• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.os;
18 
19 import android.annotation.IntegerRes;
20 import android.annotation.Nullable;
21 import android.text.TextUtils;
22 import android.util.ArrayMap;
23 import android.util.ArraySet;
24 import android.util.Log;
25 import android.util.Size;
26 import android.util.SizeF;
27 import android.util.SparseArray;
28 import android.util.SparseBooleanArray;
29 
30 import java.io.ByteArrayInputStream;
31 import java.io.ByteArrayOutputStream;
32 import java.io.FileDescriptor;
33 import java.io.FileNotFoundException;
34 import java.io.IOException;
35 import java.io.ObjectInputStream;
36 import java.io.ObjectOutputStream;
37 import java.io.ObjectStreamClass;
38 import java.io.Serializable;
39 import java.lang.reflect.Array;
40 import java.lang.reflect.Field;
41 import java.lang.reflect.Modifier;
42 import java.util.ArrayList;
43 import java.util.Arrays;
44 import java.util.HashMap;
45 import java.util.List;
46 import java.util.Map;
47 import java.util.Set;
48 
49 import dalvik.system.VMRuntime;
50 
51 /**
52  * Container for a message (data and object references) that can
53  * be sent through an IBinder.  A Parcel can contain both flattened data
54  * that will be unflattened on the other side of the IPC (using the various
55  * methods here for writing specific types, or the general
56  * {@link Parcelable} interface), and references to live {@link IBinder}
57  * objects that will result in the other side receiving a proxy IBinder
58  * connected with the original IBinder in the Parcel.
59  *
60  * <p class="note">Parcel is <strong>not</strong> a general-purpose
61  * serialization mechanism.  This class (and the corresponding
62  * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
63  * designed as a high-performance IPC transport.  As such, it is not
64  * appropriate to place any Parcel data in to persistent storage: changes
65  * in the underlying implementation of any of the data in the Parcel can
66  * render older data unreadable.</p>
67  *
68  * <p>The bulk of the Parcel API revolves around reading and writing data
69  * of various types.  There are six major classes of such functions available.</p>
70  *
71  * <h3>Primitives</h3>
72  *
73  * <p>The most basic data functions are for writing and reading primitive
74  * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
75  * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
76  * {@link #readInt}, {@link #writeLong}, {@link #readLong},
77  * {@link #writeString}, {@link #readString}.  Most other
78  * data operations are built on top of these.  The given data is written and
79  * read using the endianess of the host CPU.</p>
80  *
81  * <h3>Primitive Arrays</h3>
82  *
83  * <p>There are a variety of methods for reading and writing raw arrays
84  * of primitive objects, which generally result in writing a 4-byte length
85  * followed by the primitive data items.  The methods for reading can either
86  * read the data into an existing array, or create and return a new array.
87  * These available types are:</p>
88  *
89  * <ul>
90  * <li> {@link #writeBooleanArray(boolean[])},
91  * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
92  * <li> {@link #writeByteArray(byte[])},
93  * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
94  * {@link #createByteArray()}
95  * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
96  * {@link #createCharArray()}
97  * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
98  * {@link #createDoubleArray()}
99  * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
100  * {@link #createFloatArray()}
101  * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
102  * {@link #createIntArray()}
103  * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
104  * {@link #createLongArray()}
105  * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
106  * {@link #createStringArray()}.
107  * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
108  * {@link #readSparseBooleanArray()}.
109  * </ul>
110  *
111  * <h3>Parcelables</h3>
112  *
113  * <p>The {@link Parcelable} protocol provides an extremely efficient (but
114  * low-level) protocol for objects to write and read themselves from Parcels.
115  * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
116  * and {@link #readParcelable(ClassLoader)} or
117  * {@link #writeParcelableArray} and
118  * {@link #readParcelableArray(ClassLoader)} to write or read.  These
119  * methods write both the class type and its data to the Parcel, allowing
120  * that class to be reconstructed from the appropriate class loader when
121  * later reading.</p>
122  *
123  * <p>There are also some methods that provide a more efficient way to work
124  * with Parcelables: {@link #writeTypedObject}, {@link #writeTypedArray},
125  * {@link #writeTypedList}, {@link #readTypedObject},
126  * {@link #createTypedArray} and {@link #createTypedArrayList}.  These methods
127  * do not write the class information of the original object: instead, the
128  * caller of the read function must know what type to expect and pass in the
129  * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
130  * properly construct the new object and read its data.  (To more efficient
131  * write and read a single Parceable object that is not null, you can directly
132  * call {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
133  * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
134  * yourself.)</p>
135  *
136  * <h3>Bundles</h3>
137  *
138  * <p>A special type-safe container, called {@link Bundle}, is available
139  * for key/value maps of heterogeneous values.  This has many optimizations
140  * for improved performance when reading and writing data, and its type-safe
141  * API avoids difficult to debug type errors when finally marshalling the
142  * data contents into a Parcel.  The methods to use are
143  * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
144  * {@link #readBundle(ClassLoader)}.
145  *
146  * <h3>Active Objects</h3>
147  *
148  * <p>An unusual feature of Parcel is the ability to read and write active
149  * objects.  For these objects the actual contents of the object is not
150  * written, rather a special token referencing the object is written.  When
151  * reading the object back from the Parcel, you do not get a new instance of
152  * the object, but rather a handle that operates on the exact same object that
153  * was originally written.  There are two forms of active objects available.</p>
154  *
155  * <p>{@link Binder} objects are a core facility of Android's general cross-process
156  * communication system.  The {@link IBinder} interface describes an abstract
157  * protocol with a Binder object.  Any such interface can be written in to
158  * a Parcel, and upon reading you will receive either the original object
159  * implementing that interface or a special proxy implementation
160  * that communicates calls back to the original object.  The methods to use are
161  * {@link #writeStrongBinder(IBinder)},
162  * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
163  * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
164  * {@link #createBinderArray()},
165  * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
166  * {@link #createBinderArrayList()}.</p>
167  *
168  * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
169  * can be written and {@link ParcelFileDescriptor} objects returned to operate
170  * on the original file descriptor.  The returned file descriptor is a dup
171  * of the original file descriptor: the object and fd is different, but
172  * operating on the same underlying file stream, with the same position, etc.
173  * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
174  * {@link #readFileDescriptor()}.
175  *
176  * <h3>Untyped Containers</h3>
177  *
178  * <p>A final class of methods are for writing and reading standard Java
179  * containers of arbitrary types.  These all revolve around the
180  * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
181  * which define the types of objects allowed.  The container methods are
182  * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
183  * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
184  * {@link #readArrayList(ClassLoader)},
185  * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
186  * {@link #writeSparseArray(SparseArray)},
187  * {@link #readSparseArray(ClassLoader)}.
188  */
189 public final class Parcel {
190     private static final boolean DEBUG_RECYCLE = false;
191     private static final boolean DEBUG_ARRAY_MAP = false;
192     private static final String TAG = "Parcel";
193 
194     @SuppressWarnings({"UnusedDeclaration"})
195     private long mNativePtr; // used by native code
196 
197     /**
198      * Flag indicating if {@link #mNativePtr} was allocated by this object,
199      * indicating that we're responsible for its lifecycle.
200      */
201     private boolean mOwnsNativeParcelObject;
202     private long mNativeSize;
203 
204     private RuntimeException mStack;
205 
206     private static final int POOL_SIZE = 6;
207     private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
208     private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
209 
210     // Keep in sync with frameworks/native/libs/binder/PersistableBundle.cpp.
211     private static final int VAL_NULL = -1;
212     private static final int VAL_STRING = 0;
213     private static final int VAL_INTEGER = 1;
214     private static final int VAL_MAP = 2;
215     private static final int VAL_BUNDLE = 3;
216     private static final int VAL_PARCELABLE = 4;
217     private static final int VAL_SHORT = 5;
218     private static final int VAL_LONG = 6;
219     private static final int VAL_FLOAT = 7;
220     private static final int VAL_DOUBLE = 8;
221     private static final int VAL_BOOLEAN = 9;
222     private static final int VAL_CHARSEQUENCE = 10;
223     private static final int VAL_LIST  = 11;
224     private static final int VAL_SPARSEARRAY = 12;
225     private static final int VAL_BYTEARRAY = 13;
226     private static final int VAL_STRINGARRAY = 14;
227     private static final int VAL_IBINDER = 15;
228     private static final int VAL_PARCELABLEARRAY = 16;
229     private static final int VAL_OBJECTARRAY = 17;
230     private static final int VAL_INTARRAY = 18;
231     private static final int VAL_LONGARRAY = 19;
232     private static final int VAL_BYTE = 20;
233     private static final int VAL_SERIALIZABLE = 21;
234     private static final int VAL_SPARSEBOOLEANARRAY = 22;
235     private static final int VAL_BOOLEANARRAY = 23;
236     private static final int VAL_CHARSEQUENCEARRAY = 24;
237     private static final int VAL_PERSISTABLEBUNDLE = 25;
238     private static final int VAL_SIZE = 26;
239     private static final int VAL_SIZEF = 27;
240     private static final int VAL_DOUBLEARRAY = 28;
241 
242     // The initial int32 in a Binder call's reply Parcel header:
243     // Keep these in sync with libbinder's binder/Status.h.
244     private static final int EX_SECURITY = -1;
245     private static final int EX_BAD_PARCELABLE = -2;
246     private static final int EX_ILLEGAL_ARGUMENT = -3;
247     private static final int EX_NULL_POINTER = -4;
248     private static final int EX_ILLEGAL_STATE = -5;
249     private static final int EX_NETWORK_MAIN_THREAD = -6;
250     private static final int EX_UNSUPPORTED_OPERATION = -7;
251     private static final int EX_SERVICE_SPECIFIC = -8;
252     private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
253     // EX_TRANSACTION_FAILED is used exclusively in native code.
254     // see libbinder's binder/Status.h
255     private static final int EX_TRANSACTION_FAILED = -129;
256 
nativeDataSize(long nativePtr)257     private static native int nativeDataSize(long nativePtr);
nativeDataAvail(long nativePtr)258     private static native int nativeDataAvail(long nativePtr);
nativeDataPosition(long nativePtr)259     private static native int nativeDataPosition(long nativePtr);
nativeDataCapacity(long nativePtr)260     private static native int nativeDataCapacity(long nativePtr);
nativeSetDataSize(long nativePtr, int size)261     private static native long nativeSetDataSize(long nativePtr, int size);
nativeSetDataPosition(long nativePtr, int pos)262     private static native void nativeSetDataPosition(long nativePtr, int pos);
nativeSetDataCapacity(long nativePtr, int size)263     private static native void nativeSetDataCapacity(long nativePtr, int size);
264 
nativePushAllowFds(long nativePtr, boolean allowFds)265     private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
nativeRestoreAllowFds(long nativePtr, boolean lastValue)266     private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
267 
nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len)268     private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
nativeWriteBlob(long nativePtr, byte[] b, int offset, int len)269     private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
nativeWriteInt(long nativePtr, int val)270     private static native void nativeWriteInt(long nativePtr, int val);
nativeWriteLong(long nativePtr, long val)271     private static native void nativeWriteLong(long nativePtr, long val);
nativeWriteFloat(long nativePtr, float val)272     private static native void nativeWriteFloat(long nativePtr, float val);
nativeWriteDouble(long nativePtr, double val)273     private static native void nativeWriteDouble(long nativePtr, double val);
nativeWriteString(long nativePtr, String val)274     private static native void nativeWriteString(long nativePtr, String val);
nativeWriteStrongBinder(long nativePtr, IBinder val)275     private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
nativeWriteFileDescriptor(long nativePtr, FileDescriptor val)276     private static native long nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
277 
nativeCreateByteArray(long nativePtr)278     private static native byte[] nativeCreateByteArray(long nativePtr);
nativeReadBlob(long nativePtr)279     private static native byte[] nativeReadBlob(long nativePtr);
nativeReadInt(long nativePtr)280     private static native int nativeReadInt(long nativePtr);
nativeReadLong(long nativePtr)281     private static native long nativeReadLong(long nativePtr);
nativeReadFloat(long nativePtr)282     private static native float nativeReadFloat(long nativePtr);
nativeReadDouble(long nativePtr)283     private static native double nativeReadDouble(long nativePtr);
nativeReadString(long nativePtr)284     private static native String nativeReadString(long nativePtr);
nativeReadStrongBinder(long nativePtr)285     private static native IBinder nativeReadStrongBinder(long nativePtr);
nativeReadFileDescriptor(long nativePtr)286     private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
287 
nativeCreate()288     private static native long nativeCreate();
nativeFreeBuffer(long nativePtr)289     private static native long nativeFreeBuffer(long nativePtr);
nativeDestroy(long nativePtr)290     private static native void nativeDestroy(long nativePtr);
291 
nativeMarshall(long nativePtr)292     private static native byte[] nativeMarshall(long nativePtr);
nativeUnmarshall( long nativePtr, byte[] data, int offset, int length)293     private static native long nativeUnmarshall(
294             long nativePtr, byte[] data, int offset, int length);
nativeAppendFrom( long thisNativePtr, long otherNativePtr, int offset, int length)295     private static native long nativeAppendFrom(
296             long thisNativePtr, long otherNativePtr, int offset, int length);
nativeHasFileDescriptors(long nativePtr)297     private static native boolean nativeHasFileDescriptors(long nativePtr);
nativeWriteInterfaceToken(long nativePtr, String interfaceName)298     private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
nativeEnforceInterface(long nativePtr, String interfaceName)299     private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
300 
nativeGetBlobAshmemSize(long nativePtr)301     private static native long nativeGetBlobAshmemSize(long nativePtr);
302 
303     public final static Parcelable.Creator<String> STRING_CREATOR
304              = new Parcelable.Creator<String>() {
305         public String createFromParcel(Parcel source) {
306             return source.readString();
307         }
308         public String[] newArray(int size) {
309             return new String[size];
310         }
311     };
312 
313     /**
314      * Retrieve a new Parcel object from the pool.
315      */
obtain()316     public static Parcel obtain() {
317         final Parcel[] pool = sOwnedPool;
318         synchronized (pool) {
319             Parcel p;
320             for (int i=0; i<POOL_SIZE; i++) {
321                 p = pool[i];
322                 if (p != null) {
323                     pool[i] = null;
324                     if (DEBUG_RECYCLE) {
325                         p.mStack = new RuntimeException();
326                     }
327                     return p;
328                 }
329             }
330         }
331         return new Parcel(0);
332     }
333 
334     /**
335      * Put a Parcel object back into the pool.  You must not touch
336      * the object after this call.
337      */
recycle()338     public final void recycle() {
339         if (DEBUG_RECYCLE) mStack = null;
340         freeBuffer();
341 
342         final Parcel[] pool;
343         if (mOwnsNativeParcelObject) {
344             pool = sOwnedPool;
345         } else {
346             mNativePtr = 0;
347             pool = sHolderPool;
348         }
349 
350         synchronized (pool) {
351             for (int i=0; i<POOL_SIZE; i++) {
352                 if (pool[i] == null) {
353                     pool[i] = this;
354                     return;
355                 }
356             }
357         }
358     }
359 
360     /** @hide */
getGlobalAllocSize()361     public static native long getGlobalAllocSize();
362 
363     /** @hide */
getGlobalAllocCount()364     public static native long getGlobalAllocCount();
365 
366     /**
367      * Returns the total amount of data contained in the parcel.
368      */
dataSize()369     public final int dataSize() {
370         return nativeDataSize(mNativePtr);
371     }
372 
373     /**
374      * Returns the amount of data remaining to be read from the
375      * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
376      */
dataAvail()377     public final int dataAvail() {
378         return nativeDataAvail(mNativePtr);
379     }
380 
381     /**
382      * Returns the current position in the parcel data.  Never
383      * more than {@link #dataSize}.
384      */
dataPosition()385     public final int dataPosition() {
386         return nativeDataPosition(mNativePtr);
387     }
388 
389     /**
390      * Returns the total amount of space in the parcel.  This is always
391      * >= {@link #dataSize}.  The difference between it and dataSize() is the
392      * amount of room left until the parcel needs to re-allocate its
393      * data buffer.
394      */
dataCapacity()395     public final int dataCapacity() {
396         return nativeDataCapacity(mNativePtr);
397     }
398 
399     /**
400      * Change the amount of data in the parcel.  Can be either smaller or
401      * larger than the current size.  If larger than the current capacity,
402      * more memory will be allocated.
403      *
404      * @param size The new number of bytes in the Parcel.
405      */
setDataSize(int size)406     public final void setDataSize(int size) {
407         updateNativeSize(nativeSetDataSize(mNativePtr, size));
408     }
409 
410     /**
411      * Move the current read/write position in the parcel.
412      * @param pos New offset in the parcel; must be between 0 and
413      * {@link #dataSize}.
414      */
setDataPosition(int pos)415     public final void setDataPosition(int pos) {
416         nativeSetDataPosition(mNativePtr, pos);
417     }
418 
419     /**
420      * Change the capacity (current available space) of the parcel.
421      *
422      * @param size The new capacity of the parcel, in bytes.  Can not be
423      * less than {@link #dataSize} -- that is, you can not drop existing data
424      * with this method.
425      */
setDataCapacity(int size)426     public final void setDataCapacity(int size) {
427         nativeSetDataCapacity(mNativePtr, size);
428     }
429 
430     /** @hide */
pushAllowFds(boolean allowFds)431     public final boolean pushAllowFds(boolean allowFds) {
432         return nativePushAllowFds(mNativePtr, allowFds);
433     }
434 
435     /** @hide */
restoreAllowFds(boolean lastValue)436     public final void restoreAllowFds(boolean lastValue) {
437         nativeRestoreAllowFds(mNativePtr, lastValue);
438     }
439 
440     /**
441      * Returns the raw bytes of the parcel.
442      *
443      * <p class="note">The data you retrieve here <strong>must not</strong>
444      * be placed in any kind of persistent storage (on local disk, across
445      * a network, etc).  For that, you should use standard serialization
446      * or another kind of general serialization mechanism.  The Parcel
447      * marshalled representation is highly optimized for local IPC, and as
448      * such does not attempt to maintain compatibility with data created
449      * in different versions of the platform.
450      */
marshall()451     public final byte[] marshall() {
452         return nativeMarshall(mNativePtr);
453     }
454 
455     /**
456      * Set the bytes in data to be the raw bytes of this Parcel.
457      */
unmarshall(byte[] data, int offset, int length)458     public final void unmarshall(byte[] data, int offset, int length) {
459         updateNativeSize(nativeUnmarshall(mNativePtr, data, offset, length));
460     }
461 
appendFrom(Parcel parcel, int offset, int length)462     public final void appendFrom(Parcel parcel, int offset, int length) {
463         updateNativeSize(nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length));
464     }
465 
466     /**
467      * Report whether the parcel contains any marshalled file descriptors.
468      */
hasFileDescriptors()469     public final boolean hasFileDescriptors() {
470         return nativeHasFileDescriptors(mNativePtr);
471     }
472 
473     /**
474      * Store or read an IBinder interface token in the parcel at the current
475      * {@link #dataPosition}.  This is used to validate that the marshalled
476      * transaction is intended for the target interface.
477      */
writeInterfaceToken(String interfaceName)478     public final void writeInterfaceToken(String interfaceName) {
479         nativeWriteInterfaceToken(mNativePtr, interfaceName);
480     }
481 
enforceInterface(String interfaceName)482     public final void enforceInterface(String interfaceName) {
483         nativeEnforceInterface(mNativePtr, interfaceName);
484     }
485 
486     /**
487      * Write a byte array into the parcel at the current {@link #dataPosition},
488      * growing {@link #dataCapacity} if needed.
489      * @param b Bytes to place into the parcel.
490      */
writeByteArray(byte[] b)491     public final void writeByteArray(byte[] b) {
492         writeByteArray(b, 0, (b != null) ? b.length : 0);
493     }
494 
495     /**
496      * Write a byte array into the parcel at the current {@link #dataPosition},
497      * growing {@link #dataCapacity} if needed.
498      * @param b Bytes to place into the parcel.
499      * @param offset Index of first byte to be written.
500      * @param len Number of bytes to write.
501      */
writeByteArray(byte[] b, int offset, int len)502     public final void writeByteArray(byte[] b, int offset, int len) {
503         if (b == null) {
504             writeInt(-1);
505             return;
506         }
507         Arrays.checkOffsetAndCount(b.length, offset, len);
508         nativeWriteByteArray(mNativePtr, b, offset, len);
509     }
510 
511     /**
512      * Write a blob of data into the parcel at the current {@link #dataPosition},
513      * growing {@link #dataCapacity} if needed.
514      * @param b Bytes to place into the parcel.
515      * {@hide}
516      * {@SystemApi}
517      */
writeBlob(byte[] b)518     public final void writeBlob(byte[] b) {
519         writeBlob(b, 0, (b != null) ? b.length : 0);
520     }
521 
522     /**
523      * Write a blob of data into the parcel at the current {@link #dataPosition},
524      * growing {@link #dataCapacity} if needed.
525      * @param b Bytes to place into the parcel.
526      * @param offset Index of first byte to be written.
527      * @param len Number of bytes to write.
528      * {@hide}
529      * {@SystemApi}
530      */
writeBlob(byte[] b, int offset, int len)531     public final void writeBlob(byte[] b, int offset, int len) {
532         if (b == null) {
533             writeInt(-1);
534             return;
535         }
536         Arrays.checkOffsetAndCount(b.length, offset, len);
537         nativeWriteBlob(mNativePtr, b, offset, len);
538     }
539 
540     /**
541      * Write an integer value into the parcel at the current dataPosition(),
542      * growing dataCapacity() if needed.
543      */
writeInt(int val)544     public final void writeInt(int val) {
545         nativeWriteInt(mNativePtr, val);
546     }
547 
548     /**
549      * Write a long integer value into the parcel at the current dataPosition(),
550      * growing dataCapacity() if needed.
551      */
writeLong(long val)552     public final void writeLong(long val) {
553         nativeWriteLong(mNativePtr, val);
554     }
555 
556     /**
557      * Write a floating point value into the parcel at the current
558      * dataPosition(), growing dataCapacity() if needed.
559      */
writeFloat(float val)560     public final void writeFloat(float val) {
561         nativeWriteFloat(mNativePtr, val);
562     }
563 
564     /**
565      * Write a double precision floating point value into the parcel at the
566      * current dataPosition(), growing dataCapacity() if needed.
567      */
writeDouble(double val)568     public final void writeDouble(double val) {
569         nativeWriteDouble(mNativePtr, val);
570     }
571 
572     /**
573      * Write a string value into the parcel at the current dataPosition(),
574      * growing dataCapacity() if needed.
575      */
writeString(String val)576     public final void writeString(String val) {
577         nativeWriteString(mNativePtr, val);
578     }
579 
580     /**
581      * Write a CharSequence value into the parcel at the current dataPosition(),
582      * growing dataCapacity() if needed.
583      * @hide
584      */
writeCharSequence(CharSequence val)585     public final void writeCharSequence(CharSequence val) {
586         TextUtils.writeToParcel(val, this, 0);
587     }
588 
589     /**
590      * Write an object into the parcel at the current dataPosition(),
591      * growing dataCapacity() if needed.
592      */
writeStrongBinder(IBinder val)593     public final void writeStrongBinder(IBinder val) {
594         nativeWriteStrongBinder(mNativePtr, val);
595     }
596 
597     /**
598      * Write an object into the parcel at the current dataPosition(),
599      * growing dataCapacity() if needed.
600      */
writeStrongInterface(IInterface val)601     public final void writeStrongInterface(IInterface val) {
602         writeStrongBinder(val == null ? null : val.asBinder());
603     }
604 
605     /**
606      * Write a FileDescriptor into the parcel at the current dataPosition(),
607      * growing dataCapacity() if needed.
608      *
609      * <p class="caution">The file descriptor will not be closed, which may
610      * result in file descriptor leaks when objects are returned from Binder
611      * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
612      * accepts contextual flags and will close the original file descriptor
613      * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
614      */
writeFileDescriptor(FileDescriptor val)615     public final void writeFileDescriptor(FileDescriptor val) {
616         updateNativeSize(nativeWriteFileDescriptor(mNativePtr, val));
617     }
618 
updateNativeSize(long newNativeSize)619     private void updateNativeSize(long newNativeSize) {
620         if (mOwnsNativeParcelObject) {
621             if (newNativeSize > Integer.MAX_VALUE) {
622                 newNativeSize = Integer.MAX_VALUE;
623             }
624             if (newNativeSize != mNativeSize) {
625                 int delta = (int) (newNativeSize - mNativeSize);
626                 if (delta > 0) {
627                     VMRuntime.getRuntime().registerNativeAllocation(delta);
628                 } else {
629                     VMRuntime.getRuntime().registerNativeFree(-delta);
630                 }
631                 mNativeSize = newNativeSize;
632             }
633         }
634     }
635 
636     /**
637      * {@hide}
638      * This will be the new name for writeFileDescriptor, for consistency.
639      **/
writeRawFileDescriptor(FileDescriptor val)640     public final void writeRawFileDescriptor(FileDescriptor val) {
641         nativeWriteFileDescriptor(mNativePtr, val);
642     }
643 
644     /**
645      * {@hide}
646      * Write an array of FileDescriptor objects into the Parcel.
647      *
648      * @param value The array of objects to be written.
649      */
writeRawFileDescriptorArray(FileDescriptor[] value)650     public final void writeRawFileDescriptorArray(FileDescriptor[] value) {
651         if (value != null) {
652             int N = value.length;
653             writeInt(N);
654             for (int i=0; i<N; i++) {
655                 writeRawFileDescriptor(value[i]);
656             }
657         } else {
658             writeInt(-1);
659         }
660     }
661 
662     /**
663      * Write a byte value into the parcel at the current dataPosition(),
664      * growing dataCapacity() if needed.
665      */
writeByte(byte val)666     public final void writeByte(byte val) {
667         writeInt(val);
668     }
669 
670     /**
671      * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
672      * at the current dataPosition(),
673      * growing dataCapacity() if needed.  The Map keys must be String objects.
674      * The Map values are written using {@link #writeValue} and must follow
675      * the specification there.
676      *
677      * <p>It is strongly recommended to use {@link #writeBundle} instead of
678      * this method, since the Bundle class provides a type-safe API that
679      * allows you to avoid mysterious type errors at the point of marshalling.
680      */
writeMap(Map val)681     public final void writeMap(Map val) {
682         writeMapInternal((Map<String, Object>) val);
683     }
684 
685     /**
686      * Flatten a Map into the parcel at the current dataPosition(),
687      * growing dataCapacity() if needed.  The Map keys must be String objects.
688      */
writeMapInternal(Map<String,Object> val)689     /* package */ void writeMapInternal(Map<String,Object> val) {
690         if (val == null) {
691             writeInt(-1);
692             return;
693         }
694         Set<Map.Entry<String,Object>> entries = val.entrySet();
695         writeInt(entries.size());
696         for (Map.Entry<String,Object> e : entries) {
697             writeValue(e.getKey());
698             writeValue(e.getValue());
699         }
700     }
701 
702     /**
703      * Flatten an ArrayMap into the parcel at the current dataPosition(),
704      * growing dataCapacity() if needed.  The Map keys must be String objects.
705      */
writeArrayMapInternal(ArrayMap<String, Object> val)706     /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
707         if (val == null) {
708             writeInt(-1);
709             return;
710         }
711         // Keep the format of this Parcel in sync with writeToParcelInner() in
712         // frameworks/native/libs/binder/PersistableBundle.cpp.
713         final int N = val.size();
714         writeInt(N);
715         if (DEBUG_ARRAY_MAP) {
716             RuntimeException here =  new RuntimeException("here");
717             here.fillInStackTrace();
718             Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
719         }
720         int startPos;
721         for (int i=0; i<N; i++) {
722             if (DEBUG_ARRAY_MAP) startPos = dataPosition();
723             writeString(val.keyAt(i));
724             writeValue(val.valueAt(i));
725             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
726                     + (dataPosition()-startPos) + " bytes: key=0x"
727                     + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
728                     + " " + val.keyAt(i));
729         }
730     }
731 
732     /**
733      * @hide For testing only.
734      */
writeArrayMap(ArrayMap<String, Object> val)735     public void writeArrayMap(ArrayMap<String, Object> val) {
736         writeArrayMapInternal(val);
737     }
738 
739     /**
740      * Write an array set to the parcel.
741      *
742      * @param val The array set to write.
743      *
744      * @hide
745      */
writeArraySet(@ullable ArraySet<? extends Object> val)746     public void writeArraySet(@Nullable ArraySet<? extends Object> val) {
747         final int size = (val != null) ? val.size() : -1;
748         writeInt(size);
749         for (int i = 0; i < size; i++) {
750             writeValue(val.valueAt(i));
751         }
752     }
753 
754     /**
755      * Flatten a Bundle into the parcel at the current dataPosition(),
756      * growing dataCapacity() if needed.
757      */
writeBundle(Bundle val)758     public final void writeBundle(Bundle val) {
759         if (val == null) {
760             writeInt(-1);
761             return;
762         }
763 
764         val.writeToParcel(this, 0);
765     }
766 
767     /**
768      * Flatten a PersistableBundle into the parcel at the current dataPosition(),
769      * growing dataCapacity() if needed.
770      */
writePersistableBundle(PersistableBundle val)771     public final void writePersistableBundle(PersistableBundle val) {
772         if (val == null) {
773             writeInt(-1);
774             return;
775         }
776 
777         val.writeToParcel(this, 0);
778     }
779 
780     /**
781      * Flatten a Size into the parcel at the current dataPosition(),
782      * growing dataCapacity() if needed.
783      */
writeSize(Size val)784     public final void writeSize(Size val) {
785         writeInt(val.getWidth());
786         writeInt(val.getHeight());
787     }
788 
789     /**
790      * Flatten a SizeF into the parcel at the current dataPosition(),
791      * growing dataCapacity() if needed.
792      */
writeSizeF(SizeF val)793     public final void writeSizeF(SizeF val) {
794         writeFloat(val.getWidth());
795         writeFloat(val.getHeight());
796     }
797 
798     /**
799      * Flatten a List into the parcel at the current dataPosition(), growing
800      * dataCapacity() if needed.  The List values are written using
801      * {@link #writeValue} and must follow the specification there.
802      */
writeList(List val)803     public final void writeList(List val) {
804         if (val == null) {
805             writeInt(-1);
806             return;
807         }
808         int N = val.size();
809         int i=0;
810         writeInt(N);
811         while (i < N) {
812             writeValue(val.get(i));
813             i++;
814         }
815     }
816 
817     /**
818      * Flatten an Object array into the parcel at the current dataPosition(),
819      * growing dataCapacity() if needed.  The array values are written using
820      * {@link #writeValue} and must follow the specification there.
821      */
writeArray(Object[] val)822     public final void writeArray(Object[] val) {
823         if (val == null) {
824             writeInt(-1);
825             return;
826         }
827         int N = val.length;
828         int i=0;
829         writeInt(N);
830         while (i < N) {
831             writeValue(val[i]);
832             i++;
833         }
834     }
835 
836     /**
837      * Flatten a generic SparseArray into the parcel at the current
838      * dataPosition(), growing dataCapacity() if needed.  The SparseArray
839      * values are written using {@link #writeValue} and must follow the
840      * specification there.
841      */
writeSparseArray(SparseArray<Object> val)842     public final void writeSparseArray(SparseArray<Object> val) {
843         if (val == null) {
844             writeInt(-1);
845             return;
846         }
847         int N = val.size();
848         writeInt(N);
849         int i=0;
850         while (i < N) {
851             writeInt(val.keyAt(i));
852             writeValue(val.valueAt(i));
853             i++;
854         }
855     }
856 
writeSparseBooleanArray(SparseBooleanArray val)857     public final void writeSparseBooleanArray(SparseBooleanArray val) {
858         if (val == null) {
859             writeInt(-1);
860             return;
861         }
862         int N = val.size();
863         writeInt(N);
864         int i=0;
865         while (i < N) {
866             writeInt(val.keyAt(i));
867             writeByte((byte)(val.valueAt(i) ? 1 : 0));
868             i++;
869         }
870     }
871 
writeBooleanArray(boolean[] val)872     public final void writeBooleanArray(boolean[] val) {
873         if (val != null) {
874             int N = val.length;
875             writeInt(N);
876             for (int i=0; i<N; i++) {
877                 writeInt(val[i] ? 1 : 0);
878             }
879         } else {
880             writeInt(-1);
881         }
882     }
883 
createBooleanArray()884     public final boolean[] createBooleanArray() {
885         int N = readInt();
886         // >>2 as a fast divide-by-4 works in the create*Array() functions
887         // because dataAvail() will never return a negative number.  4 is
888         // the size of a stored boolean in the stream.
889         if (N >= 0 && N <= (dataAvail() >> 2)) {
890             boolean[] val = new boolean[N];
891             for (int i=0; i<N; i++) {
892                 val[i] = readInt() != 0;
893             }
894             return val;
895         } else {
896             return null;
897         }
898     }
899 
readBooleanArray(boolean[] val)900     public final void readBooleanArray(boolean[] val) {
901         int N = readInt();
902         if (N == val.length) {
903             for (int i=0; i<N; i++) {
904                 val[i] = readInt() != 0;
905             }
906         } else {
907             throw new RuntimeException("bad array lengths");
908         }
909     }
910 
writeCharArray(char[] val)911     public final void writeCharArray(char[] val) {
912         if (val != null) {
913             int N = val.length;
914             writeInt(N);
915             for (int i=0; i<N; i++) {
916                 writeInt((int)val[i]);
917             }
918         } else {
919             writeInt(-1);
920         }
921     }
922 
createCharArray()923     public final char[] createCharArray() {
924         int N = readInt();
925         if (N >= 0 && N <= (dataAvail() >> 2)) {
926             char[] val = new char[N];
927             for (int i=0; i<N; i++) {
928                 val[i] = (char)readInt();
929             }
930             return val;
931         } else {
932             return null;
933         }
934     }
935 
readCharArray(char[] val)936     public final void readCharArray(char[] val) {
937         int N = readInt();
938         if (N == val.length) {
939             for (int i=0; i<N; i++) {
940                 val[i] = (char)readInt();
941             }
942         } else {
943             throw new RuntimeException("bad array lengths");
944         }
945     }
946 
writeIntArray(int[] val)947     public final void writeIntArray(int[] val) {
948         if (val != null) {
949             int N = val.length;
950             writeInt(N);
951             for (int i=0; i<N; i++) {
952                 writeInt(val[i]);
953             }
954         } else {
955             writeInt(-1);
956         }
957     }
958 
createIntArray()959     public final int[] createIntArray() {
960         int N = readInt();
961         if (N >= 0 && N <= (dataAvail() >> 2)) {
962             int[] val = new int[N];
963             for (int i=0; i<N; i++) {
964                 val[i] = readInt();
965             }
966             return val;
967         } else {
968             return null;
969         }
970     }
971 
readIntArray(int[] val)972     public final void readIntArray(int[] val) {
973         int N = readInt();
974         if (N == val.length) {
975             for (int i=0; i<N; i++) {
976                 val[i] = readInt();
977             }
978         } else {
979             throw new RuntimeException("bad array lengths");
980         }
981     }
982 
writeLongArray(long[] val)983     public final void writeLongArray(long[] val) {
984         if (val != null) {
985             int N = val.length;
986             writeInt(N);
987             for (int i=0; i<N; i++) {
988                 writeLong(val[i]);
989             }
990         } else {
991             writeInt(-1);
992         }
993     }
994 
createLongArray()995     public final long[] createLongArray() {
996         int N = readInt();
997         // >>3 because stored longs are 64 bits
998         if (N >= 0 && N <= (dataAvail() >> 3)) {
999             long[] val = new long[N];
1000             for (int i=0; i<N; i++) {
1001                 val[i] = readLong();
1002             }
1003             return val;
1004         } else {
1005             return null;
1006         }
1007     }
1008 
readLongArray(long[] val)1009     public final void readLongArray(long[] val) {
1010         int N = readInt();
1011         if (N == val.length) {
1012             for (int i=0; i<N; i++) {
1013                 val[i] = readLong();
1014             }
1015         } else {
1016             throw new RuntimeException("bad array lengths");
1017         }
1018     }
1019 
writeFloatArray(float[] val)1020     public final void writeFloatArray(float[] val) {
1021         if (val != null) {
1022             int N = val.length;
1023             writeInt(N);
1024             for (int i=0; i<N; i++) {
1025                 writeFloat(val[i]);
1026             }
1027         } else {
1028             writeInt(-1);
1029         }
1030     }
1031 
createFloatArray()1032     public final float[] createFloatArray() {
1033         int N = readInt();
1034         // >>2 because stored floats are 4 bytes
1035         if (N >= 0 && N <= (dataAvail() >> 2)) {
1036             float[] val = new float[N];
1037             for (int i=0; i<N; i++) {
1038                 val[i] = readFloat();
1039             }
1040             return val;
1041         } else {
1042             return null;
1043         }
1044     }
1045 
readFloatArray(float[] val)1046     public final void readFloatArray(float[] val) {
1047         int N = readInt();
1048         if (N == val.length) {
1049             for (int i=0; i<N; i++) {
1050                 val[i] = readFloat();
1051             }
1052         } else {
1053             throw new RuntimeException("bad array lengths");
1054         }
1055     }
1056 
writeDoubleArray(double[] val)1057     public final void writeDoubleArray(double[] val) {
1058         if (val != null) {
1059             int N = val.length;
1060             writeInt(N);
1061             for (int i=0; i<N; i++) {
1062                 writeDouble(val[i]);
1063             }
1064         } else {
1065             writeInt(-1);
1066         }
1067     }
1068 
createDoubleArray()1069     public final double[] createDoubleArray() {
1070         int N = readInt();
1071         // >>3 because stored doubles are 8 bytes
1072         if (N >= 0 && N <= (dataAvail() >> 3)) {
1073             double[] val = new double[N];
1074             for (int i=0; i<N; i++) {
1075                 val[i] = readDouble();
1076             }
1077             return val;
1078         } else {
1079             return null;
1080         }
1081     }
1082 
readDoubleArray(double[] val)1083     public final void readDoubleArray(double[] val) {
1084         int N = readInt();
1085         if (N == val.length) {
1086             for (int i=0; i<N; i++) {
1087                 val[i] = readDouble();
1088             }
1089         } else {
1090             throw new RuntimeException("bad array lengths");
1091         }
1092     }
1093 
writeStringArray(String[] val)1094     public final void writeStringArray(String[] val) {
1095         if (val != null) {
1096             int N = val.length;
1097             writeInt(N);
1098             for (int i=0; i<N; i++) {
1099                 writeString(val[i]);
1100             }
1101         } else {
1102             writeInt(-1);
1103         }
1104     }
1105 
createStringArray()1106     public final String[] createStringArray() {
1107         int N = readInt();
1108         if (N >= 0) {
1109             String[] val = new String[N];
1110             for (int i=0; i<N; i++) {
1111                 val[i] = readString();
1112             }
1113             return val;
1114         } else {
1115             return null;
1116         }
1117     }
1118 
readStringArray(String[] val)1119     public final void readStringArray(String[] val) {
1120         int N = readInt();
1121         if (N == val.length) {
1122             for (int i=0; i<N; i++) {
1123                 val[i] = readString();
1124             }
1125         } else {
1126             throw new RuntimeException("bad array lengths");
1127         }
1128     }
1129 
writeBinderArray(IBinder[] val)1130     public final void writeBinderArray(IBinder[] val) {
1131         if (val != null) {
1132             int N = val.length;
1133             writeInt(N);
1134             for (int i=0; i<N; i++) {
1135                 writeStrongBinder(val[i]);
1136             }
1137         } else {
1138             writeInt(-1);
1139         }
1140     }
1141 
1142     /**
1143      * @hide
1144      */
writeCharSequenceArray(CharSequence[] val)1145     public final void writeCharSequenceArray(CharSequence[] val) {
1146         if (val != null) {
1147             int N = val.length;
1148             writeInt(N);
1149             for (int i=0; i<N; i++) {
1150                 writeCharSequence(val[i]);
1151             }
1152         } else {
1153             writeInt(-1);
1154         }
1155     }
1156 
1157     /**
1158      * @hide
1159      */
writeCharSequenceList(ArrayList<CharSequence> val)1160     public final void writeCharSequenceList(ArrayList<CharSequence> val) {
1161         if (val != null) {
1162             int N = val.size();
1163             writeInt(N);
1164             for (int i=0; i<N; i++) {
1165                 writeCharSequence(val.get(i));
1166             }
1167         } else {
1168             writeInt(-1);
1169         }
1170     }
1171 
createBinderArray()1172     public final IBinder[] createBinderArray() {
1173         int N = readInt();
1174         if (N >= 0) {
1175             IBinder[] val = new IBinder[N];
1176             for (int i=0; i<N; i++) {
1177                 val[i] = readStrongBinder();
1178             }
1179             return val;
1180         } else {
1181             return null;
1182         }
1183     }
1184 
readBinderArray(IBinder[] val)1185     public final void readBinderArray(IBinder[] val) {
1186         int N = readInt();
1187         if (N == val.length) {
1188             for (int i=0; i<N; i++) {
1189                 val[i] = readStrongBinder();
1190             }
1191         } else {
1192             throw new RuntimeException("bad array lengths");
1193         }
1194     }
1195 
1196     /**
1197      * Flatten a List containing a particular object type into the parcel, at
1198      * the current dataPosition() and growing dataCapacity() if needed.  The
1199      * type of the objects in the list must be one that implements Parcelable.
1200      * Unlike the generic writeList() method, however, only the raw data of the
1201      * objects is written and not their type, so you must use the corresponding
1202      * readTypedList() to unmarshall them.
1203      *
1204      * @param val The list of objects to be written.
1205      *
1206      * @see #createTypedArrayList
1207      * @see #readTypedList
1208      * @see Parcelable
1209      */
writeTypedList(List<T> val)1210     public final <T extends Parcelable> void writeTypedList(List<T> val) {
1211         if (val == null) {
1212             writeInt(-1);
1213             return;
1214         }
1215         int N = val.size();
1216         int i=0;
1217         writeInt(N);
1218         while (i < N) {
1219             T item = val.get(i);
1220             if (item != null) {
1221                 writeInt(1);
1222                 item.writeToParcel(this, 0);
1223             } else {
1224                 writeInt(0);
1225             }
1226             i++;
1227         }
1228     }
1229 
1230     /**
1231      * Flatten a List containing String objects into the parcel, at
1232      * the current dataPosition() and growing dataCapacity() if needed.  They
1233      * can later be retrieved with {@link #createStringArrayList} or
1234      * {@link #readStringList}.
1235      *
1236      * @param val The list of strings to be written.
1237      *
1238      * @see #createStringArrayList
1239      * @see #readStringList
1240      */
writeStringList(List<String> val)1241     public final void writeStringList(List<String> val) {
1242         if (val == null) {
1243             writeInt(-1);
1244             return;
1245         }
1246         int N = val.size();
1247         int i=0;
1248         writeInt(N);
1249         while (i < N) {
1250             writeString(val.get(i));
1251             i++;
1252         }
1253     }
1254 
1255     /**
1256      * Flatten a List containing IBinder objects into the parcel, at
1257      * the current dataPosition() and growing dataCapacity() if needed.  They
1258      * can later be retrieved with {@link #createBinderArrayList} or
1259      * {@link #readBinderList}.
1260      *
1261      * @param val The list of strings to be written.
1262      *
1263      * @see #createBinderArrayList
1264      * @see #readBinderList
1265      */
writeBinderList(List<IBinder> val)1266     public final void writeBinderList(List<IBinder> val) {
1267         if (val == null) {
1268             writeInt(-1);
1269             return;
1270         }
1271         int N = val.size();
1272         int i=0;
1273         writeInt(N);
1274         while (i < N) {
1275             writeStrongBinder(val.get(i));
1276             i++;
1277         }
1278     }
1279 
1280     /**
1281      * Flatten a heterogeneous array containing a particular object type into
1282      * the parcel, at
1283      * the current dataPosition() and growing dataCapacity() if needed.  The
1284      * type of the objects in the array must be one that implements Parcelable.
1285      * Unlike the {@link #writeParcelableArray} method, however, only the
1286      * raw data of the objects is written and not their type, so you must use
1287      * {@link #readTypedArray} with the correct corresponding
1288      * {@link Parcelable.Creator} implementation to unmarshall them.
1289      *
1290      * @param val The array of objects to be written.
1291      * @param parcelableFlags Contextual flags as per
1292      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1293      *
1294      * @see #readTypedArray
1295      * @see #writeParcelableArray
1296      * @see Parcelable.Creator
1297      */
writeTypedArray(T[] val, int parcelableFlags)1298     public final <T extends Parcelable> void writeTypedArray(T[] val,
1299             int parcelableFlags) {
1300         if (val != null) {
1301             int N = val.length;
1302             writeInt(N);
1303             for (int i=0; i<N; i++) {
1304                 T item = val[i];
1305                 if (item != null) {
1306                     writeInt(1);
1307                     item.writeToParcel(this, parcelableFlags);
1308                 } else {
1309                     writeInt(0);
1310                 }
1311             }
1312         } else {
1313             writeInt(-1);
1314         }
1315     }
1316 
1317     /**
1318      * Flatten the Parcelable object into the parcel.
1319      *
1320      * @param val The Parcelable object to be written.
1321      * @param parcelableFlags Contextual flags as per
1322      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1323      *
1324      * @see #readTypedObject
1325      */
writeTypedObject(T val, int parcelableFlags)1326     public final <T extends Parcelable> void writeTypedObject(T val, int parcelableFlags) {
1327         if (val != null) {
1328             writeInt(1);
1329             val.writeToParcel(this, parcelableFlags);
1330         } else {
1331             writeInt(0);
1332         }
1333     }
1334 
1335     /**
1336      * Flatten a generic object in to a parcel.  The given Object value may
1337      * currently be one of the following types:
1338      *
1339      * <ul>
1340      * <li> null
1341      * <li> String
1342      * <li> Byte
1343      * <li> Short
1344      * <li> Integer
1345      * <li> Long
1346      * <li> Float
1347      * <li> Double
1348      * <li> Boolean
1349      * <li> String[]
1350      * <li> boolean[]
1351      * <li> byte[]
1352      * <li> int[]
1353      * <li> long[]
1354      * <li> Object[] (supporting objects of the same type defined here).
1355      * <li> {@link Bundle}
1356      * <li> Map (as supported by {@link #writeMap}).
1357      * <li> Any object that implements the {@link Parcelable} protocol.
1358      * <li> Parcelable[]
1359      * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1360      * <li> List (as supported by {@link #writeList}).
1361      * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1362      * <li> {@link IBinder}
1363      * <li> Any object that implements Serializable (but see
1364      *      {@link #writeSerializable} for caveats).  Note that all of the
1365      *      previous types have relatively efficient implementations for
1366      *      writing to a Parcel; having to rely on the generic serialization
1367      *      approach is much less efficient and should be avoided whenever
1368      *      possible.
1369      * </ul>
1370      *
1371      * <p class="caution">{@link Parcelable} objects are written with
1372      * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1373      * serializing objects containing {@link ParcelFileDescriptor}s,
1374      * this may result in file descriptor leaks when they are returned from
1375      * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1376      * should be used).</p>
1377      */
writeValue(Object v)1378     public final void writeValue(Object v) {
1379         if (v == null) {
1380             writeInt(VAL_NULL);
1381         } else if (v instanceof String) {
1382             writeInt(VAL_STRING);
1383             writeString((String) v);
1384         } else if (v instanceof Integer) {
1385             writeInt(VAL_INTEGER);
1386             writeInt((Integer) v);
1387         } else if (v instanceof Map) {
1388             writeInt(VAL_MAP);
1389             writeMap((Map) v);
1390         } else if (v instanceof Bundle) {
1391             // Must be before Parcelable
1392             writeInt(VAL_BUNDLE);
1393             writeBundle((Bundle) v);
1394         } else if (v instanceof PersistableBundle) {
1395             writeInt(VAL_PERSISTABLEBUNDLE);
1396             writePersistableBundle((PersistableBundle) v);
1397         } else if (v instanceof Parcelable) {
1398             // IMPOTANT: cases for classes that implement Parcelable must
1399             // come before the Parcelable case, so that their specific VAL_*
1400             // types will be written.
1401             writeInt(VAL_PARCELABLE);
1402             writeParcelable((Parcelable) v, 0);
1403         } else if (v instanceof Short) {
1404             writeInt(VAL_SHORT);
1405             writeInt(((Short) v).intValue());
1406         } else if (v instanceof Long) {
1407             writeInt(VAL_LONG);
1408             writeLong((Long) v);
1409         } else if (v instanceof Float) {
1410             writeInt(VAL_FLOAT);
1411             writeFloat((Float) v);
1412         } else if (v instanceof Double) {
1413             writeInt(VAL_DOUBLE);
1414             writeDouble((Double) v);
1415         } else if (v instanceof Boolean) {
1416             writeInt(VAL_BOOLEAN);
1417             writeInt((Boolean) v ? 1 : 0);
1418         } else if (v instanceof CharSequence) {
1419             // Must be after String
1420             writeInt(VAL_CHARSEQUENCE);
1421             writeCharSequence((CharSequence) v);
1422         } else if (v instanceof List) {
1423             writeInt(VAL_LIST);
1424             writeList((List) v);
1425         } else if (v instanceof SparseArray) {
1426             writeInt(VAL_SPARSEARRAY);
1427             writeSparseArray((SparseArray) v);
1428         } else if (v instanceof boolean[]) {
1429             writeInt(VAL_BOOLEANARRAY);
1430             writeBooleanArray((boolean[]) v);
1431         } else if (v instanceof byte[]) {
1432             writeInt(VAL_BYTEARRAY);
1433             writeByteArray((byte[]) v);
1434         } else if (v instanceof String[]) {
1435             writeInt(VAL_STRINGARRAY);
1436             writeStringArray((String[]) v);
1437         } else if (v instanceof CharSequence[]) {
1438             // Must be after String[] and before Object[]
1439             writeInt(VAL_CHARSEQUENCEARRAY);
1440             writeCharSequenceArray((CharSequence[]) v);
1441         } else if (v instanceof IBinder) {
1442             writeInt(VAL_IBINDER);
1443             writeStrongBinder((IBinder) v);
1444         } else if (v instanceof Parcelable[]) {
1445             writeInt(VAL_PARCELABLEARRAY);
1446             writeParcelableArray((Parcelable[]) v, 0);
1447         } else if (v instanceof int[]) {
1448             writeInt(VAL_INTARRAY);
1449             writeIntArray((int[]) v);
1450         } else if (v instanceof long[]) {
1451             writeInt(VAL_LONGARRAY);
1452             writeLongArray((long[]) v);
1453         } else if (v instanceof Byte) {
1454             writeInt(VAL_BYTE);
1455             writeInt((Byte) v);
1456         } else if (v instanceof Size) {
1457             writeInt(VAL_SIZE);
1458             writeSize((Size) v);
1459         } else if (v instanceof SizeF) {
1460             writeInt(VAL_SIZEF);
1461             writeSizeF((SizeF) v);
1462         } else if (v instanceof double[]) {
1463             writeInt(VAL_DOUBLEARRAY);
1464             writeDoubleArray((double[]) v);
1465         } else {
1466             Class<?> clazz = v.getClass();
1467             if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1468                 // Only pure Object[] are written here, Other arrays of non-primitive types are
1469                 // handled by serialization as this does not record the component type.
1470                 writeInt(VAL_OBJECTARRAY);
1471                 writeArray((Object[]) v);
1472             } else if (v instanceof Serializable) {
1473                 // Must be last
1474                 writeInt(VAL_SERIALIZABLE);
1475                 writeSerializable((Serializable) v);
1476             } else {
1477                 throw new RuntimeException("Parcel: unable to marshal value " + v);
1478             }
1479         }
1480     }
1481 
1482     /**
1483      * Flatten the name of the class of the Parcelable and its contents
1484      * into the parcel.
1485      *
1486      * @param p The Parcelable object to be written.
1487      * @param parcelableFlags Contextual flags as per
1488      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1489      */
writeParcelable(Parcelable p, int parcelableFlags)1490     public final void writeParcelable(Parcelable p, int parcelableFlags) {
1491         if (p == null) {
1492             writeString(null);
1493             return;
1494         }
1495         writeParcelableCreator(p);
1496         p.writeToParcel(this, parcelableFlags);
1497     }
1498 
1499     /** @hide */
writeParcelableCreator(Parcelable p)1500     public final void writeParcelableCreator(Parcelable p) {
1501         String name = p.getClass().getName();
1502         writeString(name);
1503     }
1504 
1505     /**
1506      * Write a generic serializable object in to a Parcel.  It is strongly
1507      * recommended that this method be avoided, since the serialization
1508      * overhead is extremely large, and this approach will be much slower than
1509      * using the other approaches to writing data in to a Parcel.
1510      */
writeSerializable(Serializable s)1511     public final void writeSerializable(Serializable s) {
1512         if (s == null) {
1513             writeString(null);
1514             return;
1515         }
1516         String name = s.getClass().getName();
1517         writeString(name);
1518 
1519         ByteArrayOutputStream baos = new ByteArrayOutputStream();
1520         try {
1521             ObjectOutputStream oos = new ObjectOutputStream(baos);
1522             oos.writeObject(s);
1523             oos.close();
1524 
1525             writeByteArray(baos.toByteArray());
1526         } catch (IOException ioe) {
1527             throw new RuntimeException("Parcelable encountered " +
1528                 "IOException writing serializable object (name = " + name +
1529                 ")", ioe);
1530         }
1531     }
1532 
1533     /**
1534      * Special function for writing an exception result at the header of
1535      * a parcel, to be used when returning an exception from a transaction.
1536      * Note that this currently only supports a few exception types; any other
1537      * exception will be re-thrown by this function as a RuntimeException
1538      * (to be caught by the system's last-resort exception handling when
1539      * dispatching a transaction).
1540      *
1541      * <p>The supported exception types are:
1542      * <ul>
1543      * <li>{@link BadParcelableException}
1544      * <li>{@link IllegalArgumentException}
1545      * <li>{@link IllegalStateException}
1546      * <li>{@link NullPointerException}
1547      * <li>{@link SecurityException}
1548      * <li>{@link NetworkOnMainThreadException}
1549      * </ul>
1550      *
1551      * @param e The Exception to be written.
1552      *
1553      * @see #writeNoException
1554      * @see #readException
1555      */
writeException(Exception e)1556     public final void writeException(Exception e) {
1557         int code = 0;
1558         if (e instanceof SecurityException) {
1559             code = EX_SECURITY;
1560         } else if (e instanceof BadParcelableException) {
1561             code = EX_BAD_PARCELABLE;
1562         } else if (e instanceof IllegalArgumentException) {
1563             code = EX_ILLEGAL_ARGUMENT;
1564         } else if (e instanceof NullPointerException) {
1565             code = EX_NULL_POINTER;
1566         } else if (e instanceof IllegalStateException) {
1567             code = EX_ILLEGAL_STATE;
1568         } else if (e instanceof NetworkOnMainThreadException) {
1569             code = EX_NETWORK_MAIN_THREAD;
1570         } else if (e instanceof UnsupportedOperationException) {
1571             code = EX_UNSUPPORTED_OPERATION;
1572         } else if (e instanceof ServiceSpecificException) {
1573             code = EX_SERVICE_SPECIFIC;
1574         }
1575         writeInt(code);
1576         StrictMode.clearGatheredViolations();
1577         if (code == 0) {
1578             if (e instanceof RuntimeException) {
1579                 throw (RuntimeException) e;
1580             }
1581             throw new RuntimeException(e);
1582         }
1583         writeString(e.getMessage());
1584         if (e instanceof ServiceSpecificException) {
1585             writeInt(((ServiceSpecificException)e).errorCode);
1586         }
1587     }
1588 
1589     /**
1590      * Special function for writing information at the front of the Parcel
1591      * indicating that no exception occurred.
1592      *
1593      * @see #writeException
1594      * @see #readException
1595      */
writeNoException()1596     public final void writeNoException() {
1597         // Despite the name of this function ("write no exception"),
1598         // it should instead be thought of as "write the RPC response
1599         // header", but because this function name is written out by
1600         // the AIDL compiler, we're not going to rename it.
1601         //
1602         // The response header, in the non-exception case (see also
1603         // writeException above, also called by the AIDL compiler), is
1604         // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1605         // StrictMode has gathered up violations that have occurred
1606         // during a Binder call, in which case we write out the number
1607         // of violations and their details, serialized, before the
1608         // actual RPC respons data.  The receiving end of this is
1609         // readException(), below.
1610         if (StrictMode.hasGatheredViolations()) {
1611             writeInt(EX_HAS_REPLY_HEADER);
1612             final int sizePosition = dataPosition();
1613             writeInt(0);  // total size of fat header, to be filled in later
1614             StrictMode.writeGatheredViolationsToParcel(this);
1615             final int payloadPosition = dataPosition();
1616             setDataPosition(sizePosition);
1617             writeInt(payloadPosition - sizePosition);  // header size
1618             setDataPosition(payloadPosition);
1619         } else {
1620             writeInt(0);
1621         }
1622     }
1623 
1624     /**
1625      * Special function for reading an exception result from the header of
1626      * a parcel, to be used after receiving the result of a transaction.  This
1627      * will throw the exception for you if it had been written to the Parcel,
1628      * otherwise return and let you read the normal result data from the Parcel.
1629      *
1630      * @see #writeException
1631      * @see #writeNoException
1632      */
readException()1633     public final void readException() {
1634         int code = readExceptionCode();
1635         if (code != 0) {
1636             String msg = readString();
1637             readException(code, msg);
1638         }
1639     }
1640 
1641     /**
1642      * Parses the header of a Binder call's response Parcel and
1643      * returns the exception code.  Deals with lite or fat headers.
1644      * In the common successful case, this header is generally zero.
1645      * In less common cases, it's a small negative number and will be
1646      * followed by an error string.
1647      *
1648      * This exists purely for android.database.DatabaseUtils and
1649      * insulating it from having to handle fat headers as returned by
1650      * e.g. StrictMode-induced RPC responses.
1651      *
1652      * @hide
1653      */
readExceptionCode()1654     public final int readExceptionCode() {
1655         int code = readInt();
1656         if (code == EX_HAS_REPLY_HEADER) {
1657             int headerSize = readInt();
1658             if (headerSize == 0) {
1659                 Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1660             } else {
1661                 // Currently the only thing in the header is StrictMode stacks,
1662                 // but discussions around event/RPC tracing suggest we might
1663                 // put that here too.  If so, switch on sub-header tags here.
1664                 // But for now, just parse out the StrictMode stuff.
1665                 StrictMode.readAndHandleBinderCallViolations(this);
1666             }
1667             // And fat response headers are currently only used when
1668             // there are no exceptions, so return no error:
1669             return 0;
1670         }
1671         return code;
1672     }
1673 
1674     /**
1675      * Throw an exception with the given message. Not intended for use
1676      * outside the Parcel class.
1677      *
1678      * @param code Used to determine which exception class to throw.
1679      * @param msg The exception message.
1680      */
readException(int code, String msg)1681     public final void readException(int code, String msg) {
1682         switch (code) {
1683             case EX_SECURITY:
1684                 throw new SecurityException(msg);
1685             case EX_BAD_PARCELABLE:
1686                 throw new BadParcelableException(msg);
1687             case EX_ILLEGAL_ARGUMENT:
1688                 throw new IllegalArgumentException(msg);
1689             case EX_NULL_POINTER:
1690                 throw new NullPointerException(msg);
1691             case EX_ILLEGAL_STATE:
1692                 throw new IllegalStateException(msg);
1693             case EX_NETWORK_MAIN_THREAD:
1694                 throw new NetworkOnMainThreadException();
1695             case EX_UNSUPPORTED_OPERATION:
1696                 throw new UnsupportedOperationException(msg);
1697             case EX_SERVICE_SPECIFIC:
1698                 throw new ServiceSpecificException(readInt(), msg);
1699         }
1700         throw new RuntimeException("Unknown exception code: " + code
1701                 + " msg " + msg);
1702     }
1703 
1704     /**
1705      * Read an integer value from the parcel at the current dataPosition().
1706      */
readInt()1707     public final int readInt() {
1708         return nativeReadInt(mNativePtr);
1709     }
1710 
1711     /**
1712      * Read a long integer value from the parcel at the current dataPosition().
1713      */
readLong()1714     public final long readLong() {
1715         return nativeReadLong(mNativePtr);
1716     }
1717 
1718     /**
1719      * Read a floating point value from the parcel at the current
1720      * dataPosition().
1721      */
readFloat()1722     public final float readFloat() {
1723         return nativeReadFloat(mNativePtr);
1724     }
1725 
1726     /**
1727      * Read a double precision floating point value from the parcel at the
1728      * current dataPosition().
1729      */
readDouble()1730     public final double readDouble() {
1731         return nativeReadDouble(mNativePtr);
1732     }
1733 
1734     /**
1735      * Read a string value from the parcel at the current dataPosition().
1736      */
readString()1737     public final String readString() {
1738         return nativeReadString(mNativePtr);
1739     }
1740 
1741     /**
1742      * Read a CharSequence value from the parcel at the current dataPosition().
1743      * @hide
1744      */
readCharSequence()1745     public final CharSequence readCharSequence() {
1746         return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1747     }
1748 
1749     /**
1750      * Read an object from the parcel at the current dataPosition().
1751      */
readStrongBinder()1752     public final IBinder readStrongBinder() {
1753         return nativeReadStrongBinder(mNativePtr);
1754     }
1755 
1756     /**
1757      * Read a FileDescriptor from the parcel at the current dataPosition().
1758      */
readFileDescriptor()1759     public final ParcelFileDescriptor readFileDescriptor() {
1760         FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1761         return fd != null ? new ParcelFileDescriptor(fd) : null;
1762     }
1763 
1764     /** {@hide} */
readRawFileDescriptor()1765     public final FileDescriptor readRawFileDescriptor() {
1766         return nativeReadFileDescriptor(mNativePtr);
1767     }
1768 
1769     /**
1770      * {@hide}
1771      * Read and return a new array of FileDescriptors from the parcel.
1772      * @return the FileDescriptor array, or null if the array is null.
1773      **/
createRawFileDescriptorArray()1774     public final FileDescriptor[] createRawFileDescriptorArray() {
1775         int N = readInt();
1776         if (N < 0) {
1777             return null;
1778         }
1779         FileDescriptor[] f = new FileDescriptor[N];
1780         for (int i = 0; i < N; i++) {
1781             f[i] = readRawFileDescriptor();
1782         }
1783         return f;
1784     }
1785 
1786     /**
1787      * {@hide}
1788      * Read an array of FileDescriptors from a parcel.
1789      * The passed array must be exactly the length of the array in the parcel.
1790      * @return the FileDescriptor array, or null if the array is null.
1791      **/
readRawFileDescriptorArray(FileDescriptor[] val)1792     public final void readRawFileDescriptorArray(FileDescriptor[] val) {
1793         int N = readInt();
1794         if (N == val.length) {
1795             for (int i=0; i<N; i++) {
1796                 val[i] = readRawFileDescriptor();
1797             }
1798         } else {
1799             throw new RuntimeException("bad array lengths");
1800         }
1801     }
1802 
1803 
openFileDescriptor(String file, int mode)1804     /*package*/ static native FileDescriptor openFileDescriptor(String file,
1805             int mode) throws FileNotFoundException;
dupFileDescriptor(FileDescriptor orig)1806     /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1807             throws IOException;
closeFileDescriptor(FileDescriptor desc)1808     /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1809             throws IOException;
clearFileDescriptor(FileDescriptor desc)1810     /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1811 
1812     /**
1813      * Read a byte value from the parcel at the current dataPosition().
1814      */
readByte()1815     public final byte readByte() {
1816         return (byte)(readInt() & 0xff);
1817     }
1818 
1819     /**
1820      * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1821      * been written with {@link #writeBundle}.  Read into an existing Map object
1822      * from the parcel at the current dataPosition().
1823      */
readMap(Map outVal, ClassLoader loader)1824     public final void readMap(Map outVal, ClassLoader loader) {
1825         int N = readInt();
1826         readMapInternal(outVal, N, loader);
1827     }
1828 
1829     /**
1830      * Read into an existing List object from the parcel at the current
1831      * dataPosition(), using the given class loader to load any enclosed
1832      * Parcelables.  If it is null, the default class loader is used.
1833      */
readList(List outVal, ClassLoader loader)1834     public final void readList(List outVal, ClassLoader loader) {
1835         int N = readInt();
1836         readListInternal(outVal, N, loader);
1837     }
1838 
1839     /**
1840      * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1841      * been written with {@link #writeBundle}.  Read and return a new HashMap
1842      * object from the parcel at the current dataPosition(), using the given
1843      * class loader to load any enclosed Parcelables.  Returns null if
1844      * the previously written map object was null.
1845      */
readHashMap(ClassLoader loader)1846     public final HashMap readHashMap(ClassLoader loader)
1847     {
1848         int N = readInt();
1849         if (N < 0) {
1850             return null;
1851         }
1852         HashMap m = new HashMap(N);
1853         readMapInternal(m, N, loader);
1854         return m;
1855     }
1856 
1857     /**
1858      * Read and return a new Bundle object from the parcel at the current
1859      * dataPosition().  Returns null if the previously written Bundle object was
1860      * null.
1861      */
readBundle()1862     public final Bundle readBundle() {
1863         return readBundle(null);
1864     }
1865 
1866     /**
1867      * Read and return a new Bundle object from the parcel at the current
1868      * dataPosition(), using the given class loader to initialize the class
1869      * loader of the Bundle for later retrieval of Parcelable objects.
1870      * Returns null if the previously written Bundle object was null.
1871      */
readBundle(ClassLoader loader)1872     public final Bundle readBundle(ClassLoader loader) {
1873         int length = readInt();
1874         if (length < 0) {
1875             if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1876             return null;
1877         }
1878 
1879         final Bundle bundle = new Bundle(this, length);
1880         if (loader != null) {
1881             bundle.setClassLoader(loader);
1882         }
1883         return bundle;
1884     }
1885 
1886     /**
1887      * Read and return a new Bundle object from the parcel at the current
1888      * dataPosition().  Returns null if the previously written Bundle object was
1889      * null.
1890      */
readPersistableBundle()1891     public final PersistableBundle readPersistableBundle() {
1892         return readPersistableBundle(null);
1893     }
1894 
1895     /**
1896      * Read and return a new Bundle object from the parcel at the current
1897      * dataPosition(), using the given class loader to initialize the class
1898      * loader of the Bundle for later retrieval of Parcelable objects.
1899      * Returns null if the previously written Bundle object was null.
1900      */
readPersistableBundle(ClassLoader loader)1901     public final PersistableBundle readPersistableBundle(ClassLoader loader) {
1902         int length = readInt();
1903         if (length < 0) {
1904             if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1905             return null;
1906         }
1907 
1908         final PersistableBundle bundle = new PersistableBundle(this, length);
1909         if (loader != null) {
1910             bundle.setClassLoader(loader);
1911         }
1912         return bundle;
1913     }
1914 
1915     /**
1916      * Read a Size from the parcel at the current dataPosition().
1917      */
readSize()1918     public final Size readSize() {
1919         final int width = readInt();
1920         final int height = readInt();
1921         return new Size(width, height);
1922     }
1923 
1924     /**
1925      * Read a SizeF from the parcel at the current dataPosition().
1926      */
readSizeF()1927     public final SizeF readSizeF() {
1928         final float width = readFloat();
1929         final float height = readFloat();
1930         return new SizeF(width, height);
1931     }
1932 
1933     /**
1934      * Read and return a byte[] object from the parcel.
1935      */
createByteArray()1936     public final byte[] createByteArray() {
1937         return nativeCreateByteArray(mNativePtr);
1938     }
1939 
1940     /**
1941      * Read a byte[] object from the parcel and copy it into the
1942      * given byte array.
1943      */
readByteArray(byte[] val)1944     public final void readByteArray(byte[] val) {
1945         // TODO: make this a native method to avoid the extra copy.
1946         byte[] ba = createByteArray();
1947         if (ba.length == val.length) {
1948            System.arraycopy(ba, 0, val, 0, ba.length);
1949         } else {
1950             throw new RuntimeException("bad array lengths");
1951         }
1952     }
1953 
1954     /**
1955      * Read a blob of data from the parcel and return it as a byte array.
1956      * {@hide}
1957      * {@SystemApi}
1958      */
readBlob()1959     public final byte[] readBlob() {
1960         return nativeReadBlob(mNativePtr);
1961     }
1962 
1963     /**
1964      * Read and return a String[] object from the parcel.
1965      * {@hide}
1966      */
readStringArray()1967     public final String[] readStringArray() {
1968         String[] array = null;
1969 
1970         int length = readInt();
1971         if (length >= 0)
1972         {
1973             array = new String[length];
1974 
1975             for (int i = 0 ; i < length ; i++)
1976             {
1977                 array[i] = readString();
1978             }
1979         }
1980 
1981         return array;
1982     }
1983 
1984     /**
1985      * Read and return a CharSequence[] object from the parcel.
1986      * {@hide}
1987      */
readCharSequenceArray()1988     public final CharSequence[] readCharSequenceArray() {
1989         CharSequence[] array = null;
1990 
1991         int length = readInt();
1992         if (length >= 0)
1993         {
1994             array = new CharSequence[length];
1995 
1996             for (int i = 0 ; i < length ; i++)
1997             {
1998                 array[i] = readCharSequence();
1999             }
2000         }
2001 
2002         return array;
2003     }
2004 
2005     /**
2006      * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel.
2007      * {@hide}
2008      */
readCharSequenceList()2009     public final ArrayList<CharSequence> readCharSequenceList() {
2010         ArrayList<CharSequence> array = null;
2011 
2012         int length = readInt();
2013         if (length >= 0) {
2014             array = new ArrayList<CharSequence>(length);
2015 
2016             for (int i = 0 ; i < length ; i++) {
2017                 array.add(readCharSequence());
2018             }
2019         }
2020 
2021         return array;
2022     }
2023 
2024     /**
2025      * Read and return a new ArrayList object from the parcel at the current
2026      * dataPosition().  Returns null if the previously written list object was
2027      * null.  The given class loader will be used to load any enclosed
2028      * Parcelables.
2029      */
readArrayList(ClassLoader loader)2030     public final ArrayList readArrayList(ClassLoader loader) {
2031         int N = readInt();
2032         if (N < 0) {
2033             return null;
2034         }
2035         ArrayList l = new ArrayList(N);
2036         readListInternal(l, N, loader);
2037         return l;
2038     }
2039 
2040     /**
2041      * Read and return a new Object array from the parcel at the current
2042      * dataPosition().  Returns null if the previously written array was
2043      * null.  The given class loader will be used to load any enclosed
2044      * Parcelables.
2045      */
readArray(ClassLoader loader)2046     public final Object[] readArray(ClassLoader loader) {
2047         int N = readInt();
2048         if (N < 0) {
2049             return null;
2050         }
2051         Object[] l = new Object[N];
2052         readArrayInternal(l, N, loader);
2053         return l;
2054     }
2055 
2056     /**
2057      * Read and return a new SparseArray object from the parcel at the current
2058      * dataPosition().  Returns null if the previously written list object was
2059      * null.  The given class loader will be used to load any enclosed
2060      * Parcelables.
2061      */
readSparseArray(ClassLoader loader)2062     public final SparseArray readSparseArray(ClassLoader loader) {
2063         int N = readInt();
2064         if (N < 0) {
2065             return null;
2066         }
2067         SparseArray sa = new SparseArray(N);
2068         readSparseArrayInternal(sa, N, loader);
2069         return sa;
2070     }
2071 
2072     /**
2073      * Read and return a new SparseBooleanArray object from the parcel at the current
2074      * dataPosition().  Returns null if the previously written list object was
2075      * null.
2076      */
readSparseBooleanArray()2077     public final SparseBooleanArray readSparseBooleanArray() {
2078         int N = readInt();
2079         if (N < 0) {
2080             return null;
2081         }
2082         SparseBooleanArray sa = new SparseBooleanArray(N);
2083         readSparseBooleanArrayInternal(sa, N);
2084         return sa;
2085     }
2086 
2087     /**
2088      * Read and return a new ArrayList containing a particular object type from
2089      * the parcel that was written with {@link #writeTypedList} at the
2090      * current dataPosition().  Returns null if the
2091      * previously written list object was null.  The list <em>must</em> have
2092      * previously been written via {@link #writeTypedList} with the same object
2093      * type.
2094      *
2095      * @return A newly created ArrayList containing objects with the same data
2096      *         as those that were previously written.
2097      *
2098      * @see #writeTypedList
2099      */
createTypedArrayList(Parcelable.Creator<T> c)2100     public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
2101         int N = readInt();
2102         if (N < 0) {
2103             return null;
2104         }
2105         ArrayList<T> l = new ArrayList<T>(N);
2106         while (N > 0) {
2107             if (readInt() != 0) {
2108                 l.add(c.createFromParcel(this));
2109             } else {
2110                 l.add(null);
2111             }
2112             N--;
2113         }
2114         return l;
2115     }
2116 
2117     /**
2118      * Read into the given List items containing a particular object type
2119      * that were written with {@link #writeTypedList} at the
2120      * current dataPosition().  The list <em>must</em> have
2121      * previously been written via {@link #writeTypedList} with the same object
2122      * type.
2123      *
2124      * @return A newly created ArrayList containing objects with the same data
2125      *         as those that were previously written.
2126      *
2127      * @see #writeTypedList
2128      */
readTypedList(List<T> list, Parcelable.Creator<T> c)2129     public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
2130         int M = list.size();
2131         int N = readInt();
2132         int i = 0;
2133         for (; i < M && i < N; i++) {
2134             if (readInt() != 0) {
2135                 list.set(i, c.createFromParcel(this));
2136             } else {
2137                 list.set(i, null);
2138             }
2139         }
2140         for (; i<N; i++) {
2141             if (readInt() != 0) {
2142                 list.add(c.createFromParcel(this));
2143             } else {
2144                 list.add(null);
2145             }
2146         }
2147         for (; i<M; i++) {
2148             list.remove(N);
2149         }
2150     }
2151 
2152     /**
2153      * Read and return a new ArrayList containing String objects from
2154      * the parcel that was written with {@link #writeStringList} at the
2155      * current dataPosition().  Returns null if the
2156      * previously written list object was null.
2157      *
2158      * @return A newly created ArrayList containing strings with the same data
2159      *         as those that were previously written.
2160      *
2161      * @see #writeStringList
2162      */
createStringArrayList()2163     public final ArrayList<String> createStringArrayList() {
2164         int N = readInt();
2165         if (N < 0) {
2166             return null;
2167         }
2168         ArrayList<String> l = new ArrayList<String>(N);
2169         while (N > 0) {
2170             l.add(readString());
2171             N--;
2172         }
2173         return l;
2174     }
2175 
2176     /**
2177      * Read and return a new ArrayList containing IBinder objects from
2178      * the parcel that was written with {@link #writeBinderList} at the
2179      * current dataPosition().  Returns null if the
2180      * previously written list object was null.
2181      *
2182      * @return A newly created ArrayList containing strings with the same data
2183      *         as those that were previously written.
2184      *
2185      * @see #writeBinderList
2186      */
createBinderArrayList()2187     public final ArrayList<IBinder> createBinderArrayList() {
2188         int N = readInt();
2189         if (N < 0) {
2190             return null;
2191         }
2192         ArrayList<IBinder> l = new ArrayList<IBinder>(N);
2193         while (N > 0) {
2194             l.add(readStrongBinder());
2195             N--;
2196         }
2197         return l;
2198     }
2199 
2200     /**
2201      * Read into the given List items String objects that were written with
2202      * {@link #writeStringList} at the current dataPosition().
2203      *
2204      * @return A newly created ArrayList containing strings with the same data
2205      *         as those that were previously written.
2206      *
2207      * @see #writeStringList
2208      */
readStringList(List<String> list)2209     public final void readStringList(List<String> list) {
2210         int M = list.size();
2211         int N = readInt();
2212         int i = 0;
2213         for (; i < M && i < N; i++) {
2214             list.set(i, readString());
2215         }
2216         for (; i<N; i++) {
2217             list.add(readString());
2218         }
2219         for (; i<M; i++) {
2220             list.remove(N);
2221         }
2222     }
2223 
2224     /**
2225      * Read into the given List items IBinder objects that were written with
2226      * {@link #writeBinderList} at the current dataPosition().
2227      *
2228      * @return A newly created ArrayList containing strings with the same data
2229      *         as those that were previously written.
2230      *
2231      * @see #writeBinderList
2232      */
readBinderList(List<IBinder> list)2233     public final void readBinderList(List<IBinder> list) {
2234         int M = list.size();
2235         int N = readInt();
2236         int i = 0;
2237         for (; i < M && i < N; i++) {
2238             list.set(i, readStrongBinder());
2239         }
2240         for (; i<N; i++) {
2241             list.add(readStrongBinder());
2242         }
2243         for (; i<M; i++) {
2244             list.remove(N);
2245         }
2246     }
2247 
2248     /**
2249      * Read and return a new array containing a particular object type from
2250      * the parcel at the current dataPosition().  Returns null if the
2251      * previously written array was null.  The array <em>must</em> have
2252      * previously been written via {@link #writeTypedArray} with the same
2253      * object type.
2254      *
2255      * @return A newly created array containing objects with the same data
2256      *         as those that were previously written.
2257      *
2258      * @see #writeTypedArray
2259      */
createTypedArray(Parcelable.Creator<T> c)2260     public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2261         int N = readInt();
2262         if (N < 0) {
2263             return null;
2264         }
2265         T[] l = c.newArray(N);
2266         for (int i=0; i<N; i++) {
2267             if (readInt() != 0) {
2268                 l[i] = c.createFromParcel(this);
2269             }
2270         }
2271         return l;
2272     }
2273 
readTypedArray(T[] val, Parcelable.Creator<T> c)2274     public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2275         int N = readInt();
2276         if (N == val.length) {
2277             for (int i=0; i<N; i++) {
2278                 if (readInt() != 0) {
2279                     val[i] = c.createFromParcel(this);
2280                 } else {
2281                     val[i] = null;
2282                 }
2283             }
2284         } else {
2285             throw new RuntimeException("bad array lengths");
2286         }
2287     }
2288 
2289     /**
2290      * @deprecated
2291      * @hide
2292      */
2293     @Deprecated
readTypedArray(Parcelable.Creator<T> c)2294     public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2295         return createTypedArray(c);
2296     }
2297 
2298     /**
2299      * Read and return a typed Parcelable object from a parcel.
2300      * Returns null if the previous written object was null.
2301      * The object <em>must</em> have previous been written via
2302      * {@link #writeTypedObject} with the same object type.
2303      *
2304      * @return A newly created object of the type that was previously
2305      *         written.
2306      *
2307      * @see #writeTypedObject
2308      */
readTypedObject(Parcelable.Creator<T> c)2309     public final <T> T readTypedObject(Parcelable.Creator<T> c) {
2310         if (readInt() != 0) {
2311             return c.createFromParcel(this);
2312         } else {
2313             return null;
2314         }
2315     }
2316 
2317     /**
2318      * Write a heterogeneous array of Parcelable objects into the Parcel.
2319      * Each object in the array is written along with its class name, so
2320      * that the correct class can later be instantiated.  As a result, this
2321      * has significantly more overhead than {@link #writeTypedArray}, but will
2322      * correctly handle an array containing more than one type of object.
2323      *
2324      * @param value The array of objects to be written.
2325      * @param parcelableFlags Contextual flags as per
2326      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2327      *
2328      * @see #writeTypedArray
2329      */
writeParcelableArray(T[] value, int parcelableFlags)2330     public final <T extends Parcelable> void writeParcelableArray(T[] value,
2331             int parcelableFlags) {
2332         if (value != null) {
2333             int N = value.length;
2334             writeInt(N);
2335             for (int i=0; i<N; i++) {
2336                 writeParcelable(value[i], parcelableFlags);
2337             }
2338         } else {
2339             writeInt(-1);
2340         }
2341     }
2342 
2343     /**
2344      * Read a typed object from a parcel.  The given class loader will be
2345      * used to load any enclosed Parcelables.  If it is null, the default class
2346      * loader will be used.
2347      */
readValue(ClassLoader loader)2348     public final Object readValue(ClassLoader loader) {
2349         int type = readInt();
2350 
2351         switch (type) {
2352         case VAL_NULL:
2353             return null;
2354 
2355         case VAL_STRING:
2356             return readString();
2357 
2358         case VAL_INTEGER:
2359             return readInt();
2360 
2361         case VAL_MAP:
2362             return readHashMap(loader);
2363 
2364         case VAL_PARCELABLE:
2365             return readParcelable(loader);
2366 
2367         case VAL_SHORT:
2368             return (short) readInt();
2369 
2370         case VAL_LONG:
2371             return readLong();
2372 
2373         case VAL_FLOAT:
2374             return readFloat();
2375 
2376         case VAL_DOUBLE:
2377             return readDouble();
2378 
2379         case VAL_BOOLEAN:
2380             return readInt() == 1;
2381 
2382         case VAL_CHARSEQUENCE:
2383             return readCharSequence();
2384 
2385         case VAL_LIST:
2386             return readArrayList(loader);
2387 
2388         case VAL_BOOLEANARRAY:
2389             return createBooleanArray();
2390 
2391         case VAL_BYTEARRAY:
2392             return createByteArray();
2393 
2394         case VAL_STRINGARRAY:
2395             return readStringArray();
2396 
2397         case VAL_CHARSEQUENCEARRAY:
2398             return readCharSequenceArray();
2399 
2400         case VAL_IBINDER:
2401             return readStrongBinder();
2402 
2403         case VAL_OBJECTARRAY:
2404             return readArray(loader);
2405 
2406         case VAL_INTARRAY:
2407             return createIntArray();
2408 
2409         case VAL_LONGARRAY:
2410             return createLongArray();
2411 
2412         case VAL_BYTE:
2413             return readByte();
2414 
2415         case VAL_SERIALIZABLE:
2416             return readSerializable(loader);
2417 
2418         case VAL_PARCELABLEARRAY:
2419             return readParcelableArray(loader);
2420 
2421         case VAL_SPARSEARRAY:
2422             return readSparseArray(loader);
2423 
2424         case VAL_SPARSEBOOLEANARRAY:
2425             return readSparseBooleanArray();
2426 
2427         case VAL_BUNDLE:
2428             return readBundle(loader); // loading will be deferred
2429 
2430         case VAL_PERSISTABLEBUNDLE:
2431             return readPersistableBundle(loader);
2432 
2433         case VAL_SIZE:
2434             return readSize();
2435 
2436         case VAL_SIZEF:
2437             return readSizeF();
2438 
2439         case VAL_DOUBLEARRAY:
2440             return createDoubleArray();
2441 
2442         default:
2443             int off = dataPosition() - 4;
2444             throw new RuntimeException(
2445                 "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2446         }
2447     }
2448 
2449     /**
2450      * Read and return a new Parcelable from the parcel.  The given class loader
2451      * will be used to load any enclosed Parcelables.  If it is null, the default
2452      * class loader will be used.
2453      * @param loader A ClassLoader from which to instantiate the Parcelable
2454      * object, or null for the default class loader.
2455      * @return Returns the newly created Parcelable, or null if a null
2456      * object has been written.
2457      * @throws BadParcelableException Throws BadParcelableException if there
2458      * was an error trying to instantiate the Parcelable.
2459      */
2460     @SuppressWarnings("unchecked")
readParcelable(ClassLoader loader)2461     public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2462         Parcelable.Creator<?> creator = readParcelableCreator(loader);
2463         if (creator == null) {
2464             return null;
2465         }
2466         if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2467           Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2468               (Parcelable.ClassLoaderCreator<?>) creator;
2469           return (T) classLoaderCreator.createFromParcel(this, loader);
2470         }
2471         return (T) creator.createFromParcel(this);
2472     }
2473 
2474     /** @hide */
2475     @SuppressWarnings("unchecked")
readCreator(Parcelable.Creator<?> creator, ClassLoader loader)2476     public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator,
2477             ClassLoader loader) {
2478         if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2479           Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2480               (Parcelable.ClassLoaderCreator<?>) creator;
2481           return (T) classLoaderCreator.createFromParcel(this, loader);
2482         }
2483         return (T) creator.createFromParcel(this);
2484     }
2485 
2486     /** @hide */
readParcelableCreator(ClassLoader loader)2487     public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) {
2488         String name = readString();
2489         if (name == null) {
2490             return null;
2491         }
2492         Parcelable.Creator<?> creator;
2493         synchronized (mCreators) {
2494             HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader);
2495             if (map == null) {
2496                 map = new HashMap<>();
2497                 mCreators.put(loader, map);
2498             }
2499             creator = map.get(name);
2500             if (creator == null) {
2501                 try {
2502                     // If loader == null, explicitly emulate Class.forName(String) "caller
2503                     // classloader" behavior.
2504                     ClassLoader parcelableClassLoader =
2505                             (loader == null ? getClass().getClassLoader() : loader);
2506                     // Avoid initializing the Parcelable class until we know it implements
2507                     // Parcelable and has the necessary CREATOR field. http://b/1171613.
2508                     Class<?> parcelableClass = Class.forName(name, false /* initialize */,
2509                             parcelableClassLoader);
2510                     if (!Parcelable.class.isAssignableFrom(parcelableClass)) {
2511                         throw new BadParcelableException("Parcelable protocol requires that the "
2512                                 + "class implements Parcelable");
2513                     }
2514                     Field f = parcelableClass.getField("CREATOR");
2515                     if ((f.getModifiers() & Modifier.STATIC) == 0) {
2516                         throw new BadParcelableException("Parcelable protocol requires "
2517                                 + "the CREATOR object to be static on class " + name);
2518                     }
2519                     Class<?> creatorType = f.getType();
2520                     if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) {
2521                         // Fail before calling Field.get(), not after, to avoid initializing
2522                         // parcelableClass unnecessarily.
2523                         throw new BadParcelableException("Parcelable protocol requires a "
2524                                 + "Parcelable.Creator object called "
2525                                 + "CREATOR on class " + name);
2526                     }
2527                     creator = (Parcelable.Creator<?>) f.get(null);
2528                 }
2529                 catch (IllegalAccessException e) {
2530                     Log.e(TAG, "Illegal access when unmarshalling: " + name, e);
2531                     throw new BadParcelableException(
2532                             "IllegalAccessException when unmarshalling: " + name);
2533                 }
2534                 catch (ClassNotFoundException e) {
2535                     Log.e(TAG, "Class not found when unmarshalling: " + name, e);
2536                     throw new BadParcelableException(
2537                             "ClassNotFoundException when unmarshalling: " + name);
2538                 }
2539                 catch (NoSuchFieldException e) {
2540                     throw new BadParcelableException("Parcelable protocol requires a "
2541                             + "Parcelable.Creator object called "
2542                             + "CREATOR on class " + name);
2543                 }
2544                 if (creator == null) {
2545                     throw new BadParcelableException("Parcelable protocol requires a "
2546                             + "non-null Parcelable.Creator object called "
2547                             + "CREATOR on class " + name);
2548                 }
2549 
2550                 map.put(name, creator);
2551             }
2552         }
2553 
2554         return creator;
2555     }
2556 
2557     /**
2558      * Read and return a new Parcelable array from the parcel.
2559      * The given class loader will be used to load any enclosed
2560      * Parcelables.
2561      * @return the Parcelable array, or null if the array is null
2562      */
readParcelableArray(ClassLoader loader)2563     public final Parcelable[] readParcelableArray(ClassLoader loader) {
2564         int N = readInt();
2565         if (N < 0) {
2566             return null;
2567         }
2568         Parcelable[] p = new Parcelable[N];
2569         for (int i = 0; i < N; i++) {
2570             p[i] = readParcelable(loader);
2571         }
2572         return p;
2573     }
2574 
2575     /** @hide */
readParcelableArray(ClassLoader loader, Class<T> clazz)2576     public final <T extends Parcelable> T[] readParcelableArray(ClassLoader loader,
2577             Class<T> clazz) {
2578         int N = readInt();
2579         if (N < 0) {
2580             return null;
2581         }
2582         T[] p = (T[]) Array.newInstance(clazz, N);
2583         for (int i = 0; i < N; i++) {
2584             p[i] = readParcelable(loader);
2585         }
2586         return p;
2587     }
2588 
2589     /**
2590      * Read and return a new Serializable object from the parcel.
2591      * @return the Serializable object, or null if the Serializable name
2592      * wasn't found in the parcel.
2593      */
readSerializable()2594     public final Serializable readSerializable() {
2595         return readSerializable(null);
2596     }
2597 
readSerializable(final ClassLoader loader)2598     private final Serializable readSerializable(final ClassLoader loader) {
2599         String name = readString();
2600         if (name == null) {
2601             // For some reason we were unable to read the name of the Serializable (either there
2602             // is nothing left in the Parcel to read, or the next value wasn't a String), so
2603             // return null, which indicates that the name wasn't found in the parcel.
2604             return null;
2605         }
2606 
2607         byte[] serializedData = createByteArray();
2608         ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2609         try {
2610             ObjectInputStream ois = new ObjectInputStream(bais) {
2611                 @Override
2612                 protected Class<?> resolveClass(ObjectStreamClass osClass)
2613                         throws IOException, ClassNotFoundException {
2614                     // try the custom classloader if provided
2615                     if (loader != null) {
2616                         Class<?> c = Class.forName(osClass.getName(), false, loader);
2617                         if (c != null) {
2618                             return c;
2619                         }
2620                     }
2621                     return super.resolveClass(osClass);
2622                 }
2623             };
2624             return (Serializable) ois.readObject();
2625         } catch (IOException ioe) {
2626             throw new RuntimeException("Parcelable encountered " +
2627                 "IOException reading a Serializable object (name = " + name +
2628                 ")", ioe);
2629         } catch (ClassNotFoundException cnfe) {
2630             throw new RuntimeException("Parcelable encountered " +
2631                 "ClassNotFoundException reading a Serializable object (name = "
2632                 + name + ")", cnfe);
2633         }
2634     }
2635 
2636     // Cache of previously looked up CREATOR.createFromParcel() methods for
2637     // particular classes.  Keys are the names of the classes, values are
2638     // Method objects.
2639     private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>>
2640         mCreators = new HashMap<>();
2641 
2642     /** @hide for internal use only. */
obtain(int obj)2643     static protected final Parcel obtain(int obj) {
2644         throw new UnsupportedOperationException();
2645     }
2646 
2647     /** @hide */
obtain(long obj)2648     static protected final Parcel obtain(long obj) {
2649         final Parcel[] pool = sHolderPool;
2650         synchronized (pool) {
2651             Parcel p;
2652             for (int i=0; i<POOL_SIZE; i++) {
2653                 p = pool[i];
2654                 if (p != null) {
2655                     pool[i] = null;
2656                     if (DEBUG_RECYCLE) {
2657                         p.mStack = new RuntimeException();
2658                     }
2659                     p.init(obj);
2660                     return p;
2661                 }
2662             }
2663         }
2664         return new Parcel(obj);
2665     }
2666 
Parcel(long nativePtr)2667     private Parcel(long nativePtr) {
2668         if (DEBUG_RECYCLE) {
2669             mStack = new RuntimeException();
2670         }
2671         //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2672         init(nativePtr);
2673     }
2674 
init(long nativePtr)2675     private void init(long nativePtr) {
2676         if (nativePtr != 0) {
2677             mNativePtr = nativePtr;
2678             mOwnsNativeParcelObject = false;
2679         } else {
2680             mNativePtr = nativeCreate();
2681             mOwnsNativeParcelObject = true;
2682         }
2683     }
2684 
freeBuffer()2685     private void freeBuffer() {
2686         if (mOwnsNativeParcelObject) {
2687             updateNativeSize(nativeFreeBuffer(mNativePtr));
2688         }
2689     }
2690 
destroy()2691     private void destroy() {
2692         if (mNativePtr != 0) {
2693             if (mOwnsNativeParcelObject) {
2694                 nativeDestroy(mNativePtr);
2695                 updateNativeSize(0);
2696             }
2697             mNativePtr = 0;
2698         }
2699     }
2700 
2701     @Override
finalize()2702     protected void finalize() throws Throwable {
2703         if (DEBUG_RECYCLE) {
2704             if (mStack != null) {
2705                 Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2706             }
2707         }
2708         destroy();
2709     }
2710 
readMapInternal(Map outVal, int N, ClassLoader loader)2711     /* package */ void readMapInternal(Map outVal, int N,
2712         ClassLoader loader) {
2713         while (N > 0) {
2714             Object key = readValue(loader);
2715             Object value = readValue(loader);
2716             outVal.put(key, value);
2717             N--;
2718         }
2719     }
2720 
readArrayMapInternal(ArrayMap outVal, int N, ClassLoader loader)2721     /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2722         ClassLoader loader) {
2723         if (DEBUG_ARRAY_MAP) {
2724             RuntimeException here =  new RuntimeException("here");
2725             here.fillInStackTrace();
2726             Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2727         }
2728         int startPos;
2729         while (N > 0) {
2730             if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2731             String key = readString();
2732             Object value = readValue(loader);
2733             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2734                     + (dataPosition()-startPos) + " bytes: key=0x"
2735                     + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2736             outVal.append(key, value);
2737             N--;
2738         }
2739         outVal.validate();
2740     }
2741 
readArrayMapSafelyInternal(ArrayMap outVal, int N, ClassLoader loader)2742     /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2743         ClassLoader loader) {
2744         if (DEBUG_ARRAY_MAP) {
2745             RuntimeException here =  new RuntimeException("here");
2746             here.fillInStackTrace();
2747             Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2748         }
2749         while (N > 0) {
2750             String key = readString();
2751             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2752                     + (key != null ? key.hashCode() : 0) + " " + key);
2753             Object value = readValue(loader);
2754             outVal.put(key, value);
2755             N--;
2756         }
2757     }
2758 
2759     /**
2760      * @hide For testing only.
2761      */
readArrayMap(ArrayMap outVal, ClassLoader loader)2762     public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
2763         final int N = readInt();
2764         if (N < 0) {
2765             return;
2766         }
2767         readArrayMapInternal(outVal, N, loader);
2768     }
2769 
2770     /**
2771      * Reads an array set.
2772      *
2773      * @param loader The class loader to use.
2774      *
2775      * @hide
2776      */
readArraySet(ClassLoader loader)2777     public @Nullable ArraySet<? extends Object> readArraySet(ClassLoader loader) {
2778         final int size = readInt();
2779         if (size < 0) {
2780             return null;
2781         }
2782         ArraySet<Object> result = new ArraySet<>(size);
2783         for (int i = 0; i < size; i++) {
2784             Object value = readValue(loader);
2785             result.append(value);
2786         }
2787         return result;
2788     }
2789 
readListInternal(List outVal, int N, ClassLoader loader)2790     private void readListInternal(List outVal, int N,
2791         ClassLoader loader) {
2792         while (N > 0) {
2793             Object value = readValue(loader);
2794             //Log.d(TAG, "Unmarshalling value=" + value);
2795             outVal.add(value);
2796             N--;
2797         }
2798     }
2799 
readArrayInternal(Object[] outVal, int N, ClassLoader loader)2800     private void readArrayInternal(Object[] outVal, int N,
2801         ClassLoader loader) {
2802         for (int i = 0; i < N; i++) {
2803             Object value = readValue(loader);
2804             //Log.d(TAG, "Unmarshalling value=" + value);
2805             outVal[i] = value;
2806         }
2807     }
2808 
readSparseArrayInternal(SparseArray outVal, int N, ClassLoader loader)2809     private void readSparseArrayInternal(SparseArray outVal, int N,
2810         ClassLoader loader) {
2811         while (N > 0) {
2812             int key = readInt();
2813             Object value = readValue(loader);
2814             //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2815             outVal.append(key, value);
2816             N--;
2817         }
2818     }
2819 
2820 
readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N)2821     private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2822         while (N > 0) {
2823             int key = readInt();
2824             boolean value = this.readByte() == 1;
2825             //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2826             outVal.append(key, value);
2827             N--;
2828         }
2829     }
2830 
2831     /**
2832      * @hide For testing
2833      */
getBlobAshmemSize()2834     public long getBlobAshmemSize() {
2835         return nativeGetBlobAshmemSize(mNativePtr);
2836     }
2837 }
2838