• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // <random>
11 
12 // template<class RealType = double>
13 // class normal_distribution
14 
15 // template<class _URNG> result_type operator()(_URNG& g);
16 
17 #include <random>
18 #include <cassert>
19 #include <vector>
20 #include <numeric>
21 
22 template <class T>
23 inline
24 T
sqr(T x)25 sqr(T x)
26 {
27     return x * x;
28 }
29 
main()30 int main()
31 {
32     {
33         typedef std::normal_distribution<> D;
34         typedef D::param_type P;
35         typedef std::minstd_rand G;
36         G g;
37         D d(5, 4);
38         const int N = 1000000;
39         std::vector<D::result_type> u;
40         for (int i = 0; i < N; ++i)
41             u.push_back(d(g));
42         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
43         double var = 0;
44         double skew = 0;
45         double kurtosis = 0;
46         for (int i = 0; i < u.size(); ++i)
47         {
48             double d = (u[i] - mean);
49             double d2 = sqr(d);
50             var += d2;
51             skew += d * d2;
52             kurtosis += d2 * d2;
53         }
54         var /= u.size();
55         double dev = std::sqrt(var);
56         skew /= u.size() * dev * var;
57         kurtosis /= u.size() * var * var;
58         kurtosis -= 3;
59         double x_mean = d.mean();
60         double x_var = sqr(d.stddev());
61         double x_skew = 0;
62         double x_kurtosis = 0;
63         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
64         assert(std::abs((var - x_var) / x_var) < 0.01);
65         assert(std::abs(skew - x_skew) < 0.01);
66         assert(std::abs(kurtosis - x_kurtosis) < 0.01);
67     }
68 }
69