1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/Support/Debug.h"
16 #include "llvm/Target/CostTable.h"
17 #include "llvm/Target/TargetLowering.h"
18 #include <algorithm>
19 using namespace llvm;
20
21 #define DEBUG_TYPE "aarch64tti"
22
23 /// \brief Calculate the cost of materializing a 64-bit value. This helper
24 /// method might only calculate a fraction of a larger immediate. Therefore it
25 /// is valid to return a cost of ZERO.
getIntImmCost(int64_t Val)26 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
27 // Check if the immediate can be encoded within an instruction.
28 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
29 return 0;
30
31 if (Val < 0)
32 Val = ~Val;
33
34 // Calculate how many moves we will need to materialize this constant.
35 unsigned LZ = countLeadingZeros((uint64_t)Val);
36 return (64 - LZ + 15) / 16;
37 }
38
39 /// \brief Calculate the cost of materializing the given constant.
getIntImmCost(const APInt & Imm,Type * Ty)40 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
41 assert(Ty->isIntegerTy());
42
43 unsigned BitSize = Ty->getPrimitiveSizeInBits();
44 if (BitSize == 0)
45 return ~0U;
46
47 // Sign-extend all constants to a multiple of 64-bit.
48 APInt ImmVal = Imm;
49 if (BitSize & 0x3f)
50 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
51
52 // Split the constant into 64-bit chunks and calculate the cost for each
53 // chunk.
54 int Cost = 0;
55 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
56 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
57 int64_t Val = Tmp.getSExtValue();
58 Cost += getIntImmCost(Val);
59 }
60 // We need at least one instruction to materialze the constant.
61 return std::max(1, Cost);
62 }
63
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)64 int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
65 const APInt &Imm, Type *Ty) {
66 assert(Ty->isIntegerTy());
67
68 unsigned BitSize = Ty->getPrimitiveSizeInBits();
69 // There is no cost model for constants with a bit size of 0. Return TCC_Free
70 // here, so that constant hoisting will ignore this constant.
71 if (BitSize == 0)
72 return TTI::TCC_Free;
73
74 unsigned ImmIdx = ~0U;
75 switch (Opcode) {
76 default:
77 return TTI::TCC_Free;
78 case Instruction::GetElementPtr:
79 // Always hoist the base address of a GetElementPtr.
80 if (Idx == 0)
81 return 2 * TTI::TCC_Basic;
82 return TTI::TCC_Free;
83 case Instruction::Store:
84 ImmIdx = 0;
85 break;
86 case Instruction::Add:
87 case Instruction::Sub:
88 case Instruction::Mul:
89 case Instruction::UDiv:
90 case Instruction::SDiv:
91 case Instruction::URem:
92 case Instruction::SRem:
93 case Instruction::And:
94 case Instruction::Or:
95 case Instruction::Xor:
96 case Instruction::ICmp:
97 ImmIdx = 1;
98 break;
99 // Always return TCC_Free for the shift value of a shift instruction.
100 case Instruction::Shl:
101 case Instruction::LShr:
102 case Instruction::AShr:
103 if (Idx == 1)
104 return TTI::TCC_Free;
105 break;
106 case Instruction::Trunc:
107 case Instruction::ZExt:
108 case Instruction::SExt:
109 case Instruction::IntToPtr:
110 case Instruction::PtrToInt:
111 case Instruction::BitCast:
112 case Instruction::PHI:
113 case Instruction::Call:
114 case Instruction::Select:
115 case Instruction::Ret:
116 case Instruction::Load:
117 break;
118 }
119
120 if (Idx == ImmIdx) {
121 int NumConstants = (BitSize + 63) / 64;
122 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
123 return (Cost <= NumConstants * TTI::TCC_Basic)
124 ? static_cast<int>(TTI::TCC_Free)
125 : Cost;
126 }
127 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
128 }
129
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)130 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
131 const APInt &Imm, Type *Ty) {
132 assert(Ty->isIntegerTy());
133
134 unsigned BitSize = Ty->getPrimitiveSizeInBits();
135 // There is no cost model for constants with a bit size of 0. Return TCC_Free
136 // here, so that constant hoisting will ignore this constant.
137 if (BitSize == 0)
138 return TTI::TCC_Free;
139
140 switch (IID) {
141 default:
142 return TTI::TCC_Free;
143 case Intrinsic::sadd_with_overflow:
144 case Intrinsic::uadd_with_overflow:
145 case Intrinsic::ssub_with_overflow:
146 case Intrinsic::usub_with_overflow:
147 case Intrinsic::smul_with_overflow:
148 case Intrinsic::umul_with_overflow:
149 if (Idx == 1) {
150 int NumConstants = (BitSize + 63) / 64;
151 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
152 return (Cost <= NumConstants * TTI::TCC_Basic)
153 ? static_cast<int>(TTI::TCC_Free)
154 : Cost;
155 }
156 break;
157 case Intrinsic::experimental_stackmap:
158 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
159 return TTI::TCC_Free;
160 break;
161 case Intrinsic::experimental_patchpoint_void:
162 case Intrinsic::experimental_patchpoint_i64:
163 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
164 return TTI::TCC_Free;
165 break;
166 }
167 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
168 }
169
170 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)171 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
172 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
173 if (TyWidth == 32 || TyWidth == 64)
174 return TTI::PSK_FastHardware;
175 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
176 return TTI::PSK_Software;
177 }
178
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src)179 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
180 int ISD = TLI->InstructionOpcodeToISD(Opcode);
181 assert(ISD && "Invalid opcode");
182
183 EVT SrcTy = TLI->getValueType(DL, Src);
184 EVT DstTy = TLI->getValueType(DL, Dst);
185
186 if (!SrcTy.isSimple() || !DstTy.isSimple())
187 return BaseT::getCastInstrCost(Opcode, Dst, Src);
188
189 static const TypeConversionCostTblEntry
190 ConversionTbl[] = {
191 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
192 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
193 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
194 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
195
196 // The number of shll instructions for the extension.
197 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
198 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
199 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
200 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
201 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
202 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
203 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
204 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
205 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
206 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
207 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
208 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
209 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
210 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
211 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
212 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
213
214 // LowerVectorINT_TO_FP:
215 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
216 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
217 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
218 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
219 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
220 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
221
222 // Complex: to v2f32
223 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
224 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
225 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
226 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
227 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
228 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
229
230 // Complex: to v4f32
231 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
232 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
233 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
234 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
235
236 // Complex: to v8f32
237 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
238 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
239 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
240 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
241
242 // Complex: to v16f32
243 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
244 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
245
246 // Complex: to v2f64
247 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
248 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
249 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
250 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
251 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
252 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
253
254
255 // LowerVectorFP_TO_INT
256 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
257 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
258 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
259 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
260 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
261 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
262
263 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
264 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
265 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
266 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
267 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
268 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
269 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
270
271 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
272 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
273 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
274 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
275 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
276
277 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
278 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
279 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
280 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
281 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
282 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
283 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
284 };
285
286 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
287 DstTy.getSimpleVT(),
288 SrcTy.getSimpleVT()))
289 return Entry->Cost;
290
291 return BaseT::getCastInstrCost(Opcode, Dst, Src);
292 }
293
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)294 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
295 unsigned Index) {
296 assert(Val->isVectorTy() && "This must be a vector type");
297
298 if (Index != -1U) {
299 // Legalize the type.
300 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
301
302 // This type is legalized to a scalar type.
303 if (!LT.second.isVector())
304 return 0;
305
306 // The type may be split. Normalize the index to the new type.
307 unsigned Width = LT.second.getVectorNumElements();
308 Index = Index % Width;
309
310 // The element at index zero is already inside the vector.
311 if (Index == 0)
312 return 0;
313 }
314
315 // All other insert/extracts cost this much.
316 return 3;
317 }
318
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Opd1Info,TTI::OperandValueKind Opd2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo)319 int AArch64TTIImpl::getArithmeticInstrCost(
320 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
321 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
322 TTI::OperandValueProperties Opd2PropInfo) {
323 // Legalize the type.
324 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
325
326 int ISD = TLI->InstructionOpcodeToISD(Opcode);
327
328 if (ISD == ISD::SDIV &&
329 Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
330 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
331 // On AArch64, scalar signed division by constants power-of-two are
332 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
333 // The OperandValue properties many not be same as that of previous
334 // operation; conservatively assume OP_None.
335 int Cost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
336 TargetTransformInfo::OP_None,
337 TargetTransformInfo::OP_None);
338 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
339 TargetTransformInfo::OP_None,
340 TargetTransformInfo::OP_None);
341 Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
342 TargetTransformInfo::OP_None,
343 TargetTransformInfo::OP_None);
344 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
345 TargetTransformInfo::OP_None,
346 TargetTransformInfo::OP_None);
347 return Cost;
348 }
349
350 switch (ISD) {
351 default:
352 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
353 Opd1PropInfo, Opd2PropInfo);
354 case ISD::ADD:
355 case ISD::MUL:
356 case ISD::XOR:
357 case ISD::OR:
358 case ISD::AND:
359 // These nodes are marked as 'custom' for combining purposes only.
360 // We know that they are legal. See LowerAdd in ISelLowering.
361 return 1 * LT.first;
362 }
363 }
364
getAddressComputationCost(Type * Ty,bool IsComplex)365 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
366 // Address computations in vectorized code with non-consecutive addresses will
367 // likely result in more instructions compared to scalar code where the
368 // computation can more often be merged into the index mode. The resulting
369 // extra micro-ops can significantly decrease throughput.
370 unsigned NumVectorInstToHideOverhead = 10;
371
372 if (Ty->isVectorTy() && IsComplex)
373 return NumVectorInstToHideOverhead;
374
375 // In many cases the address computation is not merged into the instruction
376 // addressing mode.
377 return 1;
378 }
379
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy)380 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
381 Type *CondTy) {
382
383 int ISD = TLI->InstructionOpcodeToISD(Opcode);
384 // We don't lower some vector selects well that are wider than the register
385 // width.
386 if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
387 // We would need this many instructions to hide the scalarization happening.
388 const int AmortizationCost = 20;
389 static const TypeConversionCostTblEntry
390 VectorSelectTbl[] = {
391 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
392 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
393 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
394 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
395 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
396 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
397 };
398
399 EVT SelCondTy = TLI->getValueType(DL, CondTy);
400 EVT SelValTy = TLI->getValueType(DL, ValTy);
401 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
402 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
403 SelCondTy.getSimpleVT(),
404 SelValTy.getSimpleVT()))
405 return Entry->Cost;
406 }
407 }
408 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
409 }
410
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)411 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
412 unsigned Alignment, unsigned AddressSpace) {
413 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
414
415 if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
416 Src->getVectorElementType()->isIntegerTy(64)) {
417 // Unaligned stores are extremely inefficient. We don't split
418 // unaligned v2i64 stores because the negative impact that has shown in
419 // practice on inlined memcpy code.
420 // We make v2i64 stores expensive so that we will only vectorize if there
421 // are 6 other instructions getting vectorized.
422 int AmortizationCost = 6;
423
424 return LT.first * 2 * AmortizationCost;
425 }
426
427 if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
428 Src->getVectorNumElements() < 8) {
429 // We scalarize the loads/stores because there is not v.4b register and we
430 // have to promote the elements to v.4h.
431 unsigned NumVecElts = Src->getVectorNumElements();
432 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
433 // We generate 2 instructions per vector element.
434 return NumVectorizableInstsToAmortize * NumVecElts * 2;
435 }
436
437 return LT.first;
438 }
439
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace)440 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
441 unsigned Factor,
442 ArrayRef<unsigned> Indices,
443 unsigned Alignment,
444 unsigned AddressSpace) {
445 assert(Factor >= 2 && "Invalid interleave factor");
446 assert(isa<VectorType>(VecTy) && "Expect a vector type");
447
448 if (Factor <= TLI->getMaxSupportedInterleaveFactor()) {
449 unsigned NumElts = VecTy->getVectorNumElements();
450 Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
451 unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
452
453 // ldN/stN only support legal vector types of size 64 or 128 in bits.
454 if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
455 return Factor;
456 }
457
458 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
459 Alignment, AddressSpace);
460 }
461
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)462 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
463 int Cost = 0;
464 for (auto *I : Tys) {
465 if (!I->isVectorTy())
466 continue;
467 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
468 Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
469 getMemoryOpCost(Instruction::Load, I, 128, 0);
470 }
471 return Cost;
472 }
473
getMaxInterleaveFactor(unsigned VF)474 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
475 if (ST->isCortexA57())
476 return 4;
477 return 2;
478 }
479
getUnrollingPreferences(Loop * L,TTI::UnrollingPreferences & UP)480 void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
481 TTI::UnrollingPreferences &UP) {
482 // Enable partial unrolling and runtime unrolling.
483 BaseT::getUnrollingPreferences(L, UP);
484
485 // For inner loop, it is more likely to be a hot one, and the runtime check
486 // can be promoted out from LICM pass, so the overhead is less, let's try
487 // a larger threshold to unroll more loops.
488 if (L->getLoopDepth() > 1)
489 UP.PartialThreshold *= 2;
490
491 // Disable partial & runtime unrolling on -Os.
492 UP.PartialOptSizeThreshold = 0;
493 }
494
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)495 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
496 Type *ExpectedType) {
497 switch (Inst->getIntrinsicID()) {
498 default:
499 return nullptr;
500 case Intrinsic::aarch64_neon_st2:
501 case Intrinsic::aarch64_neon_st3:
502 case Intrinsic::aarch64_neon_st4: {
503 // Create a struct type
504 StructType *ST = dyn_cast<StructType>(ExpectedType);
505 if (!ST)
506 return nullptr;
507 unsigned NumElts = Inst->getNumArgOperands() - 1;
508 if (ST->getNumElements() != NumElts)
509 return nullptr;
510 for (unsigned i = 0, e = NumElts; i != e; ++i) {
511 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
512 return nullptr;
513 }
514 Value *Res = UndefValue::get(ExpectedType);
515 IRBuilder<> Builder(Inst);
516 for (unsigned i = 0, e = NumElts; i != e; ++i) {
517 Value *L = Inst->getArgOperand(i);
518 Res = Builder.CreateInsertValue(Res, L, i);
519 }
520 return Res;
521 }
522 case Intrinsic::aarch64_neon_ld2:
523 case Intrinsic::aarch64_neon_ld3:
524 case Intrinsic::aarch64_neon_ld4:
525 if (Inst->getType() == ExpectedType)
526 return Inst;
527 return nullptr;
528 }
529 }
530
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)531 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
532 MemIntrinsicInfo &Info) {
533 switch (Inst->getIntrinsicID()) {
534 default:
535 break;
536 case Intrinsic::aarch64_neon_ld2:
537 case Intrinsic::aarch64_neon_ld3:
538 case Intrinsic::aarch64_neon_ld4:
539 Info.ReadMem = true;
540 Info.WriteMem = false;
541 Info.IsSimple = true;
542 Info.NumMemRefs = 1;
543 Info.PtrVal = Inst->getArgOperand(0);
544 break;
545 case Intrinsic::aarch64_neon_st2:
546 case Intrinsic::aarch64_neon_st3:
547 case Intrinsic::aarch64_neon_st4:
548 Info.ReadMem = false;
549 Info.WriteMem = true;
550 Info.IsSimple = true;
551 Info.NumMemRefs = 1;
552 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
553 break;
554 }
555
556 switch (Inst->getIntrinsicID()) {
557 default:
558 return false;
559 case Intrinsic::aarch64_neon_ld2:
560 case Intrinsic::aarch64_neon_st2:
561 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
562 break;
563 case Intrinsic::aarch64_neon_ld3:
564 case Intrinsic::aarch64_neon_st3:
565 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
566 break;
567 case Intrinsic::aarch64_neon_ld4:
568 case Intrinsic::aarch64_neon_st4:
569 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
570 break;
571 }
572 return true;
573 }
574