• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_JACOBIAN_ENTRY_H
17 #define BT_JACOBIAN_ENTRY_H
18 
19 #include "LinearMath/btMatrix3x3.h"
20 
21 
22 //notes:
23 // Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
24 // which makes the btJacobianEntry memory layout 16 bytes
25 // if you only are interested in angular part, just feed massInvA and massInvB zero
26 
27 /// Jacobian entry is an abstraction that allows to describe constraints
28 /// it can be used in combination with a constraint solver
29 /// Can be used to relate the effect of an impulse to the constraint error
ATTRIBUTE_ALIGNED16(class)30 ATTRIBUTE_ALIGNED16(class) btJacobianEntry
31 {
32 public:
33 	btJacobianEntry() {};
34 	//constraint between two different rigidbodies
35 	btJacobianEntry(
36 		const btMatrix3x3& world2A,
37 		const btMatrix3x3& world2B,
38 		const btVector3& rel_pos1,const btVector3& rel_pos2,
39 		const btVector3& jointAxis,
40 		const btVector3& inertiaInvA,
41 		const btScalar massInvA,
42 		const btVector3& inertiaInvB,
43 		const btScalar massInvB)
44 		:m_linearJointAxis(jointAxis)
45 	{
46 		m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
47 		m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
48 		m_0MinvJt	= inertiaInvA * m_aJ;
49 		m_1MinvJt = inertiaInvB * m_bJ;
50 		m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
51 
52 		btAssert(m_Adiag > btScalar(0.0));
53 	}
54 
55 	//angular constraint between two different rigidbodies
56 	btJacobianEntry(const btVector3& jointAxis,
57 		const btMatrix3x3& world2A,
58 		const btMatrix3x3& world2B,
59 		const btVector3& inertiaInvA,
60 		const btVector3& inertiaInvB)
61 		:m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
62 	{
63 		m_aJ= world2A*jointAxis;
64 		m_bJ = world2B*-jointAxis;
65 		m_0MinvJt	= inertiaInvA * m_aJ;
66 		m_1MinvJt = inertiaInvB * m_bJ;
67 		m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
68 
69 		btAssert(m_Adiag > btScalar(0.0));
70 	}
71 
72 	//angular constraint between two different rigidbodies
73 	btJacobianEntry(const btVector3& axisInA,
74 		const btVector3& axisInB,
75 		const btVector3& inertiaInvA,
76 		const btVector3& inertiaInvB)
77 		: m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
78 		, m_aJ(axisInA)
79 		, m_bJ(-axisInB)
80 	{
81 		m_0MinvJt	= inertiaInvA * m_aJ;
82 		m_1MinvJt = inertiaInvB * m_bJ;
83 		m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
84 
85 		btAssert(m_Adiag > btScalar(0.0));
86 	}
87 
88 	//constraint on one rigidbody
89 	btJacobianEntry(
90 		const btMatrix3x3& world2A,
91 		const btVector3& rel_pos1,const btVector3& rel_pos2,
92 		const btVector3& jointAxis,
93 		const btVector3& inertiaInvA,
94 		const btScalar massInvA)
95 		:m_linearJointAxis(jointAxis)
96 	{
97 		m_aJ= world2A*(rel_pos1.cross(jointAxis));
98 		m_bJ = world2A*(rel_pos2.cross(-jointAxis));
99 		m_0MinvJt	= inertiaInvA * m_aJ;
100 		m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.));
101 		m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
102 
103 		btAssert(m_Adiag > btScalar(0.0));
104 	}
105 
106 	btScalar	getDiagonal() const { return m_Adiag; }
107 
108 	// for two constraints on the same rigidbody (for example vehicle friction)
109 	btScalar	getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const
110 	{
111 		const btJacobianEntry& jacA = *this;
112 		btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
113 		btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
114 		return lin + ang;
115 	}
116 
117 
118 
119 	// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
120 	btScalar	getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const
121 	{
122 		const btJacobianEntry& jacA = *this;
123 		btVector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
124 		btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
125 		btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
126 		btVector3 lin0 = massInvA * lin ;
127 		btVector3 lin1 = massInvB * lin;
128 		btVector3 sum = ang0+ang1+lin0+lin1;
129 		return sum[0]+sum[1]+sum[2];
130 	}
131 
132 	btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB)
133 	{
134 		btVector3 linrel = linvelA - linvelB;
135 		btVector3 angvela  = angvelA * m_aJ;
136 		btVector3 angvelb  = angvelB * m_bJ;
137 		linrel *= m_linearJointAxis;
138 		angvela += angvelb;
139 		angvela += linrel;
140 		btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
141 		return rel_vel2 + SIMD_EPSILON;
142 	}
143 //private:
144 
145 	btVector3	m_linearJointAxis;
146 	btVector3	m_aJ;
147 	btVector3	m_bJ;
148 	btVector3	m_0MinvJt;
149 	btVector3	m_1MinvJt;
150 	//Optimization: can be stored in the w/last component of one of the vectors
151 	btScalar	m_Adiag;
152 
153 };
154 
155 #endif //BT_JACOBIAN_ENTRY_H
156