• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #ifndef B2_MATH_H
20 #define B2_MATH_H
21 
22 #include <Box2D/Common/b2Settings.h>
23 
24 #include <cmath>
25 #include <cfloat>
26 #include <cstddef>
27 #include <float.h>
28 
29 /// This function is used to ensure that a floating point number is
b2IsValid(float32 x)30 inline bool b2IsValid(float32 x)
31 	{
32 	int32 ix = *reinterpret_cast<int32*>(&x);
33 	return (ix & 0x7f800000) != 0x7f800000;
34 }
35 
36 /// This is a approximate yet fast inverse square-root.
b2InvSqrt(float32 x)37 inline float32 b2InvSqrt(float32 x)
38 {
39 	union
40 	{
41 		float32 x;
42 		int32 i;
43 	} convert;
44 
45 	convert.x = x;
46 	float32 xhalf = 0.5f * x;
47 	convert.i = 0x5f3759df - (convert.i >> 1);
48 	x = convert.x;
49 	x = x * (1.5f - xhalf * x * x);
50 	return x;
51 }
52 
53 #define	b2Sqrt(x)	std::sqrt(x)
54 #define	b2Atan2(y, x)	std::atan2(y, x)
55 
56 /// A 2D column vector.
57 struct b2Vec2
58 {
59 	/// Default constructor does nothing (for performance).
b2Vec2b2Vec260 	b2Vec2() {}
61 
62 	/// Construct using coordinates.
b2Vec2b2Vec263 	b2Vec2(float32 x, float32 y) : x(x), y(y) {}
64 
65 	/// Set this vector to all zeros.
SetZerob2Vec266 	void SetZero() { x = 0.0f; y = 0.0f; }
67 
68 	/// Set this vector to some specified coordinates.
Setb2Vec269 	void Set(float32 x_, float32 y_) { x = x_; y = y_; }
70 
71 	/// Negate this vector.
72 	b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
73 
74 	/// Read from and indexed element.
operatorb2Vec275 	float32 operator () (int32 i) const
76 	{
77 		return (&x)[i];
78 	}
79 
80 	/// Write to an indexed element.
operatorb2Vec281 	float32& operator () (int32 i)
82 	{
83 		return (&x)[i];
84 	}
85 
86 	/// Add a vector to this vector.
87 	void operator += (const b2Vec2& v)
88 	{
89 		x += v.x; y += v.y;
90 	}
91 
92 	/// Subtract a vector from this vector.
93 	void operator -= (const b2Vec2& v)
94 	{
95 		x -= v.x; y -= v.y;
96 	}
97 
98 	/// Multiply this vector by a scalar.
99 	void operator *= (float32 a)
100 	{
101 		x *= a; y *= a;
102 	}
103 
104 	/// Get the length of this vector (the norm).
Lengthb2Vec2105 	float32 Length() const
106 	{
107 		return b2Sqrt(x * x + y * y);
108 	}
109 
110 	/// Get the length squared. For performance, use this instead of
111 	/// b2Vec2::Length (if possible).
LengthSquaredb2Vec2112 	float32 LengthSquared() const
113 	{
114 		return x * x + y * y;
115 	}
116 
117 	/// Convert this vector into a unit vector. Returns the length.
Normalizeb2Vec2118 	float32 Normalize()
119 	{
120 		float32 length = Length();
121 		if (length < b2_epsilon)
122 		{
123 			return 0.0f;
124 		}
125 		float32 invLength = 1.0f / length;
126 		x *= invLength;
127 		y *= invLength;
128 
129 		return length;
130 	}
131 
132 	/// Does this vector contain finite coordinates?
IsValidb2Vec2133 	bool IsValid() const
134 	{
135 		return b2IsValid(x) && b2IsValid(y);
136 	}
137 
138 	/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
Skewb2Vec2139 	b2Vec2 Skew() const
140 	{
141 		return b2Vec2(-y, x);
142 	}
143 
144 	float32 x, y;
145 };
146 
147 /// A 2D column vector with 3 elements.
148 struct b2Vec3
149 {
150 	/// Default constructor does nothing (for performance).
b2Vec3b2Vec3151 	b2Vec3() {}
152 
153 	/// Construct using coordinates.
b2Vec3b2Vec3154 	b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {}
155 
156 	/// Set this vector to all zeros.
SetZerob2Vec3157 	void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
158 
159 	/// Set this vector to some specified coordinates.
Setb2Vec3160 	void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
161 
162 	/// Negate this vector.
163 	b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
164 
165 	/// Add a vector to this vector.
166 	void operator += (const b2Vec3& v)
167 	{
168 		x += v.x; y += v.y; z += v.z;
169 	}
170 
171 	/// Subtract a vector from this vector.
172 	void operator -= (const b2Vec3& v)
173 	{
174 		x -= v.x; y -= v.y; z -= v.z;
175 	}
176 
177 	/// Multiply this vector by a scalar.
178 	void operator *= (float32 s)
179 	{
180 		x *= s; y *= s; z *= s;
181 	}
182 
183 	float32 x, y, z;
184 };
185 
186 /// A 2-by-2 matrix. Stored in column-major order.
187 struct b2Mat22
188 {
189 	/// The default constructor does nothing (for performance).
b2Mat22b2Mat22190 	b2Mat22() {}
191 
192 	/// Construct this matrix using columns.
b2Mat22b2Mat22193 	b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
194 	{
195 		ex = c1;
196 		ey = c2;
197 	}
198 
199 	/// Construct this matrix using scalars.
b2Mat22b2Mat22200 	b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
201 	{
202 		ex.x = a11; ex.y = a21;
203 		ey.x = a12; ey.y = a22;
204 	}
205 
206 	/// Initialize this matrix using columns.
Setb2Mat22207 	void Set(const b2Vec2& c1, const b2Vec2& c2)
208 	{
209 		ex = c1;
210 		ey = c2;
211 	}
212 
213 	/// Set this to the identity matrix.
SetIdentityb2Mat22214 	void SetIdentity()
215 	{
216 		ex.x = 1.0f; ey.x = 0.0f;
217 		ex.y = 0.0f; ey.y = 1.0f;
218 	}
219 
220 	/// Set this matrix to all zeros.
SetZerob2Mat22221 	void SetZero()
222 	{
223 		ex.x = 0.0f; ey.x = 0.0f;
224 		ex.y = 0.0f; ey.y = 0.0f;
225 	}
226 
GetInverseb2Mat22227 	b2Mat22 GetInverse() const
228 	{
229 		float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;
230 		b2Mat22 B;
231 		float32 det = a * d - b * c;
232 		if (det != 0.0f)
233 		{
234 			det = 1.0f / det;
235 		}
236 		B.ex.x =  det * d;	B.ey.x = -det * b;
237 		B.ex.y = -det * c;	B.ey.y =  det * a;
238 		return B;
239 	}
240 
241 	/// Solve A * x = b, where b is a column vector. This is more efficient
242 	/// than computing the inverse in one-shot cases.
Solveb2Mat22243 	b2Vec2 Solve(const b2Vec2& b) const
244 	{
245 		float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
246 		float32 det = a11 * a22 - a12 * a21;
247 		if (det != 0.0f)
248 		{
249 			det = 1.0f / det;
250 		}
251 		b2Vec2 x;
252 		x.x = det * (a22 * b.x - a12 * b.y);
253 		x.y = det * (a11 * b.y - a21 * b.x);
254 		return x;
255 	}
256 
257 	b2Vec2 ex, ey;
258 };
259 
260 /// A 3-by-3 matrix. Stored in column-major order.
261 struct b2Mat33
262 {
263 	/// The default constructor does nothing (for performance).
b2Mat33b2Mat33264 	b2Mat33() {}
265 
266 	/// Construct this matrix using columns.
b2Mat33b2Mat33267 	b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
268 	{
269 		ex = c1;
270 		ey = c2;
271 		ez = c3;
272 	}
273 
274 	/// Set this matrix to all zeros.
SetZerob2Mat33275 	void SetZero()
276 	{
277 		ex.SetZero();
278 		ey.SetZero();
279 		ez.SetZero();
280 	}
281 
282 	/// Solve A * x = b, where b is a column vector. This is more efficient
283 	/// than computing the inverse in one-shot cases.
284 	b2Vec3 Solve33(const b2Vec3& b) const;
285 
286 	/// Solve A * x = b, where b is a column vector. This is more efficient
287 	/// than computing the inverse in one-shot cases. Solve only the upper
288 	/// 2-by-2 matrix equation.
289 	b2Vec2 Solve22(const b2Vec2& b) const;
290 
291 	/// Get the inverse of this matrix as a 2-by-2.
292 	/// Returns the zero matrix if singular.
293 	void GetInverse22(b2Mat33* M) const;
294 
295 	/// Get the symmetric inverse of this matrix as a 3-by-3.
296 	/// Returns the zero matrix if singular.
297 	void GetSymInverse33(b2Mat33* M) const;
298 
299 	b2Vec3 ex, ey, ez;
300 };
301 
302 /// Rotation
303 struct b2Rot
304 {
b2Rotb2Rot305 	b2Rot() {}
306 
307 	/// Initialize from an angle in radians
b2Rotb2Rot308 	explicit b2Rot(float32 angle)
309 	{
310 		/// TODO_ERIN optimize
311 		s = sinf(angle);
312 		c = cosf(angle);
313 	}
314 
315 	/// Set using an angle in radians.
Setb2Rot316 	void Set(float32 angle)
317 	{
318 		/// TODO_ERIN optimize
319 		s = sinf(angle);
320 		c = cosf(angle);
321 	}
322 
323 	/// Set to the identity rotation
SetIdentityb2Rot324 	void SetIdentity()
325 	{
326 		s = 0.0f;
327 		c = 1.0f;
328 	}
329 
330 	/// Get the angle in radians
GetAngleb2Rot331 	float32 GetAngle() const
332 	{
333 		return b2Atan2(s, c);
334 	}
335 
336 	/// Get the x-axis
GetXAxisb2Rot337 	b2Vec2 GetXAxis() const
338 	{
339 		return b2Vec2(c, s);
340 	}
341 
342 	/// Get the u-axis
GetYAxisb2Rot343 	b2Vec2 GetYAxis() const
344 	{
345 		return b2Vec2(-s, c);
346 	}
347 
348 	/// Sine and cosine
349 	float32 s, c;
350 };
351 
352 /// A transform contains translation and rotation. It is used to represent
353 /// the position and orientation of rigid frames.
354 struct b2Transform
355 {
356 	/// The default constructor does nothing.
b2Transformb2Transform357 	b2Transform() {}
358 
359 	/// Initialize using a position vector and a rotation.
b2Transformb2Transform360 	b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
361 
362 	/// Set this to the identity transform.
SetIdentityb2Transform363 	void SetIdentity()
364 	{
365 		p.SetZero();
366 		q.SetIdentity();
367 	}
368 
369 	/// Set this based on the position and angle.
Setb2Transform370 	void Set(const b2Vec2& position, float32 angle)
371 	{
372 		p = position;
373 		q.Set(angle);
374 	}
375 
376 	b2Vec2 p;
377 	b2Rot q;
378 };
379 
380 /// This describes the motion of a body/shape for TOI computation.
381 /// Shapes are defined with respect to the body origin, which may
382 /// no coincide with the center of mass. However, to support dynamics
383 /// we must interpolate the center of mass position.
384 struct b2Sweep
385 {
386 	/// Get the interpolated transform at a specific time.
387 	/// @param beta is a factor in [0,1], where 0 indicates alpha0.
388 	void GetTransform(b2Transform* xfb, float32 beta) const;
389 
390 	/// Advance the sweep forward, yielding a new initial state.
391 	/// @param alpha the new initial time.
392 	void Advance(float32 alpha);
393 
394 	/// Normalize the angles.
395 	void Normalize();
396 
397 	b2Vec2 localCenter;	///< local center of mass position
398 	b2Vec2 c0, c;		///< center world positions
399 	float32 a0, a;		///< world angles
400 
401 	/// Fraction of the current time step in the range [0,1]
402 	/// c0 and a0 are the positions at alpha0.
403 	float32 alpha0;
404 };
405 
406 /// Useful constant
407 extern const b2Vec2 b2Vec2_zero;
408 
409 /// Perform the dot product on two vectors.
b2Dot(const b2Vec2 & a,const b2Vec2 & b)410 inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
411 {
412 	return a.x * b.x + a.y * b.y;
413 }
414 
415 /// Perform the cross product on two vectors. In 2D this produces a scalar.
b2Cross(const b2Vec2 & a,const b2Vec2 & b)416 inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
417 {
418 	return a.x * b.y - a.y * b.x;
419 }
420 
421 /// Perform the cross product on a vector and a scalar. In 2D this produces
422 /// a vector.
b2Cross(const b2Vec2 & a,float32 s)423 inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
424 {
425 	return b2Vec2(s * a.y, -s * a.x);
426 }
427 
428 /// Perform the cross product on a scalar and a vector. In 2D this produces
429 /// a vector.
b2Cross(float32 s,const b2Vec2 & a)430 inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
431 {
432 	return b2Vec2(-s * a.y, s * a.x);
433 }
434 
435 /// Multiply a matrix times a vector. If a rotation matrix is provided,
436 /// then this transforms the vector from one frame to another.
b2Mul(const b2Mat22 & A,const b2Vec2 & v)437 inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
438 {
439 	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
440 }
441 
442 /// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
443 /// then this transforms the vector from one frame to another (inverse transform).
b2MulT(const b2Mat22 & A,const b2Vec2 & v)444 inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
445 {
446 	return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
447 }
448 
449 /// Add two vectors component-wise.
450 inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
451 {
452 	return b2Vec2(a.x + b.x, a.y + b.y);
453 }
454 
455 /// Subtract two vectors component-wise.
456 inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
457 {
458 	return b2Vec2(a.x - b.x, a.y - b.y);
459 }
460 
461 inline b2Vec2 operator * (float32 s, const b2Vec2& a)
462 {
463 	return b2Vec2(s * a.x, s * a.y);
464 }
465 
466 inline bool operator == (const b2Vec2& a, const b2Vec2& b)
467 {
468 	return a.x == b.x && a.y == b.y;
469 }
470 
b2Distance(const b2Vec2 & a,const b2Vec2 & b)471 inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
472 {
473 	b2Vec2 c = a - b;
474 	return c.Length();
475 }
476 
b2DistanceSquared(const b2Vec2 & a,const b2Vec2 & b)477 inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
478 {
479 	b2Vec2 c = a - b;
480 	return b2Dot(c, c);
481 }
482 
483 inline b2Vec3 operator * (float32 s, const b2Vec3& a)
484 {
485 	return b2Vec3(s * a.x, s * a.y, s * a.z);
486 }
487 
488 /// Add two vectors component-wise.
489 inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
490 {
491 	return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
492 }
493 
494 /// Subtract two vectors component-wise.
495 inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
496 {
497 	return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
498 }
499 
500 /// Perform the dot product on two vectors.
b2Dot(const b2Vec3 & a,const b2Vec3 & b)501 inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
502 {
503 	return a.x * b.x + a.y * b.y + a.z * b.z;
504 }
505 
506 /// Perform the cross product on two vectors.
b2Cross(const b2Vec3 & a,const b2Vec3 & b)507 inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
508 {
509 	return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
510 }
511 
512 inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
513 {
514 	return b2Mat22(A.ex + B.ex, A.ey + B.ey);
515 }
516 
517 // A * B
b2Mul(const b2Mat22 & A,const b2Mat22 & B)518 inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
519 {
520 	return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
521 }
522 
523 // A^T * B
b2MulT(const b2Mat22 & A,const b2Mat22 & B)524 inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
525 {
526 	b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
527 	b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
528 	return b2Mat22(c1, c2);
529 }
530 
531 /// Multiply a matrix times a vector.
b2Mul(const b2Mat33 & A,const b2Vec3 & v)532 inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
533 {
534 	return v.x * A.ex + v.y * A.ey + v.z * A.ez;
535 }
536 
537 /// Multiply a matrix times a vector.
b2Mul22(const b2Mat33 & A,const b2Vec2 & v)538 inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
539 {
540 	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
541 }
542 
543 /// Multiply two rotations: q * r
b2Mul(const b2Rot & q,const b2Rot & r)544 inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
545 {
546 	// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
547 	// [qs  qc]   [rs  rc]   [qs*rc+qc*rs -qs*rs+qc*rc]
548 	// s = qs * rc + qc * rs
549 	// c = qc * rc - qs * rs
550 	b2Rot qr;
551 	qr.s = q.s * r.c + q.c * r.s;
552 	qr.c = q.c * r.c - q.s * r.s;
553 	return qr;
554 }
555 
556 /// Transpose multiply two rotations: qT * r
b2MulT(const b2Rot & q,const b2Rot & r)557 inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
558 {
559 	// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
560 	// [-qs qc]   [rs  rc]   [-qs*rc+qc*rs qs*rs+qc*rc]
561 	// s = qc * rs - qs * rc
562 	// c = qc * rc + qs * rs
563 	b2Rot qr;
564 	qr.s = q.c * r.s - q.s * r.c;
565 	qr.c = q.c * r.c + q.s * r.s;
566 	return qr;
567 }
568 
569 /// Rotate a vector
b2Mul(const b2Rot & q,const b2Vec2 & v)570 inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
571 {
572 	return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
573 }
574 
575 /// Inverse rotate a vector
b2MulT(const b2Rot & q,const b2Vec2 & v)576 inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
577 {
578 	return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
579 }
580 
b2Mul(const b2Transform & T,const b2Vec2 & v)581 inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
582 {
583 	float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
584 	float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
585 
586 	return b2Vec2(x, y);
587 }
588 
b2MulT(const b2Transform & T,const b2Vec2 & v)589 inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
590 {
591 	float32 px = v.x - T.p.x;
592 	float32 py = v.y - T.p.y;
593 	float32 x = (T.q.c * px + T.q.s * py);
594 	float32 y = (-T.q.s * px + T.q.c * py);
595 
596 	return b2Vec2(x, y);
597 }
598 
599 // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
600 //    = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
b2Mul(const b2Transform & A,const b2Transform & B)601 inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
602 {
603 	b2Transform C;
604 	C.q = b2Mul(A.q, B.q);
605 	C.p = b2Mul(A.q, B.p) + A.p;
606 	return C;
607 }
608 
609 // v2 = A.q' * (B.q * v1 + B.p - A.p)
610 //    = A.q' * B.q * v1 + A.q' * (B.p - A.p)
b2MulT(const b2Transform & A,const b2Transform & B)611 inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
612 {
613 	b2Transform C;
614 	C.q = b2MulT(A.q, B.q);
615 	C.p = b2MulT(A.q, B.p - A.p);
616 	return C;
617 }
618 
619 template <typename T>
b2Abs(T a)620 inline T b2Abs(T a)
621 {
622 	return a > T(0) ? a : -a;
623 }
624 
b2Abs(const b2Vec2 & a)625 inline b2Vec2 b2Abs(const b2Vec2& a)
626 {
627 	return b2Vec2(b2Abs(a.x), b2Abs(a.y));
628 }
629 
b2Abs(const b2Mat22 & A)630 inline b2Mat22 b2Abs(const b2Mat22& A)
631 {
632 	return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
633 }
634 
635 template <typename T>
b2Min(T a,T b)636 inline T b2Min(T a, T b)
637 {
638 	return a < b ? a : b;
639 }
640 
b2Min(const b2Vec2 & a,const b2Vec2 & b)641 inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
642 {
643 	return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
644 }
645 
646 template <typename T>
b2Max(T a,T b)647 inline T b2Max(T a, T b)
648 {
649 	return a > b ? a : b;
650 }
651 
b2Max(const b2Vec2 & a,const b2Vec2 & b)652 inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
653 {
654 	return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
655 }
656 
657 template <typename T>
b2Clamp(T a,T low,T high)658 inline T b2Clamp(T a, T low, T high)
659 {
660 	return b2Max(low, b2Min(a, high));
661 }
662 
b2Clamp(const b2Vec2 & a,const b2Vec2 & low,const b2Vec2 & high)663 inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
664 {
665 	return b2Max(low, b2Min(a, high));
666 }
667 
b2Swap(T & a,T & b)668 template<typename T> inline void b2Swap(T& a, T& b)
669 {
670 	T tmp = a;
671 	a = b;
672 	b = tmp;
673 }
674 
675 /// "Next Largest Power of 2
676 /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
677 /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
678 /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
679 /// largest power of 2. For a 32-bit value:"
b2NextPowerOfTwo(uint32 x)680 inline uint32 b2NextPowerOfTwo(uint32 x)
681 {
682 	x |= (x >> 1);
683 	x |= (x >> 2);
684 	x |= (x >> 4);
685 	x |= (x >> 8);
686 	x |= (x >> 16);
687 	return x + 1;
688 }
689 
b2IsPowerOfTwo(uint32 x)690 inline bool b2IsPowerOfTwo(uint32 x)
691 {
692 	bool result = x > 0 && (x & (x - 1)) == 0;
693 	return result;
694 }
695 
GetTransform(b2Transform * xf,float32 beta)696 inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const
697 {
698 	xf->p = (1.0f - beta) * c0 + beta * c;
699 	float32 angle = (1.0f - beta) * a0 + beta * a;
700 	xf->q.Set(angle);
701 
702 	// Shift to origin
703 	xf->p -= b2Mul(xf->q, localCenter);
704 }
705 
Advance(float32 alpha)706 inline void b2Sweep::Advance(float32 alpha)
707 {
708 	b2Assert(alpha0 < 1.0f);
709 	float32 beta = (alpha - alpha0) / (1.0f - alpha0);
710 	c0 += beta * (c - c0);
711 	a0 += beta * (a - a0);
712 	alpha0 = alpha;
713 }
714 
715 /// Normalize an angle in radians to be between -pi and pi
Normalize()716 inline void b2Sweep::Normalize()
717 {
718 	float32 twoPi = 2.0f * b2_pi;
719 	float32 d =  twoPi * floorf(a0 / twoPi);
720 	a0 -= d;
721 	a -= d;
722 }
723 
724 #endif
725