070 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
1071 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1072 J->second[i], RejectMemNodes,
1073 TrueMemOrderLatency, true);
1074 J->second.clear();
1075 }
1076 }
1077 if (MayAlias) {
1078 // Add dependencies from all the PendingLoads, i.e. loads
1079 // with no underlying object.
1080 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
1081 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1082 PendingLoads[k], RejectMemNodes,
1083 TrueMemOrderLatency);
1084 // Add dependence on alias chain, if needed.
1085 if (AliasChain)
1086 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1087 RejectMemNodes);
1088 }
1089 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1090 TrueMemOrderLatency);
1091 } else if (MI->mayLoad()) {
1092 bool MayAlias = true;
1093 if (MI->isInvariantLoad(AA)) {
1094 // Invariant load, no chain dependencies needed!
1095 } else {
1096 UnderlyingObjectsVector Objs;
1097 getUnderlyingObjectsForInstr(MI, MFI, Objs, MF.getDataLayout());
1098
1099 if (Objs.empty()) {
1100 // A load with no underlying object. Depend on all
1101 // potentially aliasing stores.
1102 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1103 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
1104 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1105 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1106 I->second[i], RejectMemNodes);
1107
1108 PendingLoads.push_back(SU);
1109 MayAlias = true;
1110 } else {
1111 MayAlias = false;
1112 }
1113
1114 for (UnderlyingObjectsVector::iterator
1115 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
1116 ValueType V = J->getPointer();
1117 bool ThisMayAlias = J->getInt();
1118
1119 if (ThisMayAlias)
1120 MayAlias = true;
1121
1122 // A load from a specific PseudoSourceValue. Add precise dependencies.
1123 MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1124 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1125 MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1126 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1127 if (I != IE)
1128 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1129 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU,
1130 I->second[i], RejectMemNodes, 0, true);
1131 if (ThisMayAlias)
1132 AliasMemUses[V].push_back(SU);
1133 else
1134 NonAliasMemUses[V].push_back(SU);
1135 }
1136 if (MayAlias)
1137 adjustChainDeps(AA, MFI, MF.getDataLayout(), SU, &ExitSU,
1138 RejectMemNodes, /*Latency=*/0);
1139 // Add dependencies on alias and barrier chains, if needed.
1140 if (MayAlias && AliasChain)
1141 addChainDependency(AAForDep, MFI, MF.getDataLayout(), SU, AliasChain,
1142 RejectMemNodes);
1143 if (BarrierChain)
1144 BarrierChain->addPred(SDep(SU, SDep::Barrier));
1145 }
1146 }
1147 }
1148 if (DbgMI)
1149 FirstDbgValue = DbgMI;
1150
1151 Defs.clear();
1152 Uses.clear();
1153 CurrentVRegDefs.clear();
1154 CurrentVRegUses.clear();
1155 PendingLoads.clear();
1156 }
1157
1158 /// \brief Initialize register live-range state for updating kills.
startBlockForKills(MachineBasicBlock * BB)1159 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1160 // Start with no live registers.
1161 LiveRegs.reset();
1162
1163 // Examine the live-in regs of all successors.
1164 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1165 SE = BB->succ_end(); SI != SE; ++SI) {
1166 for (const auto &LI : (*SI)->liveins()) {
1167 // Repeat, for reg and all subregs.
1168 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
1169 SubRegs.isValid(); ++SubRegs)
1170 LiveRegs.set(*SubRegs);
1171 }
1172 }
1173 }
1174
1175 /// \brief If we change a kill flag on the bundle instruction implicit register
1176 /// operands, then we also need to propagate that to any instructions inside
1177 /// the bundle which had the same kill state.
toggleBundleKillFlag(MachineInstr * MI,unsigned Reg,bool NewKillState)1178 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
1179 bool NewKillState) {
1180 if (MI->getOpcode() != TargetOpcode::BUNDLE)
1181 return;
1182
1183 // Walk backwards from the last instruction in the bundle to the first.
1184 // Once we set a kill flag on an instruction, we bail out, as otherwise we
1185 // might set it on too many operands. We will clear as many flags as we
1186 // can though.
1187 MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1188 MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1189 while (Begin != End) {
1190 for (MachineOperand &MO : (--End)->operands()) {
1191 if (!MO.isReg() || MO.isDef() || Reg != MO.getReg())
1192 continue;
1193
1194 // DEBUG_VALUE nodes do not contribute to code generation and should
1195 // always be ignored. Failure to do so may result in trying to modify
1196 // KILL flags on DEBUG_VALUE nodes, which is distressing.
1197 if (MO.isDebug())
1198 continue;
1199
1200 // If the register has the internal flag then it could be killing an
1201 // internal def of the register. In this case, just skip. We only want
1202 // to toggle the flag on operands visible outside the bundle.
1203 if (MO.isInternalRead())
1204 continue;
1205
1206 if (MO.isKill() == NewKillState)
1207 continue;
1208 MO.setIsKill(NewKillState);
1209 if (NewKillState)
1210 return;
1211 }
1212 }
1213 }
1214
toggleKillFlag(MachineInstr * MI,MachineOperand & MO)1215 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1216 // Setting kill flag...
1217 if (!MO.isKill()) {
1218 MO.setIsKill(true);
1219 toggleBundleKillFlag(MI, MO.getReg(), true);
1220 return false;
1221 }
1222
1223 // If MO itself is live, clear the kill flag...
1224 if (LiveRegs.test(MO.getReg())) {
1225 MO.setIsKill(false);
1226 toggleBundleKillFlag(MI, MO.getReg(), false);
1227 return false;
1228 }
1229
1230 // If any subreg of MO is live, then create an imp-def for that
1231 // subreg and keep MO marked as killed.
1232 MO.setIsKill(false);
1233 toggleBundleKillFlag(MI, MO.getReg(), false);
1234 bool AllDead = true;
1235 const unsigned SuperReg = MO.getReg();
1236 MachineInstrBuilder MIB(MF, MI);
1237 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1238 if (LiveRegs.test(*SubRegs)) {
1239 MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1240 AllDead = false;
1241 }
1242 }
1243
1244 if(AllDead) {
1245 MO.setIsKill(true);
1246 toggleBundleKillFlag(MI, MO.getReg(), true);
1247 }
1248 return false;
1249 }
1250
1251 // FIXME: Reuse the LivePhysRegs utility for this.
fixupKills(MachineBasicBlock * MBB)1252 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1253 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1254
1255 LiveRegs.resize(TRI->getNumRegs());
1256 BitVector killedRegs(TRI->getNumRegs());
1257
1258 startBlockForKills(MBB);
1259
1260 // Examine block from end to start...
1261 unsigned Count = MBB->size();
1262 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1263 I != E; --Count) {
1264 MachineInstr *MI = --I;
1265 if (MI->isDebugValue())
1266 continue;
1267
1268 // Update liveness. Registers that are defed but not used in this
1269 // instruction are now dead. Mark register and all subregs as they
1270 // are completely defined.
1271 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1272 MachineOperand &MO = MI->getOperand(i);
1273 if (MO.isRegMask())
1274 LiveRegs.clearBitsNotInMask(MO.getRegMask());
1275 if (!MO.isReg()) continue;
1276 unsigned Reg = MO.getReg();
1277 if (Reg == 0) continue;
1278 if (!MO.isDef()) continue;
1279 // Ignore two-addr defs.
1280 if (MI->isRegTiedToUseOperand(i)) continue;
1281
1282 // Repeat for reg and all subregs.
1283 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1284 SubRegs.isValid(); ++SubRegs)
1285 LiveRegs.reset(*SubRegs);
1286 }
1287
1288 // Examine all used registers and set/clear kill flag. When a
1289 // register is used multiple times we only set the kill flag on
1290 // the first use. Don't set kill flags on undef operands.
1291 killedRegs.reset();
1292 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1293 MachineOperand &MO = MI->getOperand(i);
1294 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1295 unsigned Reg = MO.getReg();
1296 if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1297
1298 bool kill = false;
1299 if (!killedRegs.test(Reg)) {
1300 kill = true;
1301 // A register is not killed if any subregs are live...
1302 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1303 if (LiveRegs.test(*SubRegs)) {
1304 kill = false;
1305 break;
1306 }
1307 }
1308
1309 // If subreg is not live, then register is killed if it became
1310 // live in this instruction
1311 if (kill)
1312 kill = !LiveRegs.test(Reg);
1313 }
1314
1315 if (MO.isKill() != kill) {
1316 DEBUG(dbgs() << "Fixing " << MO << " in ");
1317 // Warning: toggleKillFlag may invalidate MO.
1318 toggleKillFlag(MI, MO);
1319 DEBUG(MI->dump());
1320 DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) {
1321 MachineBasicBlock::instr_iterator Begin = MI->getIterator();
1322 MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1323 while (++Begin != End)
1324 DEBUG(Begin->dump());
1325 });
1326 }
1327
1328 killedRegs.set(Reg);
1329 }
1330
1331 // Mark any used register (that is not using undef) and subregs as
1332 // now live...
1333 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1334 MachineOperand &MO = MI->getOperand(i);
1335 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1336 unsigned Reg = MO.getReg();
1337 if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1338
1339 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1340 SubRegs.isValid(); ++SubRegs)
1341 LiveRegs.set(*SubRegs);
1342 }
1343 }
1344 }
1345
dumpNode(const SUnit * SU) const1346 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1347 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1348 SU->getInstr()->dump();
1349 #endif
1350 }
1351
getGraphNodeLabel(const SUnit * SU) const1352 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1353 std::string s;
1354 raw_string_ostream oss(s);
1355 if (SU == &EntrySU)
1356 oss << "<entry>";
1357 else if (SU == &ExitSU)
1358 oss << "<exit>";
1359 else
1360 SU->getInstr()->print(oss, /*SkipOpers=*/true);
1361 return oss.str();
1362 }
1363
1364 /// Return the basic block label. It is not necessarilly unique because a block
1365 /// contains multiple scheduling regions. But it is fine for visualization.
getDAGName() const1366 std::string ScheduleDAGInstrs::getDAGName() const {
1367 return "dag." + BB->getFullName();
1368 }
1369
1370 //===----------------------------------------------------------------------===//
1371 // SchedDFSResult Implementation
1372 //===----------------------------------------------------------------------===//
1373
1374 namespace llvm {
1375 /// \brief Internal state used to compute SchedDFSResult.
1376 class SchedDFSImpl {
1377 SchedDFSResult &R;
1378
1379 /// Join DAG nodes into equivalence classes by their subtree.
1380 IntEqClasses SubtreeClasses;
1381 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1382 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1383
1384 struct RootData {
1385 unsigned NodeID;
1386 unsigned ParentNodeID; // Parent node (member of the parent subtree).
1387 unsigned SubInstrCount; // Instr count in this tree only, not children.
1388
RootDatallvm::SchedDFSImpl::RootData1389 RootData(unsigned id): NodeID(id),
1390 ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1391 SubInstrCount(0) {}
1392
getSparseSetIndexllvm::SchedDFSImpl::RootData1393 unsigned getSparseSetIndex() const { return NodeID; }
1394 };
1395
1396 SparseSet<RootData> RootSet;
1397
1398 public:
SchedDFSImpl(SchedDFSResult & r)1399 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1400 RootSet.setUniverse(R.DFSNodeData.size());
1401 }
1402
1403 /// Return true if this node been visited by the DFS traversal.
1404 ///
1405 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1406 /// ID. Later, SubtreeID is updated but remains valid.
isVisited(const SUnit * SU) const1407 bool isVisited(const SUnit *SU) const {
1408 return R.DFSNodeData[SU->NodeNum].SubtreeID
1409 != SchedDFSResult::InvalidSubtreeID;
1410 }
1411
1412 /// Initialize this node's instruction count. We don't need to flag the node
1413 /// visited until visitPostorder because the DAG cannot have cycles.
visitPreorder(const SUnit * SU)1414 void visitPreorder(const SUnit *SU) {
1415 R.DFSNodeData[SU->NodeNum].InstrCount =
1416 SU->getInstr()->isTransient() ? 0 : 1;
1417 }
1418
1419 /// Called once for each node after all predecessors are visited. Revisit this
1420 /// node's predecessors and potentially join them now that we know the ILP of
1421 /// the other predecessors.
visitPostorderNode(const SUnit * SU)1422 void visitPostorderNode(const SUnit *SU) {
1423 // Mark this node as the root of a subtree. It may be joined with its
1424 // successors later.
1425 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1426 RootData RData(SU->NodeNum);
1427 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1428
1429 // If any predecessors are still in their own subtree, they either cannot be
1430 // joined or are large enough to remain separate. If this parent node's
1431 // total instruction count is not greater than a child subtree by at least
1432 // the subtree limit, then try to join it now since splitting subtrees is
1433 // only useful if multiple high-pressure paths are possible.
1434 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1435 for (SUnit::const_pred_iterator
1436 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1437 if (PI->getKind() != SDep::Data)
1438 continue;
1439 unsigned PredNum = PI->getSUnit()->NodeNum;
1440 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1441 joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1442
1443 // Either link or merge the TreeData entry from the child to the parent.
1444 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1445 // If the predecessor's parent is invalid, this is a tree edge and the
1446 // current node is the parent.
1447 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1448 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1449 }
1450 else if (RootSet.count(PredNum)) {
1451 // The predecessor is not a root, but is still in the root set. This
1452 // must be the new parent that it was just joined to. Note that
1453 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1454 // set to the original parent.
1455 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1456 RootSet.erase(PredNum);
1457 }
1458 }
1459 RootSet[SU->NodeNum] = RData;
1460 }
1461
1462 /// Called once for each tree edge after calling visitPostOrderNode on the
1463 /// predecessor. Increment the parent node's instruction count and
1464 /// preemptively join this subtree to its parent's if it is small enough.
visitPostorderEdge(const SDep & PredDep,const SUnit * Succ)1465 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1466 R.DFSNodeData[Succ->NodeNum].InstrCount
1467 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1468 joinPredSubtree(PredDep, Succ);
1469 }
1470
1471 /// Add a connection for cross edges.
visitCrossEdge(const SDep & PredDep,const SUnit * Succ)1472 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1473 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1474 }
1475
1476 /// Set each node's subtree ID to the representative ID and record connections
1477 /// between trees.
finalize()1478 void finalize() {
1479 SubtreeClasses.compress();
1480 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1481 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1482 && "number of roots should match trees");
1483 for (SparseSet<RootData>::const_iterator
1484 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1485 unsigned TreeID = SubtreeClasses[RI->NodeID];
1486 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1487 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1488 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1489 // Note that SubInstrCount may be greater than InstrCount if we joined
1490 // subtrees across a cross edge. InstrCount will be attributed to the
1491 // original parent, while SubInstrCount will be attributed to the joined
1492 // parent.
1493 }
1494 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1495 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1496 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1497 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1498 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1499 DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1500 << R.DFSNodeData[Idx].SubtreeID << '\n');
1501 }
1502 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1503 I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1504 I != E; ++I) {
1505 unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1506 unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1507 if (PredTree == SuccTree)
1508 continue;
1509 unsigned Depth = I->first->getDepth();
1510 addConnection(PredTree, SuccTree, Depth);
1511 addConnection(SuccTree, PredTree, Depth);
1512 }
1513 }
1514
1515 protected:
1516 /// Join the predecessor subtree with the successor that is its DFS
1517 /// parent. Apply some heuristics before joining.
joinPredSubtree(const SDep & PredDep,const SUnit * Succ,bool CheckLimit=true)1518 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1519 bool CheckLimit = true) {
1520 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1521
1522 // Check if the predecessor is already joined.
1523 const SUnit *PredSU = PredDep.getSUnit();
1524 unsigned PredNum = PredSU->NodeNum;
1525 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1526 return false;
1527
1528 // Four is the magic number of successors before a node is considered a
1529 // pinch point.
1530 unsigned NumDataSucs = 0;
1531 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1532 SE = PredSU->Succs.end(); SI != SE; ++SI) {
1533 if (SI->getKind() == SDep::Data) {
1534 if (++NumDataSucs >= 4)
1535 return false;
1536 }
1537 }
1538 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1539 return false;
1540 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1541 SubtreeClasses.join(Succ->NodeNum, PredNum);
1542 return true;
1543 }
1544
1545 /// Called by finalize() to record a connection between trees.
addConnection(unsigned FromTree,unsigned ToTree,unsigned Depth)1546 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1547 if (!Depth)
1548 return;
1549
1550 do {
1551 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1552 R.SubtreeConnections[FromTree];
1553 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1554 I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1555 if (I->TreeID == ToTree) {
1556 I->Level = std::max(I->Level, Depth);
1557 return;
1558 }
1559 }
1560 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1561 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1562 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1563 }
1564 };
1565 } // namespace llvm
1566
1567 namespace {
1568 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1569 class SchedDAGReverseDFS {
1570 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1571 public:
isComplete() const1572 bool isComplete() const { return DFSStack.empty(); }
1573
follow(const SUnit * SU)1574 void follow(const SUnit *SU) {
1575 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1576 }
advance()1577 void advance() { ++DFSStack.back().second; }
1578
backtrack()1579 const SDep *backtrack() {
1580 DFSStack.pop_back();
1581 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1582 }
1583
getCurr() const1584 const SUnit *getCurr() const { return DFSStack.back().first; }
1585
getPred() const1586 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1587
getPredEnd() const1588 SUnit::const_pred_iterator getPredEnd() const {
1589 return getCurr()->Preds.end();
1590 }
1591 };
1592 } // anonymous
1593
hasDataSucc(const SUnit * SU)1594 static bool hasDataSucc(const SUnit *SU) {
1595 for (SUnit::const_succ_iterator
1596 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1597 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1598 return true;
1599 }
1600 return false;
1601 }
1602
1603 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1604 /// search from this root.
compute(ArrayRef<SUnit> SUnits)1605 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1606 if (!IsBottomUp)
1607 llvm_unreachable("Top-down ILP metric is unimplemnted");
1608
1609 SchedDFSImpl Impl(*this);
1610 for (ArrayRef<SUnit>::const_iterator
1611 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1612 const SUnit *SU = &*SI;
1613 if (Impl.isVisited(SU) || hasDataSucc(SU))
1614 continue;
1615
1616 SchedDAGReverseDFS DFS;
1617 Impl.visitPreorder(SU);
1618 DFS.follow(SU);
1619 for (;;) {
1620 // Traverse the leftmost path as far as possible.
1621 while (DFS.getPred() != DFS.getPredEnd()) {
1622 const SDep &PredDep = *DFS.getPred();
1623 DFS.advance();
1624 // Ignore non-data edges.
1625 if (PredDep.getKind() != SDep::Data
1626 || PredDep.getSUnit()->isBoundaryNode()) {
1627 continue;
1628 }
1629 // An already visited edge is a cross edge, assuming an acyclic DAG.
1630 if (Impl.isVisited(PredDep.getSUnit())) {
1631 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1632 continue;
1633 }
1634 Impl.visitPreorder(PredDep.getSUnit());
1635 DFS.follow(PredDep.getSUnit());
1636 }
1637 // Visit the top of the stack in postorder and backtrack.
1638 const SUnit *Child = DFS.getCurr();
1639 const SDep *PredDep = DFS.backtrack();
1640 Impl.visitPostorderNode(Child);
1641 if (PredDep)
1642 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1643 if (DFS.isComplete())
1644 break;
1645 }
1646 }
1647 Impl.finalize();
1648 }
1649
1650 /// The root of the given SubtreeID was just scheduled. For all subtrees
1651 /// connected to this tree, record the depth of the connection so that the
1652 /// nearest connected subtrees can be prioritized.
scheduleTree(unsigned SubtreeID)1653 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1654 for (SmallVectorImpl<Connection>::const_iterator
1655 I = SubtreeConnections[SubtreeID].begin(),
1656 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1657 SubtreeConnectLevels[I->TreeID] =
1658 std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1659 DEBUG(dbgs() << " Tree: " << I->TreeID
1660 << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1661 }
1662 }
1663
1664 LLVM_DUMP_METHOD
print(raw_ostream & OS) const1665 void ILPValue::print(raw_ostream &OS) const {
1666 OS << InstrCount << " / " << Length << " = ";
1667 if (!Length)
1668 OS << "BADILP";
1669 else
1670 OS << format("%g", ((double)InstrCount / Length));
1671 }
1672
1673 LLVM_DUMP_METHOD
dump() const1674 void ILPValue::dump() const {
1675 dbgs() << *this << '\n';
1676 }
1677
1678 namespace llvm {
1679
1680 LLVM_DUMP_METHOD
operator <<(raw_ostream & OS,const ILPValue & Val)1681 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1682 Val.print(OS);
1683 return OS;
1684 }
1685
1686 } // namespace llvm
1687