1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ScheduleDAGInstrs class, which implements 11 // scheduling for a MachineInstr-based dependency graph. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H 16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H 17 18 #include "llvm/ADT/SparseMultiSet.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/CodeGen/ScheduleDAG.h" 21 #include "llvm/CodeGen/TargetSchedule.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 25 namespace llvm { 26 class MachineFrameInfo; 27 class MachineLoopInfo; 28 class MachineDominatorTree; 29 class RegPressureTracker; 30 class PressureDiffs; 31 32 /// An individual mapping from virtual register number to SUnit. 33 struct VReg2SUnit { 34 unsigned VirtReg; 35 LaneBitmask LaneMask; 36 SUnit *SU; 37 VReg2SUnitVReg2SUnit38 VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU) 39 : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {} 40 getSparseSetIndexVReg2SUnit41 unsigned getSparseSetIndex() const { 42 return TargetRegisterInfo::virtReg2Index(VirtReg); 43 } 44 }; 45 46 /// Mapping from virtual register to SUnit including an operand index. 47 struct VReg2SUnitOperIdx : public VReg2SUnit { 48 unsigned OperandIndex; 49 VReg2SUnitOperIdxVReg2SUnitOperIdx50 VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask, 51 unsigned OperandIndex, SUnit *SU) 52 : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {} 53 }; 54 55 /// Record a physical register access. 56 /// For non-data-dependent uses, OpIdx == -1. 57 struct PhysRegSUOper { 58 SUnit *SU; 59 int OpIdx; 60 unsigned Reg; 61 PhysRegSUOperPhysRegSUOper62 PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {} 63 getSparseSetIndexPhysRegSUOper64 unsigned getSparseSetIndex() const { return Reg; } 65 }; 66 67 /// Use a SparseMultiSet to track physical registers. Storage is only 68 /// allocated once for the pass. It can be cleared in constant time and reused 69 /// without any frees. 70 typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t> 71 Reg2SUnitsMap; 72 73 /// Use SparseSet as a SparseMap by relying on the fact that it never 74 /// compares ValueT's, only unsigned keys. This allows the set to be cleared 75 /// between scheduling regions in constant time as long as ValueT does not 76 /// require a destructor. 77 typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap; 78 79 /// Track local uses of virtual registers. These uses are gathered by the DAG 80 /// builder and may be consulted by the scheduler to avoid iterating an entire 81 /// vreg use list. 82 typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMultiMap; 83 84 typedef SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor> 85 VReg2SUnitOperIdxMultiMap; 86 87 /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of 88 /// MachineInstrs. 89 class ScheduleDAGInstrs : public ScheduleDAG { 90 protected: 91 const MachineLoopInfo *MLI; 92 const MachineFrameInfo *MFI; 93 94 /// TargetSchedModel provides an interface to the machine model. 95 TargetSchedModel SchedModel; 96 97 /// True if the DAG builder should remove kill flags (in preparation for 98 /// rescheduling). 99 bool RemoveKillFlags; 100 101 /// The standard DAG builder does not normally include terminators as DAG 102 /// nodes because it does not create the necessary dependencies to prevent 103 /// reordering. A specialized scheduler can override 104 /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate 105 /// it has taken responsibility for scheduling the terminator correctly. 106 bool CanHandleTerminators; 107 108 /// Whether lane masks should get tracked. 109 bool TrackLaneMasks; 110 111 /// State specific to the current scheduling region. 112 /// ------------------------------------------------ 113 114 /// The block in which to insert instructions 115 MachineBasicBlock *BB; 116 117 /// The beginning of the range to be scheduled. 118 MachineBasicBlock::iterator RegionBegin; 119 120 /// The end of the range to be scheduled. 121 MachineBasicBlock::iterator RegionEnd; 122 123 /// Instructions in this region (distance(RegionBegin, RegionEnd)). 124 unsigned NumRegionInstrs; 125 126 /// After calling BuildSchedGraph, each machine instruction in the current 127 /// scheduling region is mapped to an SUnit. 128 DenseMap<MachineInstr*, SUnit*> MISUnitMap; 129 130 /// After calling BuildSchedGraph, each vreg used in the scheduling region 131 /// is mapped to a set of SUnits. These include all local vreg uses, not 132 /// just the uses for a singly defined vreg. 133 VReg2SUnitMultiMap VRegUses; 134 135 /// State internal to DAG building. 136 /// ------------------------------- 137 138 /// Defs, Uses - Remember where defs and uses of each register are as we 139 /// iterate upward through the instructions. This is allocated here instead 140 /// of inside BuildSchedGraph to avoid the need for it to be initialized and 141 /// destructed for each block. 142 Reg2SUnitsMap Defs; 143 Reg2SUnitsMap Uses; 144 145 /// Tracks the last instruction(s) in this region defining each virtual 146 /// register. There may be multiple current definitions for a register with 147 /// disjunct lanemasks. 148 VReg2SUnitMultiMap CurrentVRegDefs; 149 /// Tracks the last instructions in this region using each virtual register. 150 VReg2SUnitOperIdxMultiMap CurrentVRegUses; 151 152 /// PendingLoads - Remember where unknown loads are after the most recent 153 /// unknown store, as we iterate. As with Defs and Uses, this is here 154 /// to minimize construction/destruction. 155 std::vector<SUnit *> PendingLoads; 156 157 /// DbgValues - Remember instruction that precedes DBG_VALUE. 158 /// These are generated by buildSchedGraph but persist so they can be 159 /// referenced when emitting the final schedule. 160 typedef std::vector<std::pair<MachineInstr *, MachineInstr *> > 161 DbgValueVector; 162 DbgValueVector DbgValues; 163 MachineInstr *FirstDbgValue; 164 165 /// Set of live physical registers for updating kill flags. 166 BitVector LiveRegs; 167 168 public: 169 explicit ScheduleDAGInstrs(MachineFunction &mf, 170 const MachineLoopInfo *mli, 171 bool RemoveKillFlags = false); 172 ~ScheduleDAGInstrs()173 ~ScheduleDAGInstrs() override {} 174 175 /// \brief Get the machine model for instruction scheduling. getSchedModel()176 const TargetSchedModel *getSchedModel() const { return &SchedModel; } 177 178 /// \brief Resolve and cache a resolved scheduling class for an SUnit. getSchedClass(SUnit * SU)179 const MCSchedClassDesc *getSchedClass(SUnit *SU) const { 180 if (!SU->SchedClass && SchedModel.hasInstrSchedModel()) 181 SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr()); 182 return SU->SchedClass; 183 } 184 185 /// begin - Return an iterator to the top of the current scheduling region. begin()186 MachineBasicBlock::iterator begin() const { return RegionBegin; } 187 188 /// end - Return an iterator to the bottom of the current scheduling region. end()189 MachineBasicBlock::iterator end() const { return RegionEnd; } 190 191 /// newSUnit - Creates a new SUnit and return a ptr to it. 192 SUnit *newSUnit(MachineInstr *MI); 193 194 /// getSUnit - Return an existing SUnit for this MI, or NULL. 195 SUnit *getSUnit(MachineInstr *MI) const; 196 197 /// startBlock - Prepare to perform scheduling in the given block. 198 virtual void startBlock(MachineBasicBlock *BB); 199 200 /// finishBlock - Clean up after scheduling in the given block. 201 virtual void finishBlock(); 202 203 /// Initialize the scheduler state for the next scheduling region. 204 virtual void enterRegion(MachineBasicBlock *bb, 205 MachineBasicBlock::iterator begin, 206 MachineBasicBlock::iterator end, 207 unsigned regioninstrs); 208 209 /// Notify that the scheduler has finished scheduling the current region. 210 virtual void exitRegion(); 211 212 /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are 213 /// input. 214 void buildSchedGraph(AliasAnalysis *AA, 215 RegPressureTracker *RPTracker = nullptr, 216 PressureDiffs *PDiffs = nullptr, 217 bool TrackLaneMasks = false); 218 219 /// addSchedBarrierDeps - Add dependencies from instructions in the current 220 /// list of instructions being scheduled to scheduling barrier. We want to 221 /// make sure instructions which define registers that are either used by 222 /// the terminator or are live-out are properly scheduled. This is 223 /// especially important when the definition latency of the return value(s) 224 /// are too high to be hidden by the branch or when the liveout registers 225 /// used by instructions in the fallthrough block. 226 void addSchedBarrierDeps(); 227 228 /// schedule - Order nodes according to selected style, filling 229 /// in the Sequence member. 230 /// 231 /// Typically, a scheduling algorithm will implement schedule() without 232 /// overriding enterRegion() or exitRegion(). 233 virtual void schedule() = 0; 234 235 /// finalizeSchedule - Allow targets to perform final scheduling actions at 236 /// the level of the whole MachineFunction. By default does nothing. finalizeSchedule()237 virtual void finalizeSchedule() {} 238 239 void dumpNode(const SUnit *SU) const override; 240 241 /// Return a label for a DAG node that points to an instruction. 242 std::string getGraphNodeLabel(const SUnit *SU) const override; 243 244 /// Return a label for the region of code covered by the DAG. 245 std::string getDAGName() const override; 246 247 /// \brief Fix register kill flags that scheduling has made invalid. 248 void fixupKills(MachineBasicBlock *MBB); 249 protected: 250 void initSUnits(); 251 void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx); 252 void addPhysRegDeps(SUnit *SU, unsigned OperIdx); 253 void addVRegDefDeps(SUnit *SU, unsigned OperIdx); 254 void addVRegUseDeps(SUnit *SU, unsigned OperIdx); 255 256 /// \brief PostRA helper for rewriting kill flags. 257 void startBlockForKills(MachineBasicBlock *BB); 258 259 /// \brief Toggle a register operand kill flag. 260 /// 261 /// Other adjustments may be made to the instruction if necessary. Return 262 /// true if the operand has been deleted, false if not. 263 bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO); 264 265 /// Returns a mask for which lanes get read/written by the given (register) 266 /// machine operand. 267 LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const; 268 269 void collectVRegUses(SUnit *SU); 270 }; 271 272 /// newSUnit - Creates a new SUnit and return a ptr to it. newSUnit(MachineInstr * MI)273 inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) { 274 #ifndef NDEBUG 275 const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0]; 276 #endif 277 SUnits.emplace_back(MI, (unsigned)SUnits.size()); 278 assert((Addr == nullptr || Addr == &SUnits[0]) && 279 "SUnits std::vector reallocated on the fly!"); 280 SUnits.back().OrigNode = &SUnits.back(); 281 return &SUnits.back(); 282 } 283 284 /// getSUnit - Return an existing SUnit for this MI, or NULL. getSUnit(MachineInstr * MI)285 inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const { 286 DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI); 287 if (I == MISUnitMap.end()) 288 return nullptr; 289 return I->second; 290 } 291 } // namespace llvm 292 293 #endif 294