1 /*
2 * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty. In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18
19 #ifndef B2_MATH_H
20 #define B2_MATH_H
21
22 #include <Box2D/Common/b2Settings.h>
23
24 #include <cmath>
25 #include <cfloat>
26 #include <cstddef>
27 #include <float.h>
28
29 /// This function is used to ensure that a floating point number is
b2IsValid(float32 x)30 inline bool b2IsValid(float32 x)
31 {
32 int32 ix = *reinterpret_cast<int32*>(&x);
33 return (ix & 0x7f800000) != 0x7f800000;
34 }
35
36 /// This is a approximate yet fast inverse square-root.
b2InvSqrt(float32 x)37 inline float32 b2InvSqrt(float32 x)
38 {
39 union
40 {
41 float32 x;
42 int32 i;
43 } convert;
44
45 convert.x = x;
46 float32 xhalf = 0.5f * x;
47 convert.i = 0x5f3759df - (convert.i >> 1);
48 x = convert.x;
49 x = x * (1.5f - xhalf * x * x);
50 return x;
51 }
52
53 #define b2Sqrt(x) std::sqrt(x)
54 #define b2Atan2(y, x) std::atan2(y, x)
55
56 /// A 2D column vector.
57 struct b2Vec2
58 {
59 /// Default constructor does nothing (for performance).
b2Vec2b2Vec260 b2Vec2() {}
61
62 /// Construct using coordinates.
b2Vec2b2Vec263 b2Vec2(float32 x, float32 y) : x(x), y(y) {}
64
65 /// Set this vector to all zeros.
SetZerob2Vec266 void SetZero() { x = 0.0f; y = 0.0f; }
67
68 /// Set this vector to some specified coordinates.
Setb2Vec269 void Set(float32 x_, float32 y_) { x = x_; y = y_; }
70
71 /// Negate this vector.
72 b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
73
74 /// Read from and indexed element.
operatorb2Vec275 float32 operator () (int32 i) const
76 {
77 return (&x)[i];
78 }
79
80 /// Write to an indexed element.
operatorb2Vec281 float32& operator () (int32 i)
82 {
83 return (&x)[i];
84 }
85
86 /// Add a vector to this vector.
87 void operator += (const b2Vec2& v)
88 {
89 x += v.x; y += v.y;
90 }
91
92 /// Subtract a vector from this vector.
93 void operator -= (const b2Vec2& v)
94 {
95 x -= v.x; y -= v.y;
96 }
97
98 /// Multiply this vector by a scalar.
99 void operator *= (float32 a)
100 {
101 x *= a; y *= a;
102 }
103
104 /// Get the length of this vector (the norm).
Lengthb2Vec2105 float32 Length() const
106 {
107 return b2Sqrt(x * x + y * y);
108 }
109
110 /// Get the length squared. For performance, use this instead of
111 /// b2Vec2::Length (if possible).
LengthSquaredb2Vec2112 float32 LengthSquared() const
113 {
114 return x * x + y * y;
115 }
116
117 /// Convert this vector into a unit vector. Returns the length.
Normalizeb2Vec2118 float32 Normalize()
119 {
120 float32 length = Length();
121 if (length < b2_epsilon)
122 {
123 return 0.0f;
124 }
125 float32 invLength = 1.0f / length;
126 x *= invLength;
127 y *= invLength;
128
129 return length;
130 }
131
132 /// Does this vector contain finite coordinates?
IsValidb2Vec2133 bool IsValid() const
134 {
135 return b2IsValid(x) && b2IsValid(y);
136 }
137
138 /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
Skewb2Vec2139 b2Vec2 Skew() const
140 {
141 return b2Vec2(-y, x);
142 }
143
144 float32 x, y;
145 };
146
147 /// A 2D column vector with 3 elements.
148 struct b2Vec3
149 {
150 /// Default constructor does nothing (for performance).
b2Vec3b2Vec3151 b2Vec3() {}
152
153 /// Construct using coordinates.
b2Vec3b2Vec3154 b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {}
155
156 /// Set this vector to all zeros.
SetZerob2Vec3157 void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
158
159 /// Set this vector to some specified coordinates.
Setb2Vec3160 void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
161
162 /// Negate this vector.
163 b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
164
165 /// Add a vector to this vector.
166 void operator += (const b2Vec3& v)
167 {
168 x += v.x; y += v.y; z += v.z;
169 }
170
171 /// Subtract a vector from this vector.
172 void operator -= (const b2Vec3& v)
173 {
174 x -= v.x; y -= v.y; z -= v.z;
175 }
176
177 /// Multiply this vector by a scalar.
178 void operator *= (float32 s)
179 {
180 x *= s; y *= s; z *= s;
181 }
182
183 float32 x, y, z;
184 };
185
186 /// A 2-by-2 matrix. Stored in column-major order.
187 struct b2Mat22
188 {
189 /// The default constructor does nothing (for performance).
b2Mat22b2Mat22190 b2Mat22() {}
191
192 /// Construct this matrix using columns.
b2Mat22b2Mat22193 b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
194 {
195 ex = c1;
196 ey = c2;
197 }
198
199 /// Construct this matrix using scalars.
b2Mat22b2Mat22200 b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
201 {
202 ex.x = a11; ex.y = a21;
203 ey.x = a12; ey.y = a22;
204 }
205
206 /// Initialize this matrix using columns.
Setb2Mat22207 void Set(const b2Vec2& c1, const b2Vec2& c2)
208 {
209 ex = c1;
210 ey = c2;
211 }
212
213 /// Set this to the identity matrix.
SetIdentityb2Mat22214 void SetIdentity()
215 {
216 ex.x = 1.0f; ey.x = 0.0f;
217 ex.y = 0.0f; ey.y = 1.0f;
218 }
219
220 /// Set this matrix to all zeros.
SetZerob2Mat22221 void SetZero()
222 {
223 ex.x = 0.0f; ey.x = 0.0f;
224 ex.y = 0.0f; ey.y = 0.0f;
225 }
226
GetInverseb2Mat22227 b2Mat22 GetInverse() const
228 {
229 float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;
230 b2Mat22 B;
231 float32 det = a * d - b * c;
232 if (det != 0.0f)
233 {
234 det = 1.0f / det;
235 }
236 B.ex.x = det * d; B.ey.x = -det * b;
237 B.ex.y = -det * c; B.ey.y = det * a;
238 return B;
239 }
240
241 /// Solve A * x = b, where b is a column vector. This is more efficient
242 /// than computing the inverse in one-shot cases.
Solveb2Mat22243 b2Vec2 Solve(const b2Vec2& b) const
244 {
245 float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
246 float32 det = a11 * a22 - a12 * a21;
247 if (det != 0.0f)
248 {
249 det = 1.0f / det;
250 }
251 b2Vec2 x;
252 x.x = det * (a22 * b.x - a12 * b.y);
253 x.y = det * (a11 * b.y - a21 * b.x);
254 return x;
255 }
256
257 b2Vec2 ex, ey;
258 };
259
260 /// A 3-by-3 matrix. Stored in column-major order.
261 struct b2Mat33
262 {
263 /// The default constructor does nothing (for performance).
b2Mat33b2Mat33264 b2Mat33() {}
265
266 /// Construct this matrix using columns.
b2Mat33b2Mat33267 b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
268 {
269 ex = c1;
270 ey = c2;
271 ez = c3;
272 }
273
274 /// Set this matrix to all zeros.
SetZerob2Mat33275 void SetZero()
276 {
277 ex.SetZero();
278 ey.SetZero();
279 ez.SetZero();
280 }
281
282 /// Solve A * x = b, where b is a column vector. This is more efficient
283 /// than computing the inverse in one-shot cases.
284 b2Vec3 Solve33(const b2Vec3& b) const;
285
286 /// Solve A * x = b, where b is a column vector. This is more efficient
287 /// than computing the inverse in one-shot cases. Solve only the upper
288 /// 2-by-2 matrix equation.
289 b2Vec2 Solve22(const b2Vec2& b) const;
290
291 /// Get the inverse of this matrix as a 2-by-2.
292 /// Returns the zero matrix if singular.
293 void GetInverse22(b2Mat33* M) const;
294
295 /// Get the symmetric inverse of this matrix as a 3-by-3.
296 /// Returns the zero matrix if singular.
297 void GetSymInverse33(b2Mat33* M) const;
298
299 b2Vec3 ex, ey, ez;
300 };
301
302 /// Rotation
303 struct b2Rot
304 {
b2Rotb2Rot305 b2Rot() {}
306
307 /// Initialize from an angle in radians
b2Rotb2Rot308 explicit b2Rot(float32 angle)
309 {
310 /// TODO_ERIN optimize
311 s = sinf(angle);
312 c = cosf(angle);
313 }
314
315 /// Set using an angle in radians.
Setb2Rot316 void Set(float32 angle)
317 {
318 /// TODO_ERIN optimize
319 s = sinf(angle);
320 c = cosf(angle);
321 }
322
323 /// Set to the identity rotation
SetIdentityb2Rot324 void SetIdentity()
325 {
326 s = 0.0f;
327 c = 1.0f;
328 }
329
330 /// Get the angle in radians
GetAngleb2Rot331 float32 GetAngle() const
332 {
333 return b2Atan2(s, c);
334 }
335
336 /// Get the x-axis
GetXAxisb2Rot337 b2Vec2 GetXAxis() const
338 {
339 return b2Vec2(c, s);
340 }
341
342 /// Get the u-axis
GetYAxisb2Rot343 b2Vec2 GetYAxis() const
344 {
345 return b2Vec2(-s, c);
346 }
347
348 /// Sine and cosine
349 float32 s, c;
350 };
351
352 /// A transform contains translation and rotation. It is used to represent
353 /// the position and orientation of rigid frames.
354 struct b2Transform
355 {
356 /// The default constructor does nothing.
b2Transformb2Transform357 b2Transform() {}
358
359 /// Initialize using a position vector and a rotation.
b2Transformb2Transform360 b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
361
362 /// Set this to the identity transform.
SetIdentityb2Transform363 void SetIdentity()
364 {
365 p.SetZero();
366 q.SetIdentity();
367 }
368
369 /// Set this based on the position and angle.
Setb2Transform370 void Set(const b2Vec2& position, float32 angle)
371 {
372 p = position;
373 q.Set(angle);
374 }
375
376 b2Vec2 p;
377 b2Rot q;
378 };
379
380 /// This describes the motion of a body/shape for TOI computation.
381 /// Shapes are defined with respect to the body origin, which may
382 /// no coincide with the center of mass. However, to support dynamics
383 /// we must interpolate the center of mass position.
384 struct b2Sweep
385 {
386 /// Get the interpolated transform at a specific time.
387 /// @param beta is a factor in [0,1], where 0 indicates alpha0.
388 void GetTransform(b2Transform* xfb, float32 beta) const;
389
390 /// Advance the sweep forward, yielding a new initial state.
391 /// @param alpha the new initial time.
392 void Advance(float32 alpha);
393
394 /// Normalize the angles.
395 void Normalize();
396
397 b2Vec2 localCenter; ///< local center of mass position
398 b2Vec2 c0, c; ///< center world positions
399 float32 a0, a; ///< world angles
400
401 /// Fraction of the current time step in the range [0,1]
402 /// c0 and a0 are the positions at alpha0.
403 float32 alpha0;
404 };
405
406 /// Useful constant
407 extern const b2Vec2 b2Vec2_zero;
408
409 /// Perform the dot product on two vectors.
b2Dot(const b2Vec2 & a,const b2Vec2 & b)410 inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
411 {
412 return a.x * b.x + a.y * b.y;
413 }
414
415 /// Perform the cross product on two vectors. In 2D this produces a scalar.
b2Cross(const b2Vec2 & a,const b2Vec2 & b)416 inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
417 {
418 return a.x * b.y - a.y * b.x;
419 }
420
421 /// Perform the cross product on a vector and a scalar. In 2D this produces
422 /// a vector.
b2Cross(const b2Vec2 & a,float32 s)423 inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
424 {
425 return b2Vec2(s * a.y, -s * a.x);
426 }
427
428 /// Perform the cross product on a scalar and a vector. In 2D this produces
429 /// a vector.
b2Cross(float32 s,const b2Vec2 & a)430 inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
431 {
432 return b2Vec2(-s * a.y, s * a.x);
433 }
434
435 /// Multiply a matrix times a vector. If a rotation matrix is provided,
436 /// then this transforms the vector from one frame to another.
b2Mul(const b2Mat22 & A,const b2Vec2 & v)437 inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
438 {
439 return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
440 }
441
442 /// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
443 /// then this transforms the vector from one frame to another (inverse transform).
b2MulT(const b2Mat22 & A,const b2Vec2 & v)444 inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
445 {
446 return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
447 }
448
449 /// Add two vectors component-wise.
450 inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
451 {
452 return b2Vec2(a.x + b.x, a.y + b.y);
453 }
454
455 /// Subtract two vectors component-wise.
456 inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
457 {
458 return b2Vec2(a.x - b.x, a.y - b.y);
459 }
460
461 inline b2Vec2 operator * (float32 s, const b2Vec2& a)
462 {
463 return b2Vec2(s * a.x, s * a.y);
464 }
465
466 inline bool operator == (const b2Vec2& a, const b2Vec2& b)
467 {
468 return a.x == b.x && a.y == b.y;
469 }
470
b2Distance(const b2Vec2 & a,const b2Vec2 & b)471 inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
472 {
473 b2Vec2 c = a - b;
474 return c.Length();
475 }
476
b2DistanceSquared(const b2Vec2 & a,const b2Vec2 & b)477 inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
478 {
479 b2Vec2 c = a - b;
480 return b2Dot(c, c);
481 }
482
483 inline b2Vec3 operator * (float32 s, const b2Vec3& a)
484 {
485 return b2Vec3(s * a.x, s * a.y, s * a.z);
486 }
487
488 /// Add two vectors component-wise.
489 inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
490 {
491 return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
492 }
493
494 /// Subtract two vectors component-wise.
495 inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
496 {
497 return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
498 }
499
500 /// Perform the dot product on two vectors.
b2Dot(const b2Vec3 & a,const b2Vec3 & b)501 inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
502 {
503 return a.x * b.x + a.y * b.y + a.z * b.z;
504 }
505
506 /// Perform the cross product on two vectors.
b2Cross(const b2Vec3 & a,const b2Vec3 & b)507 inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
508 {
509 return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
510 }
511
512 inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
513 {
514 return b2Mat22(A.ex + B.ex, A.ey + B.ey);
515 }
516
517 // A * B
b2Mul(const b2Mat22 & A,const b2Mat22 & B)518 inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
519 {
520 return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
521 }
522
523 // A^T * B
b2MulT(const b2Mat22 & A,const b2Mat22 & B)524 inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
525 {
526 b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
527 b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
528 return b2Mat22(c1, c2);
529 }
530
531 /// Multiply a matrix times a vector.
b2Mul(const b2Mat33 & A,const b2Vec3 & v)532 inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
533 {
534 return v.x * A.ex + v.y * A.ey + v.z * A.ez;
535 }
536
537 /// Multiply a matrix times a vector.
b2Mul22(const b2Mat33 & A,const b2Vec2 & v)538 inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
539 {
540 return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
541 }
542
543 /// Multiply two rotations: q * r
b2Mul(const b2Rot & q,const b2Rot & r)544 inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
545 {
546 // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
547 // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc]
548 // s = qs * rc + qc * rs
549 // c = qc * rc - qs * rs
550 b2Rot qr;
551 qr.s = q.s * r.c + q.c * r.s;
552 qr.c = q.c * r.c - q.s * r.s;
553 return qr;
554 }
555
556 /// Transpose multiply two rotations: qT * r
b2MulT(const b2Rot & q,const b2Rot & r)557 inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
558 {
559 // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
560 // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
561 // s = qc * rs - qs * rc
562 // c = qc * rc + qs * rs
563 b2Rot qr;
564 qr.s = q.c * r.s - q.s * r.c;
565 qr.c = q.c * r.c + q.s * r.s;
566 return qr;
567 }
568
569 /// Rotate a vector
b2Mul(const b2Rot & q,const b2Vec2 & v)570 inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
571 {
572 return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
573 }
574
575 /// Inverse rotate a vector
b2MulT(const b2Rot & q,const b2Vec2 & v)576 inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
577 {
578 return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
579 }
580
b2Mul(const b2Transform & T,const b2Vec2 & v)581 inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
582 {
583 float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
584 float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
585
586 return b2Vec2(x, y);
587 }
588
b2MulT(const b2Transform & T,const b2Vec2 & v)589 inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
590 {
591 float32 px = v.x - T.p.x;
592 float32 py = v.y - T.p.y;
593 float32 x = (T.q.c * px + T.q.s * py);
594 float32 y = (-T.q.s * px + T.q.c * py);
595
596 return b2Vec2(x, y);
597 }
598
599 // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
600 // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
b2Mul(const b2Transform & A,const b2Transform & B)601 inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
602 {
603 b2Transform C;
604 C.q = b2Mul(A.q, B.q);
605 C.p = b2Mul(A.q, B.p) + A.p;
606 return C;
607 }
608
609 // v2 = A.q' * (B.q * v1 + B.p - A.p)
610 // = A.q' * B.q * v1 + A.q' * (B.p - A.p)
b2MulT(const b2Transform & A,const b2Transform & B)611 inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
612 {
613 b2Transform C;
614 C.q = b2MulT(A.q, B.q);
615 C.p = b2MulT(A.q, B.p - A.p);
616 return C;
617 }
618
619 template <typename T>
b2Abs(T a)620 inline T b2Abs(T a)
621 {
622 return a > T(0) ? a : -a;
623 }
624
b2Abs(const b2Vec2 & a)625 inline b2Vec2 b2Abs(const b2Vec2& a)
626 {
627 return b2Vec2(b2Abs(a.x), b2Abs(a.y));
628 }
629
b2Abs(const b2Mat22 & A)630 inline b2Mat22 b2Abs(const b2Mat22& A)
631 {
632 return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
633 }
634
635 template <typename T>
b2Min(T a,T b)636 inline T b2Min(T a, T b)
637 {
638 return a < b ? a : b;
639 }
640
b2Min(const b2Vec2 & a,const b2Vec2 & b)641 inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
642 {
643 return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
644 }
645
646 template <typename T>
b2Max(T a,T b)647 inline T b2Max(T a, T b)
648 {
649 return a > b ? a : b;
650 }
651
b2Max(const b2Vec2 & a,const b2Vec2 & b)652 inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
653 {
654 return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
655 }
656
657 template <typename T>
b2Clamp(T a,T low,T high)658 inline T b2Clamp(T a, T low, T high)
659 {
660 return b2Max(low, b2Min(a, high));
661 }
662
b2Clamp(const b2Vec2 & a,const b2Vec2 & low,const b2Vec2 & high)663 inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
664 {
665 return b2Max(low, b2Min(a, high));
666 }
667
b2Swap(T & a,T & b)668 template<typename T> inline void b2Swap(T& a, T& b)
669 {
670 T tmp = a;
671 a = b;
672 b = tmp;
673 }
674
675 /// "Next Largest Power of 2
676 /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
677 /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
678 /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
679 /// largest power of 2. For a 32-bit value:"
b2NextPowerOfTwo(uint32 x)680 inline uint32 b2NextPowerOfTwo(uint32 x)
681 {
682 x |= (x >> 1);
683 x |= (x >> 2);
684 x |= (x >> 4);
685 x |= (x >> 8);
686 x |= (x >> 16);
687 return x + 1;
688 }
689
b2IsPowerOfTwo(uint32 x)690 inline bool b2IsPowerOfTwo(uint32 x)
691 {
692 bool result = x > 0 && (x & (x - 1)) == 0;
693 return result;
694 }
695
GetTransform(b2Transform * xf,float32 beta)696 inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const
697 {
698 xf->p = (1.0f - beta) * c0 + beta * c;
699 float32 angle = (1.0f - beta) * a0 + beta * a;
700 xf->q.Set(angle);
701
702 // Shift to origin
703 xf->p -= b2Mul(xf->q, localCenter);
704 }
705
Advance(float32 alpha)706 inline void b2Sweep::Advance(float32 alpha)
707 {
708 b2Assert(alpha0 < 1.0f);
709 float32 beta = (alpha - alpha0) / (1.0f - alpha0);
710 c0 += beta * (c - c0);
711 a0 += beta * (a - a0);
712 alpha0 = alpha;
713 }
714
715 /// Normalize an angle in radians to be between -pi and pi
Normalize()716 inline void b2Sweep::Normalize()
717 {
718 float32 twoPi = 2.0f * b2_pi;
719 float32 d = twoPi * floorf(a0 / twoPi);
720 a0 -= d;
721 a -= d;
722 }
723
724 #endif
725