• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                          License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
17 //
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
20 //
21 //   * Redistribution's of source code must retain the above copyright notice,
22 //     this list of conditions and the following disclaimer.
23 //
24 //   * Redistribution's in binary form must reproduce the above copyright notice,
25 //     this list of conditions and the following disclaimer in the documentation
26 //     and/or other materials provided with the distribution.
27 //
28 //   * The name of the copyright holders may not be used to endorse or promote products
29 //     derived from this software without specific prior written permission.
30 //
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
41 //
42 //M*/
43 
44 #include "precomp.hpp"
45 
46 using namespace cv;
47 using namespace cv::cuda;
48 
GpuMat(int rows_,int cols_,int type_,void * data_,size_t step_)49 cv::cuda::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
50     flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_),
51     step(step_), data((uchar*)data_), refcount(0),
52     datastart((uchar*)data_), dataend((const uchar*)data_),
53     allocator(defaultAllocator())
54 {
55     size_t minstep = cols * elemSize();
56 
57     if (step == Mat::AUTO_STEP)
58     {
59         step = minstep;
60         flags |= Mat::CONTINUOUS_FLAG;
61     }
62     else
63     {
64         if (rows == 1)
65             step = minstep;
66 
67         CV_DbgAssert( step >= minstep );
68 
69         flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
70     }
71 
72     dataend += step * (rows - 1) + minstep;
73 }
74 
GpuMat(Size size_,int type_,void * data_,size_t step_)75 cv::cuda::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
76     flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width),
77     step(step_), data((uchar*)data_), refcount(0),
78     datastart((uchar*)data_), dataend((const uchar*)data_),
79     allocator(defaultAllocator())
80 {
81     size_t minstep = cols * elemSize();
82 
83     if (step == Mat::AUTO_STEP)
84     {
85         step = minstep;
86         flags |= Mat::CONTINUOUS_FLAG;
87     }
88     else
89     {
90         if (rows == 1)
91             step = minstep;
92 
93         CV_DbgAssert( step >= minstep );
94 
95         flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
96     }
97 
98     dataend += step * (rows - 1) + minstep;
99 }
100 
GpuMat(const GpuMat & m,Range rowRange_,Range colRange_)101 cv::cuda::GpuMat::GpuMat(const GpuMat& m, Range rowRange_, Range colRange_)
102 {
103     flags = m.flags;
104     step = m.step; refcount = m.refcount;
105     data = m.data; datastart = m.datastart; dataend = m.dataend;
106     allocator = m.allocator;
107 
108     if (rowRange_ == Range::all())
109     {
110         rows = m.rows;
111     }
112     else
113     {
114         CV_Assert( 0 <= rowRange_.start && rowRange_.start <= rowRange_.end && rowRange_.end <= m.rows );
115 
116         rows = rowRange_.size();
117         data += step*rowRange_.start;
118     }
119 
120     if (colRange_ == Range::all())
121     {
122         cols = m.cols;
123     }
124     else
125     {
126         CV_Assert( 0 <= colRange_.start && colRange_.start <= colRange_.end && colRange_.end <= m.cols );
127 
128         cols = colRange_.size();
129         data += colRange_.start*elemSize();
130         flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
131     }
132 
133     if (rows == 1)
134         flags |= Mat::CONTINUOUS_FLAG;
135 
136     if (refcount)
137         CV_XADD(refcount, 1);
138 
139     if (rows <= 0 || cols <= 0)
140         rows = cols = 0;
141 }
142 
GpuMat(const GpuMat & m,Rect roi)143 cv::cuda::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
144     flags(m.flags), rows(roi.height), cols(roi.width),
145     step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
146     datastart(m.datastart), dataend(m.dataend),
147     allocator(m.allocator)
148 {
149     flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
150     data += roi.x * elemSize();
151 
152     CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
153 
154     if (refcount)
155         CV_XADD(refcount, 1);
156 
157     if (rows <= 0 || cols <= 0)
158         rows = cols = 0;
159 }
160 
reshape(int new_cn,int new_rows) const161 GpuMat cv::cuda::GpuMat::reshape(int new_cn, int new_rows) const
162 {
163     GpuMat hdr = *this;
164 
165     int cn = channels();
166     if (new_cn == 0)
167         new_cn = cn;
168 
169     int total_width = cols * cn;
170 
171     if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
172         new_rows = rows * total_width / new_cn;
173 
174     if (new_rows != 0 && new_rows != rows)
175     {
176         int total_size = total_width * rows;
177 
178         if (!isContinuous())
179             CV_Error(cv::Error::BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
180 
181         if ((unsigned)new_rows > (unsigned)total_size)
182             CV_Error(cv::Error::StsOutOfRange, "Bad new number of rows");
183 
184         total_width = total_size / new_rows;
185 
186         if (total_width * new_rows != total_size)
187             CV_Error(cv::Error::StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
188 
189         hdr.rows = new_rows;
190         hdr.step = total_width * elemSize1();
191     }
192 
193     int new_width = total_width / new_cn;
194 
195     if (new_width * new_cn != total_width)
196         CV_Error(cv::Error::BadNumChannels, "The total width is not divisible by the new number of channels");
197 
198     hdr.cols = new_width;
199     hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
200 
201     return hdr;
202 }
203 
locateROI(Size & wholeSize,Point & ofs) const204 void cv::cuda::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
205 {
206     CV_DbgAssert( step > 0 );
207 
208     size_t esz = elemSize();
209     ptrdiff_t delta1 = data - datastart;
210     ptrdiff_t delta2 = dataend - datastart;
211 
212     if (delta1 == 0)
213     {
214         ofs.x = ofs.y = 0;
215     }
216     else
217     {
218         ofs.y = static_cast<int>(delta1 / step);
219         ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
220 
221         CV_DbgAssert( data == datastart + ofs.y * step + ofs.x * esz );
222     }
223 
224     size_t minstep = (ofs.x + cols) * esz;
225 
226     wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
227     wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
228 }
229 
adjustROI(int dtop,int dbottom,int dleft,int dright)230 GpuMat& cv::cuda::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
231 {
232     Size wholeSize;
233     Point ofs;
234     locateROI(wholeSize, ofs);
235 
236     size_t esz = elemSize();
237 
238     int row1 = std::max(ofs.y - dtop, 0);
239     int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
240 
241     int col1 = std::max(ofs.x - dleft, 0);
242     int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
243 
244     data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
245     rows = row2 - row1;
246     cols = col2 - col1;
247 
248     if (esz * cols == step || rows == 1)
249         flags |= Mat::CONTINUOUS_FLAG;
250     else
251         flags &= ~Mat::CONTINUOUS_FLAG;
252 
253     return *this;
254 }
255 
256 namespace
257 {
258     template <class ObjType>
createContinuousImpl(int rows,int cols,int type,ObjType & obj)259     void createContinuousImpl(int rows, int cols, int type, ObjType& obj)
260     {
261         const int area = rows * cols;
262 
263         if (obj.empty() || obj.type() != type || !obj.isContinuous() || obj.size().area() < area)
264             obj.create(1, area, type);
265 
266         obj = obj.reshape(obj.channels(), rows);
267     }
268 }
269 
createContinuous(int rows,int cols,int type,OutputArray arr)270 void cv::cuda::createContinuous(int rows, int cols, int type, OutputArray arr)
271 {
272     switch (arr.kind())
273     {
274     case _InputArray::MAT:
275         ::createContinuousImpl(rows, cols, type, arr.getMatRef());
276         break;
277 
278     case _InputArray::CUDA_GPU_MAT:
279         ::createContinuousImpl(rows, cols, type, arr.getGpuMatRef());
280         break;
281 
282     case _InputArray::CUDA_HOST_MEM:
283         ::createContinuousImpl(rows, cols, type, arr.getHostMemRef());
284         break;
285 
286     default:
287         arr.create(rows, cols, type);
288     }
289 }
290 
291 namespace
292 {
293     template <class ObjType>
ensureSizeIsEnoughImpl(int rows,int cols,int type,ObjType & obj)294     void ensureSizeIsEnoughImpl(int rows, int cols, int type, ObjType& obj)
295     {
296         if (obj.empty() || obj.type() != type || obj.data != obj.datastart)
297         {
298             obj.create(rows, cols, type);
299         }
300         else
301         {
302             const size_t esz = obj.elemSize();
303             const ptrdiff_t delta2 = obj.dataend - obj.datastart;
304 
305             const size_t minstep = obj.cols * esz;
306 
307             Size wholeSize;
308             wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / static_cast<size_t>(obj.step) + 1), obj.rows);
309             wholeSize.width = std::max(static_cast<int>((delta2 - static_cast<size_t>(obj.step) * (wholeSize.height - 1)) / esz), obj.cols);
310 
311             if (wholeSize.height < rows || wholeSize.width < cols)
312             {
313                 obj.create(rows, cols, type);
314             }
315             else
316             {
317                 obj.cols = cols;
318                 obj.rows = rows;
319             }
320         }
321     }
322 }
323 
ensureSizeIsEnough(int rows,int cols,int type,OutputArray arr)324 void cv::cuda::ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr)
325 {
326     switch (arr.kind())
327     {
328     case _InputArray::MAT:
329         ::ensureSizeIsEnoughImpl(rows, cols, type, arr.getMatRef());
330         break;
331 
332     case _InputArray::CUDA_GPU_MAT:
333         ::ensureSizeIsEnoughImpl(rows, cols, type, arr.getGpuMatRef());
334         break;
335 
336     case _InputArray::CUDA_HOST_MEM:
337         ::ensureSizeIsEnoughImpl(rows, cols, type, arr.getHostMemRef());
338         break;
339 
340     default:
341         arr.create(rows, cols, type);
342     }
343 }
344 
getInputMat(InputArray _src,Stream & stream)345 GpuMat cv::cuda::getInputMat(InputArray _src, Stream& stream)
346 {
347     GpuMat src;
348 
349 #ifndef HAVE_CUDA
350     (void) _src;
351     (void) stream;
352     throw_no_cuda();
353 #else
354     if (_src.kind() == _InputArray::CUDA_GPU_MAT)
355     {
356         src = _src.getGpuMat();
357     }
358     else if (!_src.empty())
359     {
360         BufferPool pool(stream);
361         src = pool.getBuffer(_src.size(), _src.type());
362         src.upload(_src, stream);
363     }
364 #endif
365 
366     return src;
367 }
368 
getOutputMat(OutputArray _dst,int rows,int cols,int type,Stream & stream)369 GpuMat cv::cuda::getOutputMat(OutputArray _dst, int rows, int cols, int type, Stream& stream)
370 {
371     GpuMat dst;
372 
373 #ifndef HAVE_CUDA
374     (void) _dst;
375     (void) rows;
376     (void) cols;
377     (void) type;
378     (void) stream;
379     throw_no_cuda();
380 #else
381     if (_dst.kind() == _InputArray::CUDA_GPU_MAT)
382     {
383         _dst.create(rows, cols, type);
384         dst = _dst.getGpuMat();
385     }
386     else
387     {
388         BufferPool pool(stream);
389         dst = pool.getBuffer(rows, cols, type);
390     }
391 #endif
392 
393     return dst;
394 }
395 
syncOutput(const GpuMat & dst,OutputArray _dst,Stream & stream)396 void cv::cuda::syncOutput(const GpuMat& dst, OutputArray _dst, Stream& stream)
397 {
398 #ifndef HAVE_CUDA
399     (void) dst;
400     (void) _dst;
401     (void) stream;
402     throw_no_cuda();
403 #else
404     if (_dst.kind() != _InputArray::CUDA_GPU_MAT)
405     {
406         if (stream)
407             dst.download(_dst, stream);
408         else
409             dst.download(_dst);
410     }
411 #endif
412 }
413 
414 #ifndef HAVE_CUDA
415 
defaultAllocator()416 GpuMat::Allocator* cv::cuda::GpuMat::defaultAllocator()
417 {
418     return 0;
419 }
420 
setDefaultAllocator(Allocator * allocator)421 void cv::cuda::GpuMat::setDefaultAllocator(Allocator* allocator)
422 {
423     (void) allocator;
424     throw_no_cuda();
425 }
426 
create(int _rows,int _cols,int _type)427 void cv::cuda::GpuMat::create(int _rows, int _cols, int _type)
428 {
429     (void) _rows;
430     (void) _cols;
431     (void) _type;
432     throw_no_cuda();
433 }
434 
release()435 void cv::cuda::GpuMat::release()
436 {
437 }
438 
upload(InputArray arr)439 void cv::cuda::GpuMat::upload(InputArray arr)
440 {
441     (void) arr;
442     throw_no_cuda();
443 }
444 
upload(InputArray arr,Stream & _stream)445 void cv::cuda::GpuMat::upload(InputArray arr, Stream& _stream)
446 {
447     (void) arr;
448     (void) _stream;
449     throw_no_cuda();
450 }
451 
download(OutputArray _dst) const452 void cv::cuda::GpuMat::download(OutputArray _dst) const
453 {
454     (void) _dst;
455     throw_no_cuda();
456 }
457 
download(OutputArray _dst,Stream & _stream) const458 void cv::cuda::GpuMat::download(OutputArray _dst, Stream& _stream) const
459 {
460     (void) _dst;
461     (void) _stream;
462     throw_no_cuda();
463 }
464 
copyTo(OutputArray _dst) const465 void cv::cuda::GpuMat::copyTo(OutputArray _dst) const
466 {
467     (void) _dst;
468     throw_no_cuda();
469 }
470 
copyTo(OutputArray _dst,Stream & _stream) const471 void cv::cuda::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
472 {
473     (void) _dst;
474     (void) _stream;
475     throw_no_cuda();
476 }
477 
copyTo(OutputArray _dst,InputArray _mask,Stream & _stream) const478 void cv::cuda::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& _stream) const
479 {
480     (void) _dst;
481     (void) _mask;
482     (void) _stream;
483     throw_no_cuda();
484 }
485 
setTo(Scalar s,Stream & _stream)486 GpuMat& cv::cuda::GpuMat::setTo(Scalar s, Stream& _stream)
487 {
488     (void) s;
489     (void) _stream;
490     throw_no_cuda();
491     return *this;
492 }
493 
setTo(Scalar s,InputArray _mask,Stream & _stream)494 GpuMat& cv::cuda::GpuMat::setTo(Scalar s, InputArray _mask, Stream& _stream)
495 {
496     (void) s;
497     (void) _mask;
498     (void) _stream;
499     throw_no_cuda();
500     return *this;
501 }
502 
convertTo(OutputArray _dst,int rtype,Stream & _stream) const503 void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& _stream) const
504 {
505     (void) _dst;
506     (void) rtype;
507     (void) _stream;
508     throw_no_cuda();
509 }
510 
convertTo(OutputArray _dst,int rtype,double alpha,double beta,Stream & _stream) const511 void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& _stream) const
512 {
513     (void) _dst;
514     (void) rtype;
515     (void) alpha;
516     (void) beta;
517     (void) _stream;
518     throw_no_cuda();
519 }
520 
521 #endif
522