• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "MCTargetDesc/X86BaseInfo.h"
11 #include "MCTargetDesc/X86FixupKinds.h"
12 #include "llvm/ADT/StringSwitch.h"
13 #include "llvm/MC/MCAsmBackend.h"
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/MC/MCExpr.h"
16 #include "llvm/MC/MCFixupKindInfo.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCMachObjectWriter.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCRegisterInfo.h"
21 #include "llvm/MC/MCSectionCOFF.h"
22 #include "llvm/MC/MCSectionELF.h"
23 #include "llvm/MC/MCSectionMachO.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/ELF.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MachO.h"
28 #include "llvm/Support/TargetRegistry.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 
getFixupKindLog2Size(unsigned Kind)32 static unsigned getFixupKindLog2Size(unsigned Kind) {
33   switch (Kind) {
34   default:
35     llvm_unreachable("invalid fixup kind!");
36   case FK_PCRel_1:
37   case FK_SecRel_1:
38   case FK_Data_1:
39     return 0;
40   case FK_PCRel_2:
41   case FK_SecRel_2:
42   case FK_Data_2:
43     return 1;
44   case FK_PCRel_4:
45   case X86::reloc_riprel_4byte:
46   case X86::reloc_riprel_4byte_movq_load:
47   case X86::reloc_signed_4byte:
48   case X86::reloc_global_offset_table:
49   case FK_SecRel_4:
50   case FK_Data_4:
51     return 2;
52   case FK_PCRel_8:
53   case FK_SecRel_8:
54   case FK_Data_8:
55   case X86::reloc_global_offset_table8:
56     return 3;
57   }
58 }
59 
60 namespace {
61 
62 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
63 public:
X86ELFObjectWriter(bool is64Bit,uint8_t OSABI,uint16_t EMachine,bool HasRelocationAddend,bool foobar)64   X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
65                      bool HasRelocationAddend, bool foobar)
66     : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
67 };
68 
69 class X86AsmBackend : public MCAsmBackend {
70   const StringRef CPU;
71   bool HasNopl;
72   uint64_t MaxNopLength;
73 public:
X86AsmBackend(const Target & T,StringRef CPU)74   X86AsmBackend(const Target &T, StringRef CPU) : MCAsmBackend(), CPU(CPU) {
75     HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
76               CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
77               CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
78               CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
79               CPU != "c3" && CPU != "c3-2";
80     // Max length of true long nop instruction is 15 bytes.
81     // Max length of long nop replacement instruction is 7 bytes.
82     // Taking into account SilverMont architecture features max length of nops
83     // is reduced for it to achieve better performance.
84     MaxNopLength = (!HasNopl || CPU == "slm") ? 7 : 15;
85   }
86 
getNumFixupKinds() const87   unsigned getNumFixupKinds() const override {
88     return X86::NumTargetFixupKinds;
89   }
90 
getFixupKindInfo(MCFixupKind Kind) const91   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
92     const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
93       { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
94       { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
95       { "reloc_signed_4byte", 0, 4 * 8, 0},
96       { "reloc_global_offset_table", 0, 4 * 8, 0}
97     };
98 
99     if (Kind < FirstTargetFixupKind)
100       return MCAsmBackend::getFixupKindInfo(Kind);
101 
102     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
103            "Invalid kind!");
104     return Infos[Kind - FirstTargetFixupKind];
105   }
106 
applyFixup(const MCFixup & Fixup,char * Data,unsigned DataSize,uint64_t Value,bool IsPCRel) const107   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
108                   uint64_t Value, bool IsPCRel) const override {
109     unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
110 
111     assert(Fixup.getOffset() + Size <= DataSize &&
112            "Invalid fixup offset!");
113 
114     // Check that uppper bits are either all zeros or all ones.
115     // Specifically ignore overflow/underflow as long as the leakage is
116     // limited to the lower bits. This is to remain compatible with
117     // other assemblers.
118     assert(isIntN(Size * 8 + 1, Value) &&
119            "Value does not fit in the Fixup field");
120 
121     for (unsigned i = 0; i != Size; ++i)
122       Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
123   }
124 
125   bool mayNeedRelaxation(const MCInst &Inst) const override;
126 
127   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
128                             const MCRelaxableFragment *DF,
129                             const MCAsmLayout &Layout) const override;
130 
131   void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
132 
133   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
134 };
135 } // end anonymous namespace
136 
getRelaxedOpcodeBranch(unsigned Op)137 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
138   switch (Op) {
139   default:
140     return Op;
141 
142   case X86::JAE_1: return X86::JAE_4;
143   case X86::JA_1:  return X86::JA_4;
144   case X86::JBE_1: return X86::JBE_4;
145   case X86::JB_1:  return X86::JB_4;
146   case X86::JE_1:  return X86::JE_4;
147   case X86::JGE_1: return X86::JGE_4;
148   case X86::JG_1:  return X86::JG_4;
149   case X86::JLE_1: return X86::JLE_4;
150   case X86::JL_1:  return X86::JL_4;
151   case X86::JMP_1: return X86::JMP_4;
152   case X86::JNE_1: return X86::JNE_4;
153   case X86::JNO_1: return X86::JNO_4;
154   case X86::JNP_1: return X86::JNP_4;
155   case X86::JNS_1: return X86::JNS_4;
156   case X86::JO_1:  return X86::JO_4;
157   case X86::JP_1:  return X86::JP_4;
158   case X86::JS_1:  return X86::JS_4;
159   }
160 }
161 
getRelaxedOpcodeArith(unsigned Op)162 static unsigned getRelaxedOpcodeArith(unsigned Op) {
163   switch (Op) {
164   default:
165     return Op;
166 
167     // IMUL
168   case X86::IMUL16rri8: return X86::IMUL16rri;
169   case X86::IMUL16rmi8: return X86::IMUL16rmi;
170   case X86::IMUL32rri8: return X86::IMUL32rri;
171   case X86::IMUL32rmi8: return X86::IMUL32rmi;
172   case X86::IMUL64rri8: return X86::IMUL64rri32;
173   case X86::IMUL64rmi8: return X86::IMUL64rmi32;
174 
175     // AND
176   case X86::AND16ri8: return X86::AND16ri;
177   case X86::AND16mi8: return X86::AND16mi;
178   case X86::AND32ri8: return X86::AND32ri;
179   case X86::AND32mi8: return X86::AND32mi;
180   case X86::AND64ri8: return X86::AND64ri32;
181   case X86::AND64mi8: return X86::AND64mi32;
182 
183     // OR
184   case X86::OR16ri8: return X86::OR16ri;
185   case X86::OR16mi8: return X86::OR16mi;
186   case X86::OR32ri8: return X86::OR32ri;
187   case X86::OR32mi8: return X86::OR32mi;
188   case X86::OR64ri8: return X86::OR64ri32;
189   case X86::OR64mi8: return X86::OR64mi32;
190 
191     // XOR
192   case X86::XOR16ri8: return X86::XOR16ri;
193   case X86::XOR16mi8: return X86::XOR16mi;
194   case X86::XOR32ri8: return X86::XOR32ri;
195   case X86::XOR32mi8: return X86::XOR32mi;
196   case X86::XOR64ri8: return X86::XOR64ri32;
197   case X86::XOR64mi8: return X86::XOR64mi32;
198 
199     // ADD
200   case X86::ADD16ri8: return X86::ADD16ri;
201   case X86::ADD16mi8: return X86::ADD16mi;
202   case X86::ADD32ri8: return X86::ADD32ri;
203   case X86::ADD32mi8: return X86::ADD32mi;
204   case X86::ADD64ri8: return X86::ADD64ri32;
205   case X86::ADD64mi8: return X86::ADD64mi32;
206 
207    // ADC
208   case X86::ADC16ri8: return X86::ADC16ri;
209   case X86::ADC16mi8: return X86::ADC16mi;
210   case X86::ADC32ri8: return X86::ADC32ri;
211   case X86::ADC32mi8: return X86::ADC32mi;
212   case X86::ADC64ri8: return X86::ADC64ri32;
213   case X86::ADC64mi8: return X86::ADC64mi32;
214 
215     // SUB
216   case X86::SUB16ri8: return X86::SUB16ri;
217   case X86::SUB16mi8: return X86::SUB16mi;
218   case X86::SUB32ri8: return X86::SUB32ri;
219   case X86::SUB32mi8: return X86::SUB32mi;
220   case X86::SUB64ri8: return X86::SUB64ri32;
221   case X86::SUB64mi8: return X86::SUB64mi32;
222 
223    // SBB
224   case X86::SBB16ri8: return X86::SBB16ri;
225   case X86::SBB16mi8: return X86::SBB16mi;
226   case X86::SBB32ri8: return X86::SBB32ri;
227   case X86::SBB32mi8: return X86::SBB32mi;
228   case X86::SBB64ri8: return X86::SBB64ri32;
229   case X86::SBB64mi8: return X86::SBB64mi32;
230 
231     // CMP
232   case X86::CMP16ri8: return X86::CMP16ri;
233   case X86::CMP16mi8: return X86::CMP16mi;
234   case X86::CMP32ri8: return X86::CMP32ri;
235   case X86::CMP32mi8: return X86::CMP32mi;
236   case X86::CMP64ri8: return X86::CMP64ri32;
237   case X86::CMP64mi8: return X86::CMP64mi32;
238 
239     // PUSH
240   case X86::PUSH32i8:  return X86::PUSHi32;
241   case X86::PUSH16i8:  return X86::PUSHi16;
242   case X86::PUSH64i8:  return X86::PUSH64i32;
243   }
244 }
245 
getRelaxedOpcode(unsigned Op)246 static unsigned getRelaxedOpcode(unsigned Op) {
247   unsigned R = getRelaxedOpcodeArith(Op);
248   if (R != Op)
249     return R;
250   return getRelaxedOpcodeBranch(Op);
251 }
252 
mayNeedRelaxation(const MCInst & Inst) const253 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
254   // Branches can always be relaxed.
255   if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
256     return true;
257 
258   // Check if this instruction is ever relaxable.
259   if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
260     return false;
261 
262 
263   // Check if the relaxable operand has an expression. For the current set of
264   // relaxable instructions, the relaxable operand is always the last operand.
265   unsigned RelaxableOp = Inst.getNumOperands() - 1;
266   if (Inst.getOperand(RelaxableOp).isExpr())
267     return true;
268 
269   return false;
270 }
271 
fixupNeedsRelaxation(const MCFixup & Fixup,uint64_t Value,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const272 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
273                                          uint64_t Value,
274                                          const MCRelaxableFragment *DF,
275                                          const MCAsmLayout &Layout) const {
276   // Relax if the value is too big for a (signed) i8.
277   return int64_t(Value) != int64_t(int8_t(Value));
278 }
279 
280 // FIXME: Can tblgen help at all here to verify there aren't other instructions
281 // we can relax?
relaxInstruction(const MCInst & Inst,MCInst & Res) const282 void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
283   // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
284   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
285 
286   if (RelaxedOp == Inst.getOpcode()) {
287     SmallString<256> Tmp;
288     raw_svector_ostream OS(Tmp);
289     Inst.dump_pretty(OS);
290     OS << "\n";
291     report_fatal_error("unexpected instruction to relax: " + OS.str());
292   }
293 
294   Res = Inst;
295   Res.setOpcode(RelaxedOp);
296 }
297 
298 /// \brief Write a sequence of optimal nops to the output, covering \p Count
299 /// bytes.
300 /// \return - true on success, false on failure
writeNopData(uint64_t Count,MCObjectWriter * OW) const301 bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
302   static const uint8_t TrueNops[10][10] = {
303     // nop
304     {0x90},
305     // xchg %ax,%ax
306     {0x66, 0x90},
307     // nopl (%[re]ax)
308     {0x0f, 0x1f, 0x00},
309     // nopl 0(%[re]ax)
310     {0x0f, 0x1f, 0x40, 0x00},
311     // nopl 0(%[re]ax,%[re]ax,1)
312     {0x0f, 0x1f, 0x44, 0x00, 0x00},
313     // nopw 0(%[re]ax,%[re]ax,1)
314     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
315     // nopl 0L(%[re]ax)
316     {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
317     // nopl 0L(%[re]ax,%[re]ax,1)
318     {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
319     // nopw 0L(%[re]ax,%[re]ax,1)
320     {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
321     // nopw %cs:0L(%[re]ax,%[re]ax,1)
322     {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
323   };
324 
325   // Alternative nop instructions for CPUs which don't support long nops.
326   static const uint8_t AltNops[7][10] = {
327       // nop
328       {0x90},
329       // xchg %ax,%ax
330       {0x66, 0x90},
331       // lea 0x0(%esi),%esi
332       {0x8d, 0x76, 0x00},
333       // lea 0x0(%esi),%esi
334       {0x8d, 0x74, 0x26, 0x00},
335       // nop + lea 0x0(%esi),%esi
336       {0x90, 0x8d, 0x74, 0x26, 0x00},
337       // lea 0x0(%esi),%esi
338       {0x8d, 0xb6, 0x00, 0x00, 0x00, 0x00 },
339       // lea 0x0(%esi),%esi
340       {0x8d, 0xb4, 0x26, 0x00, 0x00, 0x00, 0x00},
341   };
342 
343   // Select the right NOP table.
344   // FIXME: Can we get if CPU supports long nops from the subtarget somehow?
345   const uint8_t (*Nops)[10] = HasNopl ? TrueNops : AltNops;
346   assert(HasNopl || MaxNopLength <= 7);
347 
348   // Emit as many largest nops as needed, then emit a nop of the remaining
349   // length.
350   do {
351     const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
352     const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
353     for (uint8_t i = 0; i < Prefixes; i++)
354       OW->write8(0x66);
355     const uint8_t Rest = ThisNopLength - Prefixes;
356     for (uint8_t i = 0; i < Rest; i++)
357       OW->write8(Nops[Rest - 1][i]);
358     Count -= ThisNopLength;
359   } while (Count != 0);
360 
361   return true;
362 }
363 
364 /* *** */
365 
366 namespace {
367 
368 class ELFX86AsmBackend : public X86AsmBackend {
369 public:
370   uint8_t OSABI;
ELFX86AsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)371   ELFX86AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
372       : X86AsmBackend(T, CPU), OSABI(OSABI) {}
373 };
374 
375 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
376 public:
ELFX86_32AsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)377   ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
378     : ELFX86AsmBackend(T, OSABI, CPU) {}
379 
createObjectWriter(raw_pwrite_stream & OS) const380   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
381     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
382   }
383 };
384 
385 class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
386 public:
ELFX86_X32AsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)387   ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
388       : ELFX86AsmBackend(T, OSABI, CPU) {}
389 
createObjectWriter(raw_pwrite_stream & OS) const390   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
391     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
392                                     ELF::EM_X86_64);
393   }
394 };
395 
396 class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend {
397 public:
ELFX86_IAMCUAsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)398   ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
399       : ELFX86AsmBackend(T, OSABI, CPU) {}
400 
createObjectWriter(raw_pwrite_stream & OS) const401   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
402     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
403                                     ELF::EM_IAMCU);
404   }
405 };
406 
407 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
408 public:
ELFX86_64AsmBackend(const Target & T,uint8_t OSABI,StringRef CPU)409   ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
410     : ELFX86AsmBackend(T, OSABI, CPU) {}
411 
createObjectWriter(raw_pwrite_stream & OS) const412   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
413     return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
414   }
415 };
416 
417 class WindowsX86AsmBackend : public X86AsmBackend {
418   bool Is64Bit;
419 
420 public:
WindowsX86AsmBackend(const Target & T,bool is64Bit,StringRef CPU)421   WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
422     : X86AsmBackend(T, CPU)
423     , Is64Bit(is64Bit) {
424   }
425 
createObjectWriter(raw_pwrite_stream & OS) const426   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
427     return createX86WinCOFFObjectWriter(OS, Is64Bit);
428   }
429 };
430 
431 namespace CU {
432 
433   /// Compact unwind encoding values.
434   enum CompactUnwindEncodings {
435     /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
436     /// the return address, then [RE]SP is moved to [RE]BP.
437     UNWIND_MODE_BP_FRAME                   = 0x01000000,
438 
439     /// A frameless function with a small constant stack size.
440     UNWIND_MODE_STACK_IMMD                 = 0x02000000,
441 
442     /// A frameless function with a large constant stack size.
443     UNWIND_MODE_STACK_IND                  = 0x03000000,
444 
445     /// No compact unwind encoding is available.
446     UNWIND_MODE_DWARF                      = 0x04000000,
447 
448     /// Mask for encoding the frame registers.
449     UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
450 
451     /// Mask for encoding the frameless registers.
452     UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
453   };
454 
455 } // end CU namespace
456 
457 class DarwinX86AsmBackend : public X86AsmBackend {
458   const MCRegisterInfo &MRI;
459 
460   /// \brief Number of registers that can be saved in a compact unwind encoding.
461   enum { CU_NUM_SAVED_REGS = 6 };
462 
463   mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
464   bool Is64Bit;
465 
466   unsigned OffsetSize;                   ///< Offset of a "push" instruction.
467   unsigned MoveInstrSize;                ///< Size of a "move" instruction.
468   unsigned StackDivide;                  ///< Amount to adjust stack size by.
469 protected:
470   /// \brief Size of a "push" instruction for the given register.
PushInstrSize(unsigned Reg) const471   unsigned PushInstrSize(unsigned Reg) const {
472     switch (Reg) {
473       case X86::EBX:
474       case X86::ECX:
475       case X86::EDX:
476       case X86::EDI:
477       case X86::ESI:
478       case X86::EBP:
479       case X86::RBX:
480       case X86::RBP:
481         return 1;
482       case X86::R12:
483       case X86::R13:
484       case X86::R14:
485       case X86::R15:
486         return 2;
487     }
488     return 1;
489   }
490 
491   /// \brief Implementation of algorithm to generate the compact unwind encoding
492   /// for the CFI instructions.
493   uint32_t
generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const494   generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
495     if (Instrs.empty()) return 0;
496 
497     // Reset the saved registers.
498     unsigned SavedRegIdx = 0;
499     memset(SavedRegs, 0, sizeof(SavedRegs));
500 
501     bool HasFP = false;
502 
503     // Encode that we are using EBP/RBP as the frame pointer.
504     uint32_t CompactUnwindEncoding = 0;
505 
506     unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
507     unsigned InstrOffset = 0;
508     unsigned StackAdjust = 0;
509     unsigned StackSize = 0;
510     unsigned PrevStackSize = 0;
511     unsigned NumDefCFAOffsets = 0;
512 
513     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
514       const MCCFIInstruction &Inst = Instrs[i];
515 
516       switch (Inst.getOperation()) {
517       default:
518         // Any other CFI directives indicate a frame that we aren't prepared
519         // to represent via compact unwind, so just bail out.
520         return 0;
521       case MCCFIInstruction::OpDefCfaRegister: {
522         // Defines a frame pointer. E.g.
523         //
524         //     movq %rsp, %rbp
525         //  L0:
526         //     .cfi_def_cfa_register %rbp
527         //
528         HasFP = true;
529         assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
530                (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
531 
532         // Reset the counts.
533         memset(SavedRegs, 0, sizeof(SavedRegs));
534         StackAdjust = 0;
535         SavedRegIdx = 0;
536         InstrOffset += MoveInstrSize;
537         break;
538       }
539       case MCCFIInstruction::OpDefCfaOffset: {
540         // Defines a new offset for the CFA. E.g.
541         //
542         //  With frame:
543         //
544         //     pushq %rbp
545         //  L0:
546         //     .cfi_def_cfa_offset 16
547         //
548         //  Without frame:
549         //
550         //     subq $72, %rsp
551         //  L0:
552         //     .cfi_def_cfa_offset 80
553         //
554         PrevStackSize = StackSize;
555         StackSize = std::abs(Inst.getOffset()) / StackDivide;
556         ++NumDefCFAOffsets;
557         break;
558       }
559       case MCCFIInstruction::OpOffset: {
560         // Defines a "push" of a callee-saved register. E.g.
561         //
562         //     pushq %r15
563         //     pushq %r14
564         //     pushq %rbx
565         //  L0:
566         //     subq $120, %rsp
567         //  L1:
568         //     .cfi_offset %rbx, -40
569         //     .cfi_offset %r14, -32
570         //     .cfi_offset %r15, -24
571         //
572         if (SavedRegIdx == CU_NUM_SAVED_REGS)
573           // If there are too many saved registers, we cannot use a compact
574           // unwind encoding.
575           return CU::UNWIND_MODE_DWARF;
576 
577         unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
578         SavedRegs[SavedRegIdx++] = Reg;
579         StackAdjust += OffsetSize;
580         InstrOffset += PushInstrSize(Reg);
581         break;
582       }
583       }
584     }
585 
586     StackAdjust /= StackDivide;
587 
588     if (HasFP) {
589       if ((StackAdjust & 0xFF) != StackAdjust)
590         // Offset was too big for a compact unwind encoding.
591         return CU::UNWIND_MODE_DWARF;
592 
593       // Get the encoding of the saved registers when we have a frame pointer.
594       uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
595       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
596 
597       CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
598       CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
599       CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
600     } else {
601       // If the amount of the stack allocation is the size of a register, then
602       // we "push" the RAX/EAX register onto the stack instead of adjusting the
603       // stack pointer with a SUB instruction. We don't support the push of the
604       // RAX/EAX register with compact unwind. So we check for that situation
605       // here.
606       if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
607            StackSize - PrevStackSize == 1) ||
608           (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
609         return CU::UNWIND_MODE_DWARF;
610 
611       SubtractInstrIdx += InstrOffset;
612       ++StackAdjust;
613 
614       if ((StackSize & 0xFF) == StackSize) {
615         // Frameless stack with a small stack size.
616         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
617 
618         // Encode the stack size.
619         CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
620       } else {
621         if ((StackAdjust & 0x7) != StackAdjust)
622           // The extra stack adjustments are too big for us to handle.
623           return CU::UNWIND_MODE_DWARF;
624 
625         // Frameless stack with an offset too large for us to encode compactly.
626         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
627 
628         // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
629         // instruction.
630         CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
631 
632         // Encode any extra stack stack adjustments (done via push
633         // instructions).
634         CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
635       }
636 
637       // Encode the number of registers saved. (Reverse the list first.)
638       std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
639       CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
640 
641       // Get the encoding of the saved registers when we don't have a frame
642       // pointer.
643       uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
644       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
645 
646       // Encode the register encoding.
647       CompactUnwindEncoding |=
648         RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
649     }
650 
651     return CompactUnwindEncoding;
652   }
653 
654 private:
655   /// \brief Get the compact unwind number for a given register. The number
656   /// corresponds to the enum lists in compact_unwind_encoding.h.
getCompactUnwindRegNum(unsigned Reg) const657   int getCompactUnwindRegNum(unsigned Reg) const {
658     static const MCPhysReg CU32BitRegs[7] = {
659       X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
660     };
661     static const MCPhysReg CU64BitRegs[] = {
662       X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
663     };
664     const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
665     for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
666       if (*CURegs == Reg)
667         return Idx;
668 
669     return -1;
670   }
671 
672   /// \brief Return the registers encoded for a compact encoding with a frame
673   /// pointer.
encodeCompactUnwindRegistersWithFrame() const674   uint32_t encodeCompactUnwindRegistersWithFrame() const {
675     // Encode the registers in the order they were saved --- 3-bits per
676     // register. The list of saved registers is assumed to be in reverse
677     // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
678     uint32_t RegEnc = 0;
679     for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
680       unsigned Reg = SavedRegs[i];
681       if (Reg == 0) break;
682 
683       int CURegNum = getCompactUnwindRegNum(Reg);
684       if (CURegNum == -1) return ~0U;
685 
686       // Encode the 3-bit register number in order, skipping over 3-bits for
687       // each register.
688       RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
689     }
690 
691     assert((RegEnc & 0x3FFFF) == RegEnc &&
692            "Invalid compact register encoding!");
693     return RegEnc;
694   }
695 
696   /// \brief Create the permutation encoding used with frameless stacks. It is
697   /// passed the number of registers to be saved and an array of the registers
698   /// saved.
encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const699   uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
700     // The saved registers are numbered from 1 to 6. In order to encode the
701     // order in which they were saved, we re-number them according to their
702     // place in the register order. The re-numbering is relative to the last
703     // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
704     // that order:
705     //
706     //    Orig  Re-Num
707     //    ----  ------
708     //     6       6
709     //     2       2
710     //     4       3
711     //     5       3
712     //
713     for (unsigned i = 0; i < RegCount; ++i) {
714       int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
715       if (CUReg == -1) return ~0U;
716       SavedRegs[i] = CUReg;
717     }
718 
719     // Reverse the list.
720     std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
721 
722     uint32_t RenumRegs[CU_NUM_SAVED_REGS];
723     for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
724       unsigned Countless = 0;
725       for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
726         if (SavedRegs[j] < SavedRegs[i])
727           ++Countless;
728 
729       RenumRegs[i] = SavedRegs[i] - Countless - 1;
730     }
731 
732     // Take the renumbered values and encode them into a 10-bit number.
733     uint32_t permutationEncoding = 0;
734     switch (RegCount) {
735     case 6:
736       permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
737                              + 6 * RenumRegs[2] +  2 * RenumRegs[3]
738                              +     RenumRegs[4];
739       break;
740     case 5:
741       permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
742                              + 6 * RenumRegs[3] +  2 * RenumRegs[4]
743                              +     RenumRegs[5];
744       break;
745     case 4:
746       permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
747                              + 3 * RenumRegs[4] +      RenumRegs[5];
748       break;
749     case 3:
750       permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
751                              +     RenumRegs[5];
752       break;
753     case 2:
754       permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
755       break;
756     case 1:
757       permutationEncoding |=       RenumRegs[5];
758       break;
759     }
760 
761     assert((permutationEncoding & 0x3FF) == permutationEncoding &&
762            "Invalid compact register encoding!");
763     return permutationEncoding;
764   }
765 
766 public:
DarwinX86AsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef CPU,bool Is64Bit)767   DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
768                       bool Is64Bit)
769     : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
770     memset(SavedRegs, 0, sizeof(SavedRegs));
771     OffsetSize = Is64Bit ? 8 : 4;
772     MoveInstrSize = Is64Bit ? 3 : 2;
773     StackDivide = Is64Bit ? 8 : 4;
774   }
775 };
776 
777 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
778 public:
DarwinX86_32AsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef CPU)779   DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
780                          StringRef CPU)
781       : DarwinX86AsmBackend(T, MRI, CPU, false) {}
782 
createObjectWriter(raw_pwrite_stream & OS) const783   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
784     return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
785                                      MachO::CPU_TYPE_I386,
786                                      MachO::CPU_SUBTYPE_I386_ALL);
787   }
788 
789   /// \brief Generate the compact unwind encoding for the CFI instructions.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const790   uint32_t generateCompactUnwindEncoding(
791                              ArrayRef<MCCFIInstruction> Instrs) const override {
792     return generateCompactUnwindEncodingImpl(Instrs);
793   }
794 };
795 
796 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
797   const MachO::CPUSubTypeX86 Subtype;
798 public:
DarwinX86_64AsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef CPU,MachO::CPUSubTypeX86 st)799   DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
800                          StringRef CPU, MachO::CPUSubTypeX86 st)
801       : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
802 
createObjectWriter(raw_pwrite_stream & OS) const803   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
804     return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
805                                      MachO::CPU_TYPE_X86_64, Subtype);
806   }
807 
808   /// \brief Generate the compact unwind encoding for the CFI instructions.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const809   uint32_t generateCompactUnwindEncoding(
810                              ArrayRef<MCCFIInstruction> Instrs) const override {
811     return generateCompactUnwindEncodingImpl(Instrs);
812   }
813 };
814 
815 } // end anonymous namespace
816 
createX86_32AsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TheTriple,StringRef CPU)817 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
818                                            const MCRegisterInfo &MRI,
819                                            const Triple &TheTriple,
820                                            StringRef CPU) {
821   if (TheTriple.isOSBinFormatMachO())
822     return new DarwinX86_32AsmBackend(T, MRI, CPU);
823 
824   if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
825     return new WindowsX86AsmBackend(T, false, CPU);
826 
827   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
828 
829   if (TheTriple.isOSIAMCU())
830     return new ELFX86_IAMCUAsmBackend(T, OSABI, CPU);
831 
832   return new ELFX86_32AsmBackend(T, OSABI, CPU);
833 }
834 
createX86_64AsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TheTriple,StringRef CPU)835 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
836                                            const MCRegisterInfo &MRI,
837                                            const Triple &TheTriple,
838                                            StringRef CPU) {
839   if (TheTriple.isOSBinFormatMachO()) {
840     MachO::CPUSubTypeX86 CS =
841         StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
842             .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
843             .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
844     return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
845   }
846 
847   if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
848     return new WindowsX86AsmBackend(T, true, CPU);
849 
850   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
851 
852   if (TheTriple.getEnvironment() == Triple::GNUX32)
853     return new ELFX86_X32AsmBackend(T, OSABI, CPU);
854   return new ELFX86_64AsmBackend(T, OSABI, CPU);
855 }
856