• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CallingConvLower.h - Calling Conventions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CCState and CCValAssign classes, used for lowering
11 // and implementing calling conventions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
16 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
17 
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/Target/TargetCallingConv.h"
24 
25 namespace llvm {
26 class CCState;
27 class MVT;
28 class TargetMachine;
29 class TargetRegisterInfo;
30 
31 /// CCValAssign - Represent assignment of one arg/retval to a location.
32 class CCValAssign {
33 public:
34   enum LocInfo {
35     Full,      // The value fills the full location.
36     SExt,      // The value is sign extended in the location.
37     ZExt,      // The value is zero extended in the location.
38     AExt,      // The value is extended with undefined upper bits.
39     SExtUpper, // The value is in the upper bits of the location and should be
40                // sign extended when retrieved.
41     ZExtUpper, // The value is in the upper bits of the location and should be
42                // zero extended when retrieved.
43     AExtUpper, // The value is in the upper bits of the location and should be
44                // extended with undefined upper bits when retrieved.
45     BCvt,      // The value is bit-converted in the location.
46     VExt,      // The value is vector-widened in the location.
47                // FIXME: Not implemented yet. Code that uses AExt to mean
48                // vector-widen should be fixed to use VExt instead.
49     FPExt,     // The floating-point value is fp-extended in the location.
50     Indirect   // The location contains pointer to the value.
51     // TODO: a subset of the value is in the location.
52   };
53 
54 private:
55   /// ValNo - This is the value number begin assigned (e.g. an argument number).
56   unsigned ValNo;
57 
58   /// Loc is either a stack offset or a register number.
59   unsigned Loc;
60 
61   /// isMem - True if this is a memory loc, false if it is a register loc.
62   unsigned isMem : 1;
63 
64   /// isCustom - True if this arg/retval requires special handling.
65   unsigned isCustom : 1;
66 
67   /// Information about how the value is assigned.
68   LocInfo HTP : 6;
69 
70   /// ValVT - The type of the value being assigned.
71   MVT ValVT;
72 
73   /// LocVT - The type of the location being assigned to.
74   MVT LocVT;
75 public:
76 
getReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)77   static CCValAssign getReg(unsigned ValNo, MVT ValVT,
78                             unsigned RegNo, MVT LocVT,
79                             LocInfo HTP) {
80     CCValAssign Ret;
81     Ret.ValNo = ValNo;
82     Ret.Loc = RegNo;
83     Ret.isMem = false;
84     Ret.isCustom = false;
85     Ret.HTP = HTP;
86     Ret.ValVT = ValVT;
87     Ret.LocVT = LocVT;
88     return Ret;
89   }
90 
getCustomReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)91   static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
92                                   unsigned RegNo, MVT LocVT,
93                                   LocInfo HTP) {
94     CCValAssign Ret;
95     Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
96     Ret.isCustom = true;
97     return Ret;
98   }
99 
getMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)100   static CCValAssign getMem(unsigned ValNo, MVT ValVT,
101                             unsigned Offset, MVT LocVT,
102                             LocInfo HTP) {
103     CCValAssign Ret;
104     Ret.ValNo = ValNo;
105     Ret.Loc = Offset;
106     Ret.isMem = true;
107     Ret.isCustom = false;
108     Ret.HTP = HTP;
109     Ret.ValVT = ValVT;
110     Ret.LocVT = LocVT;
111     return Ret;
112   }
113 
getCustomMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)114   static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
115                                   unsigned Offset, MVT LocVT,
116                                   LocInfo HTP) {
117     CCValAssign Ret;
118     Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
119     Ret.isCustom = true;
120     return Ret;
121   }
122 
123   // There is no need to differentiate between a pending CCValAssign and other
124   // kinds, as they are stored in a different list.
125   static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
126                                 LocInfo HTP, unsigned ExtraInfo = 0) {
127     return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
128   }
129 
convertToReg(unsigned RegNo)130   void convertToReg(unsigned RegNo) {
131     Loc = RegNo;
132     isMem = false;
133   }
134 
convertToMem(unsigned Offset)135   void convertToMem(unsigned Offset) {
136     Loc = Offset;
137     isMem = true;
138   }
139 
getValNo()140   unsigned getValNo() const { return ValNo; }
getValVT()141   MVT getValVT() const { return ValVT; }
142 
isRegLoc()143   bool isRegLoc() const { return !isMem; }
isMemLoc()144   bool isMemLoc() const { return isMem; }
145 
needsCustom()146   bool needsCustom() const { return isCustom; }
147 
getLocReg()148   unsigned getLocReg() const { assert(isRegLoc()); return Loc; }
getLocMemOffset()149   unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
getExtraInfo()150   unsigned getExtraInfo() const { return Loc; }
getLocVT()151   MVT getLocVT() const { return LocVT; }
152 
getLocInfo()153   LocInfo getLocInfo() const { return HTP; }
isExtInLoc()154   bool isExtInLoc() const {
155     return (HTP == AExt || HTP == SExt || HTP == ZExt);
156   }
157 
isUpperBitsInLoc()158   bool isUpperBitsInLoc() const {
159     return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
160   }
161 };
162 
163 /// Describes a register that needs to be forwarded from the prologue to a
164 /// musttail call.
165 struct ForwardedRegister {
ForwardedRegisterForwardedRegister166   ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
167       : VReg(VReg), PReg(PReg), VT(VT) {}
168   unsigned VReg;
169   MCPhysReg PReg;
170   MVT VT;
171 };
172 
173 /// CCAssignFn - This function assigns a location for Val, updating State to
174 /// reflect the change.  It returns 'true' if it failed to handle Val.
175 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
176                         MVT LocVT, CCValAssign::LocInfo LocInfo,
177                         ISD::ArgFlagsTy ArgFlags, CCState &State);
178 
179 /// CCCustomFn - This function assigns a location for Val, possibly updating
180 /// all args to reflect changes and indicates if it handled it. It must set
181 /// isCustom if it handles the arg and returns true.
182 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
183                         MVT &LocVT, CCValAssign::LocInfo &LocInfo,
184                         ISD::ArgFlagsTy &ArgFlags, CCState &State);
185 
186 /// ParmContext - This enum tracks whether calling convention lowering is in
187 /// the context of prologue or call generation. Not all backends make use of
188 /// this information.
189 typedef enum { Unknown, Prologue, Call } ParmContext;
190 
191 /// CCState - This class holds information needed while lowering arguments and
192 /// return values.  It captures which registers are already assigned and which
193 /// stack slots are used.  It provides accessors to allocate these values.
194 class CCState {
195 private:
196   CallingConv::ID CallingConv;
197   bool IsVarArg;
198   MachineFunction &MF;
199   const TargetRegisterInfo &TRI;
200   SmallVectorImpl<CCValAssign> &Locs;
201   LLVMContext &Context;
202 
203   unsigned StackOffset;
204   unsigned MaxStackArgAlign;
205   SmallVector<uint32_t, 16> UsedRegs;
206   SmallVector<CCValAssign, 4> PendingLocs;
207 
208   // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
209   //
210   // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
211   // tracking.
212   // Or, in another words it tracks byval parameters that are stored in
213   // general purpose registers.
214   //
215   // For 4 byte stack alignment,
216   // instance index means byval parameter number in formal
217   // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
218   // then, for function "foo":
219   //
220   // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
221   //
222   // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
223   // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
224   //
225   // In case of 8 bytes stack alignment,
226   // ByValRegs may also contain information about wasted registers.
227   // In function shown above, r3 would be wasted according to AAPCS rules.
228   // And in that case ByValRegs[1].Waste would be "true".
229   // ByValRegs vector size still would be 2,
230   // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
231   //
232   // Supposed use-case for this collection:
233   // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
234   // 2. HandleByVal fillups ByValRegs.
235   // 3. Argument analysis (LowerFormatArguments, for example). After
236   // some byval argument was analyzed, InRegsParamsProcessed is increased.
237   struct ByValInfo {
238     ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
BeginByValInfo239       Begin(B), End(E), Waste(IsWaste) {}
240     // First register allocated for current parameter.
241     unsigned Begin;
242 
243     // First after last register allocated for current parameter.
244     unsigned End;
245 
246     // Means that current range of registers doesn't belong to any
247     // parameters. It was wasted due to stack alignment rules.
248     // For more information see:
249     // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
250     bool Waste;
251   };
252   SmallVector<ByValInfo, 4 > ByValRegs;
253 
254   // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
255   // during argument analysis.
256   unsigned InRegsParamsProcessed;
257 
258 protected:
259   ParmContext CallOrPrologue;
260 
261 public:
262   CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
263           SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
264 
addLoc(const CCValAssign & V)265   void addLoc(const CCValAssign &V) {
266     Locs.push_back(V);
267   }
268 
getContext()269   LLVMContext &getContext() const { return Context; }
getMachineFunction()270   MachineFunction &getMachineFunction() const { return MF; }
getCallingConv()271   CallingConv::ID getCallingConv() const { return CallingConv; }
isVarArg()272   bool isVarArg() const { return IsVarArg; }
273 
274   /// getNextStackOffset - Return the next stack offset such that all stack
275   /// slots satisfy their alignment requirements.
getNextStackOffset()276   unsigned getNextStackOffset() const {
277     return StackOffset;
278   }
279 
280   /// getAlignedCallFrameSize - Return the size of the call frame needed to
281   /// be able to store all arguments and such that the alignment requirement
282   /// of each of the arguments is satisfied.
getAlignedCallFrameSize()283   unsigned getAlignedCallFrameSize() const {
284     return RoundUpToAlignment(StackOffset, MaxStackArgAlign);
285   }
286 
287   /// isAllocated - Return true if the specified register (or an alias) is
288   /// allocated.
isAllocated(unsigned Reg)289   bool isAllocated(unsigned Reg) const {
290     return UsedRegs[Reg/32] & (1 << (Reg&31));
291   }
292 
293   /// AnalyzeFormalArguments - Analyze an array of argument values,
294   /// incorporating info about the formals into this state.
295   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
296                               CCAssignFn Fn);
297 
298   /// AnalyzeReturn - Analyze the returned values of a return,
299   /// incorporating info about the result values into this state.
300   void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
301                      CCAssignFn Fn);
302 
303   /// CheckReturn - Analyze the return values of a function, returning
304   /// true if the return can be performed without sret-demotion, and
305   /// false otherwise.
306   bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
307                    CCAssignFn Fn);
308 
309   /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
310   /// incorporating info about the passed values into this state.
311   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
312                            CCAssignFn Fn);
313 
314   /// AnalyzeCallOperands - Same as above except it takes vectors of types
315   /// and argument flags.
316   void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
317                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
318                            CCAssignFn Fn);
319 
320   /// AnalyzeCallResult - Analyze the return values of a call,
321   /// incorporating info about the passed values into this state.
322   void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
323                          CCAssignFn Fn);
324 
325   /// AnalyzeCallResult - Same as above except it's specialized for calls which
326   /// produce a single value.
327   void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
328 
329   /// getFirstUnallocated - Return the index of the first unallocated register
330   /// in the set, or Regs.size() if they are all allocated.
getFirstUnallocated(ArrayRef<MCPhysReg> Regs)331   unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
332     for (unsigned i = 0; i < Regs.size(); ++i)
333       if (!isAllocated(Regs[i]))
334         return i;
335     return Regs.size();
336   }
337 
338   /// AllocateReg - Attempt to allocate one register.  If it is not available,
339   /// return zero.  Otherwise, return the register, marking it and any aliases
340   /// as allocated.
AllocateReg(unsigned Reg)341   unsigned AllocateReg(unsigned Reg) {
342     if (isAllocated(Reg)) return 0;
343     MarkAllocated(Reg);
344     return Reg;
345   }
346 
347   /// Version of AllocateReg with extra register to be shadowed.
AllocateReg(unsigned Reg,unsigned ShadowReg)348   unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
349     if (isAllocated(Reg)) return 0;
350     MarkAllocated(Reg);
351     MarkAllocated(ShadowReg);
352     return Reg;
353   }
354 
355   /// AllocateReg - Attempt to allocate one of the specified registers.  If none
356   /// are available, return zero.  Otherwise, return the first one available,
357   /// marking it and any aliases as allocated.
AllocateReg(ArrayRef<MCPhysReg> Regs)358   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
359     unsigned FirstUnalloc = getFirstUnallocated(Regs);
360     if (FirstUnalloc == Regs.size())
361       return 0;    // Didn't find the reg.
362 
363     // Mark the register and any aliases as allocated.
364     unsigned Reg = Regs[FirstUnalloc];
365     MarkAllocated(Reg);
366     return Reg;
367   }
368 
369   /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
370   /// registers. If this is not possible, return zero. Otherwise, return the first
371   /// register of the block that were allocated, marking the entire block as allocated.
AllocateRegBlock(ArrayRef<MCPhysReg> Regs,unsigned RegsRequired)372   unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
373     if (RegsRequired > Regs.size())
374       return 0;
375 
376     for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
377          ++StartIdx) {
378       bool BlockAvailable = true;
379       // Check for already-allocated regs in this block
380       for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
381         if (isAllocated(Regs[StartIdx + BlockIdx])) {
382           BlockAvailable = false;
383           break;
384         }
385       }
386       if (BlockAvailable) {
387         // Mark the entire block as allocated
388         for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
389           MarkAllocated(Regs[StartIdx + BlockIdx]);
390         }
391         return Regs[StartIdx];
392       }
393     }
394     // No block was available
395     return 0;
396   }
397 
398   /// Version of AllocateReg with list of registers to be shadowed.
AllocateReg(ArrayRef<MCPhysReg> Regs,const MCPhysReg * ShadowRegs)399   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
400     unsigned FirstUnalloc = getFirstUnallocated(Regs);
401     if (FirstUnalloc == Regs.size())
402       return 0;    // Didn't find the reg.
403 
404     // Mark the register and any aliases as allocated.
405     unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
406     MarkAllocated(Reg);
407     MarkAllocated(ShadowReg);
408     return Reg;
409   }
410 
411   /// AllocateStack - Allocate a chunk of stack space with the specified size
412   /// and alignment.
AllocateStack(unsigned Size,unsigned Align)413   unsigned AllocateStack(unsigned Size, unsigned Align) {
414     assert(Align && ((Align - 1) & Align) == 0); // Align is power of 2.
415     StackOffset = RoundUpToAlignment(StackOffset, Align);
416     unsigned Result = StackOffset;
417     StackOffset += Size;
418     MaxStackArgAlign = std::max(Align, MaxStackArgAlign);
419     MF.getFrameInfo()->ensureMaxAlignment(Align);
420     return Result;
421   }
422 
423   /// Version of AllocateStack with extra register to be shadowed.
AllocateStack(unsigned Size,unsigned Align,unsigned ShadowReg)424   unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
425     MarkAllocated(ShadowReg);
426     return AllocateStack(Size, Align);
427   }
428 
429   /// Version of AllocateStack with list of extra registers to be shadowed.
430   /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
AllocateStack(unsigned Size,unsigned Align,ArrayRef<MCPhysReg> ShadowRegs)431   unsigned AllocateStack(unsigned Size, unsigned Align,
432                          ArrayRef<MCPhysReg> ShadowRegs) {
433     for (unsigned i = 0; i < ShadowRegs.size(); ++i)
434       MarkAllocated(ShadowRegs[i]);
435     return AllocateStack(Size, Align);
436   }
437 
438   // HandleByVal - Allocate a stack slot large enough to pass an argument by
439   // value. The size and alignment information of the argument is encoded in its
440   // parameter attribute.
441   void HandleByVal(unsigned ValNo, MVT ValVT,
442                    MVT LocVT, CCValAssign::LocInfo LocInfo,
443                    int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
444 
445   // Returns count of byval arguments that are to be stored (even partly)
446   // in registers.
getInRegsParamsCount()447   unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
448 
449   // Returns count of byval in-regs arguments proceed.
getInRegsParamsProcessed()450   unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
451 
452   // Get information about N-th byval parameter that is stored in registers.
453   // Here "ByValParamIndex" is N.
getInRegsParamInfo(unsigned InRegsParamRecordIndex,unsigned & BeginReg,unsigned & EndReg)454   void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
455                           unsigned& BeginReg, unsigned& EndReg) const {
456     assert(InRegsParamRecordIndex < ByValRegs.size() &&
457            "Wrong ByVal parameter index");
458 
459     const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
460     BeginReg = info.Begin;
461     EndReg = info.End;
462   }
463 
464   // Add information about parameter that is kept in registers.
addInRegsParamInfo(unsigned RegBegin,unsigned RegEnd)465   void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
466     ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
467   }
468 
469   // Goes either to next byval parameter (excluding "waste" record), or
470   // to the end of collection.
471   // Returns false, if end is reached.
nextInRegsParam()472   bool nextInRegsParam() {
473     unsigned e = ByValRegs.size();
474     if (InRegsParamsProcessed < e)
475       ++InRegsParamsProcessed;
476     return InRegsParamsProcessed < e;
477   }
478 
479   // Clear byval registers tracking info.
clearByValRegsInfo()480   void clearByValRegsInfo() {
481     InRegsParamsProcessed = 0;
482     ByValRegs.clear();
483   }
484 
485   // Rewind byval registers tracking info.
rewindByValRegsInfo()486   void rewindByValRegsInfo() {
487     InRegsParamsProcessed = 0;
488   }
489 
getCallOrPrologue()490   ParmContext getCallOrPrologue() const { return CallOrPrologue; }
491 
492   // Get list of pending assignments
getPendingLocs()493   SmallVectorImpl<llvm::CCValAssign> &getPendingLocs() {
494     return PendingLocs;
495   }
496 
497   /// Compute the remaining unused register parameters that would be used for
498   /// the given value type. This is useful when varargs are passed in the
499   /// registers that normal prototyped parameters would be passed in, or for
500   /// implementing perfect forwarding.
501   void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
502                                    CCAssignFn Fn);
503 
504   /// Compute the set of registers that need to be preserved and forwarded to
505   /// any musttail calls.
506   void analyzeMustTailForwardedRegisters(
507       SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
508       CCAssignFn Fn);
509 
510 private:
511   /// MarkAllocated - Mark a register and all of its aliases as allocated.
512   void MarkAllocated(unsigned Reg);
513 };
514 
515 
516 
517 } // end namespace llvm
518 
519 #endif
520