• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  *  Copyright (C) 2014 The Android Open Source Project
4  *  Copyright 2003 - 2004 Open Interface North America, Inc. All rights reserved.
5  *
6  *  Licensed under the Apache License, Version 2.0 (the "License");
7  *  you may not use this file except in compliance with the License.
8  *  You may obtain a copy of the License at:
9  *
10  *  http://www.apache.org/licenses/LICENSE-2.0
11  *
12  *  Unless required by applicable law or agreed to in writing, software
13  *  distributed under the License is distributed on an "AS IS" BASIS,
14  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  *  See the License for the specific language governing permissions and
16  *  limitations under the License.
17  *
18  ******************************************************************************/
19 
20 /**********************************************************************************
21   $Revision: #1 $
22 ***********************************************************************************/
23 
24 /** @file
25 @ingroup codec_internal
26 */
27 
28 /**@addgroup codec_internal*/
29 /**@{*/
30 
31 /*
32  * Performs an 8-point Type-II scaled DCT using the Arai-Agui-Nakajima
33  * factorization. The scaling factors are folded into the windowing
34  * constants. 29 adds and 5 16x32 multiplies per 8 samples.
35  */
36 
37 #include "oi_codec_sbc_private.h"
38 
39 #define AAN_C4_FIX (759250125)/* S1.30  759250125   0.707107*/
40 
41 #define AAN_C6_FIX (410903207)/* S1.30  410903207   0.382683*/
42 
43 #define AAN_Q0_FIX (581104888)/* S1.30  581104888   0.541196*/
44 
45 #define AAN_Q1_FIX (1402911301)/* S1.30 1402911301   1.306563*/
46 
47 /** Scales x by y bits to the right, adding a rounding factor.
48  */
49 #ifndef SCALE
50 #define SCALE(x, y) (((x) + (1 <<((y)-1))) >> (y))
51 #endif
52 
53 /**
54  * Default C language implementation of a 32x32->32 multiply. This function may
55  * be replaced by a platform-specific version for speed.
56  *
57  * @param u A signed 32-bit multiplicand
58  * @param v A signed 32-bit multiplier
59 
60  * @return  A signed 32-bit value corresponding to the 32 most significant bits
61  * of the 64-bit product of u and v.
62  */
default_mul_32s_32s_hi(OI_INT32 u,OI_INT32 v)63 INLINE OI_INT32 default_mul_32s_32s_hi(OI_INT32 u, OI_INT32 v)
64 {
65     OI_UINT32 u0, v0;
66     OI_INT32 u1, v1, w1, w2, t;
67 
68     u0 = u & 0xFFFF; u1 = u >> 16;
69     v0 = v & 0xFFFF; v1 = v >> 16;
70     t = u0*v0;
71     t = u1*v0 + ((OI_UINT32)t >> 16);
72     w1 = t & 0xFFFF;
73     w2 = t >> 16;
74     w1 = u0*v1 + w1;
75     return u1*v1 + w2 + (w1 >> 16);
76 }
77 
78 #define MUL_32S_32S_HI(_x, _y) default_mul_32s_32s_hi(_x, _y)
79 
80 
81 #ifdef DEBUG_DCT
float_dct2_8(float * RESTRICT out,OI_INT32 const * RESTRICT in)82 PRIVATE void float_dct2_8(float * RESTRICT out, OI_INT32 const *RESTRICT in)
83 {
84 #define FIX(x,bits) (((int)floor(0.5f+((x)*((float)(1<<bits)))))/((float)(1<<bits)))
85 #define FLOAT_BUTTERFLY(x,y) x += y; y = x - (y*2); OI_ASSERT(VALID_INT32(x)); OI_ASSERT(VALID_INT32(y));
86 #define FLOAT_MULT_DCT(K, sample) (FIX(K,20) * sample)
87 #define FLOAT_SCALE(x, y) (((x) / (double)(1 << (y))))
88 
89     double L00,L01,L02,L03,L04,L05,L06,L07;
90     double L25;
91 
92     double in0,in1,in2,in3;
93     double in4,in5,in6,in7;
94 
95     in0 = FLOAT_SCALE(in[0], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in0));
96     in1 = FLOAT_SCALE(in[1], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in1));
97     in2 = FLOAT_SCALE(in[2], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in2));
98     in3 = FLOAT_SCALE(in[3], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in3));
99     in4 = FLOAT_SCALE(in[4], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in4));
100     in5 = FLOAT_SCALE(in[5], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in5));
101     in6 = FLOAT_SCALE(in[6], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in6));
102     in7 = FLOAT_SCALE(in[7], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in7));
103 
104     L00 = (in0 + in7); OI_ASSERT(VALID_INT32(L00));
105     L01 = (in1 + in6); OI_ASSERT(VALID_INT32(L01));
106     L02 = (in2 + in5); OI_ASSERT(VALID_INT32(L02));
107     L03 = (in3 + in4); OI_ASSERT(VALID_INT32(L03));
108 
109     L04 = (in3 - in4); OI_ASSERT(VALID_INT32(L04));
110     L05 = (in2 - in5); OI_ASSERT(VALID_INT32(L05));
111     L06 = (in1 - in6); OI_ASSERT(VALID_INT32(L06));
112     L07 = (in0 - in7); OI_ASSERT(VALID_INT32(L07));
113 
114     FLOAT_BUTTERFLY(L00, L03);
115     FLOAT_BUTTERFLY(L01, L02);
116 
117     L02 += L03; OI_ASSERT(VALID_INT32(L02));
118 
119     L02 = FLOAT_MULT_DCT(AAN_C4_FLOAT, L02); OI_ASSERT(VALID_INT32(L02));
120 
121     FLOAT_BUTTERFLY(L00, L01);
122 
123     out[0] = (float)FLOAT_SCALE(L00, DCTII_8_SHIFT_0); OI_ASSERT(VALID_INT16(out[0]));
124     out[4] = (float)FLOAT_SCALE(L01, DCTII_8_SHIFT_4); OI_ASSERT(VALID_INT16(out[4]));
125 
126     FLOAT_BUTTERFLY(L03, L02);
127     out[6] = (float)FLOAT_SCALE(L02, DCTII_8_SHIFT_6); OI_ASSERT(VALID_INT16(out[6]));
128     out[2] = (float)FLOAT_SCALE(L03, DCTII_8_SHIFT_2); OI_ASSERT(VALID_INT16(out[2]));
129 
130     L04 += L05; OI_ASSERT(VALID_INT32(L04));
131     L05 += L06; OI_ASSERT(VALID_INT32(L05));
132     L06 += L07; OI_ASSERT(VALID_INT32(L06));
133 
134     L04/=2;
135     L05/=2;
136     L06/=2;
137     L07/=2;
138 
139     L05 = FLOAT_MULT_DCT(AAN_C4_FLOAT, L05); OI_ASSERT(VALID_INT32(L05));
140 
141     L25 = L06 - L04; OI_ASSERT(VALID_INT32(L25));
142     L25 = FLOAT_MULT_DCT(AAN_C6_FLOAT, L25); OI_ASSERT(VALID_INT32(L25));
143 
144     L04 = FLOAT_MULT_DCT(AAN_Q0_FLOAT, L04); OI_ASSERT(VALID_INT32(L04));
145     L04 -= L25; OI_ASSERT(VALID_INT32(L04));
146 
147     L06 = FLOAT_MULT_DCT(AAN_Q1_FLOAT, L06); OI_ASSERT(VALID_INT32(L06));
148     L06 -= L25; OI_ASSERT(VALID_INT32(L25));
149 
150     FLOAT_BUTTERFLY(L07, L05);
151 
152     FLOAT_BUTTERFLY(L05, L04);
153     out[3] = (float)(FLOAT_SCALE(L04, DCTII_8_SHIFT_3-1)); OI_ASSERT(VALID_INT16(out[3]));
154     out[5] = (float)(FLOAT_SCALE(L05, DCTII_8_SHIFT_5-1)); OI_ASSERT(VALID_INT16(out[5]));
155 
156     FLOAT_BUTTERFLY(L07, L06);
157     out[7] = (float)(FLOAT_SCALE(L06, DCTII_8_SHIFT_7-1)); OI_ASSERT(VALID_INT16(out[7]));
158     out[1] = (float)(FLOAT_SCALE(L07, DCTII_8_SHIFT_1-1)); OI_ASSERT(VALID_INT16(out[1]));
159 }
160 #undef BUTTERFLY
161 #endif
162 
163 
164 /*
165  * This function calculates the AAN DCT. Its inputs are in S16.15 format, as
166  * returned by OI_SBC_Dequant. In practice, abs(in[x]) < 52429.0 / 1.38
167  * (1244918057 integer). The function it computes is an approximation to the array defined
168  * by:
169  *
170  * diag(aan_s) * AAN= C2
171  *
172  *   or
173  *
174  * AAN = diag(1/aan_s) * C2
175  *
176  * where C2 is as it is defined in the comment at the head of this file, and
177  *
178  * aan_s[i] = aan_s = 1/(2*cos(i*pi/16)) with i = 1..7, aan_s[0] = 1;
179  *
180  * aan_s[i] = [ 1.000  0.510  0.541  0.601  0.707  0.900  1.307  2.563 ]
181  *
182  * The output ranges are shown as follows:
183  *
184  * Let Y[0..7] = AAN * X[0..7]
185  *
186  * Without loss of generality, assume the input vector X consists of elements
187  * between -1 and 1. The maximum possible value of a given output element occurs
188  * with some particular combination of input vector elements each of which is -1
189  * or 1. Consider the computation of Y[i]. Y[i] = sum t=0..7 of AAN[t,i]*X[i]. Y is
190  * maximized if the sign of X[i] matches the sign of AAN[t,i], ensuring a
191  * positive contribution to the sum. Equivalently, one may simply sum
192  * abs(AAN)[t,i] over t to get the maximum possible value of Y[i].
193  *
194  * This yields approximately [8.00  10.05   9.66   8.52   8.00   5.70   4.00   2.00]
195  *
196  * Given the maximum magnitude sensible input value of +/-37992, this yields the
197  * following vector of maximum output magnitudes:
198  *
199  * [ 303936  381820  367003  323692  303936  216555  151968   75984 ]
200  *
201  * Ultimately, these values must fit into 16 bit signed integers, so they must
202  * be scaled. A non-uniform scaling helps maximize the kept precision. The
203  * relative number of extra bits of precision maintainable with respect to the
204  * largest value is given here:
205  *
206  * [ 0  0  0  0  0  0  1  2 ]
207  *
208  */
dct2_8(SBC_BUFFER_T * RESTRICT out,OI_INT32 const * RESTRICT in)209 PRIVATE void dct2_8(SBC_BUFFER_T * RESTRICT out, OI_INT32 const *RESTRICT in)
210 {
211 #define BUTTERFLY(x,y) x += y; y = x - (y<<1);
212 #define FIX_MULT_DCT(K, x) (MUL_32S_32S_HI(K,x)<<2)
213 
214     OI_INT32 L00,L01,L02,L03,L04,L05,L06,L07;
215     OI_INT32 L25;
216 
217     OI_INT32 in0,in1,in2,in3;
218     OI_INT32 in4,in5,in6,in7;
219 
220 #if DCTII_8_SHIFT_IN != 0
221     in0 = SCALE(in[0], DCTII_8_SHIFT_IN);
222     in1 = SCALE(in[1], DCTII_8_SHIFT_IN);
223     in2 = SCALE(in[2], DCTII_8_SHIFT_IN);
224     in3 = SCALE(in[3], DCTII_8_SHIFT_IN);
225     in4 = SCALE(in[4], DCTII_8_SHIFT_IN);
226     in5 = SCALE(in[5], DCTII_8_SHIFT_IN);
227     in6 = SCALE(in[6], DCTII_8_SHIFT_IN);
228     in7 = SCALE(in[7], DCTII_8_SHIFT_IN);
229 #else
230     in0 = in[0];
231     in1 = in[1];
232     in2 = in[2];
233     in3 = in[3];
234     in4 = in[4];
235     in5 = in[5];
236     in6 = in[6];
237     in7 = in[7];
238 #endif
239 
240     L00 = in0 + in7;
241     L01 = in1 + in6;
242     L02 = in2 + in5;
243     L03 = in3 + in4;
244 
245     L04 = in3 - in4;
246     L05 = in2 - in5;
247     L06 = in1 - in6;
248     L07 = in0 - in7;
249 
250     BUTTERFLY(L00, L03);
251     BUTTERFLY(L01, L02);
252 
253     L02 += L03;
254 
255     L02 = FIX_MULT_DCT(AAN_C4_FIX, L02);
256 
257     BUTTERFLY(L00, L01);
258 
259     out[0] = (OI_INT16)SCALE(L00, DCTII_8_SHIFT_0);
260     out[4] = (OI_INT16)SCALE(L01, DCTII_8_SHIFT_4);
261 
262     BUTTERFLY(L03, L02);
263     out[6] = (OI_INT16)SCALE(L02, DCTII_8_SHIFT_6);
264     out[2] = (OI_INT16)SCALE(L03, DCTII_8_SHIFT_2);
265 
266     L04 += L05;
267     L05 += L06;
268     L06 += L07;
269 
270     L04/=2;
271     L05/=2;
272     L06/=2;
273     L07/=2;
274 
275     L05 = FIX_MULT_DCT(AAN_C4_FIX, L05);
276 
277     L25 = L06 - L04;
278     L25 = FIX_MULT_DCT(AAN_C6_FIX, L25);
279 
280     L04 = FIX_MULT_DCT(AAN_Q0_FIX, L04);
281     L04 -= L25;
282 
283     L06 = FIX_MULT_DCT(AAN_Q1_FIX, L06);
284     L06 -= L25;
285 
286     BUTTERFLY(L07, L05);
287 
288     BUTTERFLY(L05, L04);
289     out[3] = (OI_INT16)SCALE(L04, DCTII_8_SHIFT_3-1);
290     out[5] = (OI_INT16)SCALE(L05, DCTII_8_SHIFT_5-1);
291 
292     BUTTERFLY(L07, L06);
293     out[7] = (OI_INT16)SCALE(L06, DCTII_8_SHIFT_7-1);
294     out[1] = (OI_INT16)SCALE(L07, DCTII_8_SHIFT_1-1);
295 #undef BUTTERFLY
296 
297 #ifdef DEBUG_DCT
298     {
299         float float_out[8];
300         float_dct2_8(float_out, in);
301     }
302 #endif
303 }
304 
305 /**@}*/
306