• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  * Version:  7.0
4  *
5  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included
15  * in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 /*
26  * Triangle Rasterizer Template
27  *
28  * This file is #include'd to generate custom triangle rasterizers.
29  *
30  * The following macros may be defined to indicate what auxillary information
31  * must be interpolated across the triangle:
32  *    INTERP_Z        - if defined, interpolate integer Z values
33  *    INTERP_RGB      - if defined, interpolate integer RGB values
34  *    INTERP_ALPHA    - if defined, interpolate integer Alpha values
35  *    INTERP_INT_TEX  - if defined, interpolate integer ST texcoords
36  *                         (fast, simple 2-D texture mapping, without
37  *                         perspective correction)
38  *    INTERP_ATTRIBS  - if defined, interpolate arbitrary attribs (texcoords,
39  *                         varying vars, etc)  This also causes W to be
40  *                         computed for perspective correction).
41  *
42  * When one can directly address pixels in the color buffer the following
43  * macros can be defined and used to compute pixel addresses during
44  * rasterization (see pRow):
45  *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint)
46  *    BYTES_PER_ROW       - number of bytes per row in the color buffer
47  *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where
48  *                          Y==0 at bottom of screen and increases upward.
49  *
50  * Similarly, for direct depth buffer access, this type is used for depth
51  * buffer addressing (see zRow):
52  *    DEPTH_TYPE          - either GLushort or GLuint
53  *
54  * Optionally, one may provide one-time setup code per triangle:
55  *    SETUP_CODE    - code which is to be executed once per triangle
56  *
57  * The following macro MUST be defined:
58  *    RENDER_SPAN(span) - code to write a span of pixels.
59  *
60  * This code was designed for the origin to be in the lower-left corner.
61  *
62  * Inspired by triangle rasterizer code written by Allen Akin.  Thanks Allen!
63  *
64  *
65  * Some notes on rasterization accuracy:
66  *
67  * This code uses fixed point arithmetic (the GLfixed type) to iterate
68  * over the triangle edges and interpolate ancillary data (such as Z,
69  * color, secondary color, etc).  The number of fractional bits in
70  * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the
71  * accuracy of rasterization.
72  *
73  * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest
74  * 1/16 of a pixel.  If we're walking up a long, nearly vertical edge
75  * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in
76  * GLfixed to walk the edge without error.  If the maximum viewport
77  * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits.
78  *
79  * Historically, Mesa has used 11 fractional bits in GLfixed, snaps
80  * vertices to 1/16 pixel and allowed a maximum viewport height of 2K
81  * pixels.  11 fractional bits is actually insufficient for accurately
82  * rasterizing some triangles.  More recently, the maximum viewport
83  * height was increased to 4K pixels.  Thus, Mesa should be using 16
84  * fractional bits in GLfixed.  Unfortunately, there may be some issues
85  * with setting FIXED_FRAC_BITS=16, such as multiplication overflow.
86  * This will have to be examined in some detail...
87  *
88  * For now, if you find rasterization errors, particularly with tall,
89  * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing
90  * SUB_PIXEL_BITS.
91  */
92 
93 
94 /*
95  * Some code we unfortunately need to prevent negative interpolated colors.
96  */
97 #ifndef CLAMP_INTERPOLANT
98 #define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN)		\
99 do {								\
100    GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP;	\
101    if (endVal < 0) {						\
102       span.CHANNEL -= endVal;					\
103    }								\
104    if (span.CHANNEL < 0) {					\
105       span.CHANNEL = 0;						\
106    }								\
107 } while (0)
108 #endif
109 
110 
NAME(struct gl_context * ctx,const SWvertex * v0,const SWvertex * v1,const SWvertex * v2)111 static void NAME(struct gl_context *ctx, const SWvertex *v0,
112                                  const SWvertex *v1,
113                                  const SWvertex *v2 )
114 {
115    typedef struct {
116       const SWvertex *v0, *v1;   /* Y(v0) < Y(v1) */
117       GLfloat dx;	/* X(v1) - X(v0) */
118       GLfloat dy;	/* Y(v1) - Y(v0) */
119       GLfloat dxdy;	/* dx/dy */
120       GLfixed fdxdy;	/* dx/dy in fixed-point */
121       GLfloat adjy;	/* adjust from v[0]->fy to fsy, scaled */
122       GLfixed fsx;	/* first sample point x coord */
123       GLfixed fsy;
124       GLfixed fx0;	/* fixed pt X of lower endpoint */
125       GLint lines;	/* number of lines to be sampled on this edge */
126    } EdgeT;
127 
128    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
129 #ifdef INTERP_Z
130    const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
131    const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
132    const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;
133 #define FixedToDepth(F)  ((F) >> fixedToDepthShift)
134 #endif
135    EdgeT eMaj, eTop, eBot;
136    GLfloat oneOverArea;
137    const SWvertex *vMin, *vMid, *vMax;  /* Y(vMin)<=Y(vMid)<=Y(vMax) */
138    GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
139    const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
140    GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
141 
142    SWspan span;
143 
144    (void) swrast;
145 
146    INIT_SPAN(span, GL_POLYGON);
147    span.y = 0; /* silence warnings */
148 
149 #ifdef INTERP_Z
150    (void) fixedToDepthShift;
151 #endif
152 
153    /*
154    printf("%s()\n", __FUNCTION__);
155    printf("  %g, %g, %g\n",
156           v0->attrib[FRAG_ATTRIB_WPOS][0],
157           v0->attrib[FRAG_ATTRIB_WPOS][1],
158           v0->attrib[FRAG_ATTRIB_WPOS][2]);
159    printf("  %g, %g, %g\n",
160           v1->attrib[FRAG_ATTRIB_WPOS][0],
161           v1->attrib[FRAG_ATTRIB_WPOS][1],
162           v1->attrib[FRAG_ATTRIB_WPOS][2]);
163    printf("  %g, %g, %g\n",
164           v2->attrib[FRAG_ATTRIB_WPOS][0],
165           v2->attrib[FRAG_ATTRIB_WPOS][1],
166           v2->attrib[FRAG_ATTRIB_WPOS][2]);
167    */
168 
169    /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
170     * And find the order of the 3 vertices along the Y axis.
171     */
172    {
173       const GLfixed fy0 = FloatToFixed(v0->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
174       const GLfixed fy1 = FloatToFixed(v1->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
175       const GLfixed fy2 = FloatToFixed(v2->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
176       if (fy0 <= fy1) {
177          if (fy1 <= fy2) {
178             /* y0 <= y1 <= y2 */
179             vMin = v0;   vMid = v1;   vMax = v2;
180             vMin_fy = fy0;  vMid_fy = fy1;  vMax_fy = fy2;
181          }
182          else if (fy2 <= fy0) {
183             /* y2 <= y0 <= y1 */
184             vMin = v2;   vMid = v0;   vMax = v1;
185             vMin_fy = fy2;  vMid_fy = fy0;  vMax_fy = fy1;
186          }
187          else {
188             /* y0 <= y2 <= y1 */
189             vMin = v0;   vMid = v2;   vMax = v1;
190             vMin_fy = fy0;  vMid_fy = fy2;  vMax_fy = fy1;
191             bf = -bf;
192          }
193       }
194       else {
195          if (fy0 <= fy2) {
196             /* y1 <= y0 <= y2 */
197             vMin = v1;   vMid = v0;   vMax = v2;
198             vMin_fy = fy1;  vMid_fy = fy0;  vMax_fy = fy2;
199             bf = -bf;
200          }
201          else if (fy2 <= fy1) {
202             /* y2 <= y1 <= y0 */
203             vMin = v2;   vMid = v1;   vMax = v0;
204             vMin_fy = fy2;  vMid_fy = fy1;  vMax_fy = fy0;
205             bf = -bf;
206          }
207          else {
208             /* y1 <= y2 <= y0 */
209             vMin = v1;   vMid = v2;   vMax = v0;
210             vMin_fy = fy1;  vMid_fy = fy2;  vMax_fy = fy0;
211          }
212       }
213 
214       /* fixed point X coords */
215       vMin_fx = FloatToFixed(vMin->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
216       vMid_fx = FloatToFixed(vMid->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
217       vMax_fx = FloatToFixed(vMax->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
218    }
219 
220    /* vertex/edge relationship */
221    eMaj.v0 = vMin;   eMaj.v1 = vMax;   /*TODO: .v1's not needed */
222    eTop.v0 = vMid;   eTop.v1 = vMax;
223    eBot.v0 = vMin;   eBot.v1 = vMid;
224 
225    /* compute deltas for each edge:  vertex[upper] - vertex[lower] */
226    eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
227    eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
228    eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
229    eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
230    eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
231    eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
232 
233    /* compute area, oneOverArea and perform backface culling */
234    {
235       const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
236 
237       if (IS_INF_OR_NAN(area) || area == 0.0F)
238          return;
239 
240       if (area * bf * swrast->_BackfaceCullSign < 0.0)
241          return;
242 
243       oneOverArea = 1.0F / area;
244 
245       /* 0 = front, 1 = back */
246       span.facing = oneOverArea * bf > 0.0F;
247    }
248 
249    /* Edge setup.  For a triangle strip these could be reused... */
250    {
251       eMaj.fsy = FixedCeil(vMin_fy);
252       eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
253       if (eMaj.lines > 0) {
254          eMaj.dxdy = eMaj.dx / eMaj.dy;
255          eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);
256          eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy);  /* SCALED! */
257          eMaj.fx0 = vMin_fx;
258          eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);
259       }
260       else {
261          return;  /*CULLED*/
262       }
263 
264       eTop.fsy = FixedCeil(vMid_fy);
265       eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
266       if (eTop.lines > 0) {
267          eTop.dxdy = eTop.dx / eTop.dy;
268          eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);
269          eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
270          eTop.fx0 = vMid_fx;
271          eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);
272       }
273 
274       eBot.fsy = FixedCeil(vMin_fy);
275       eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
276       if (eBot.lines > 0) {
277          eBot.dxdy = eBot.dx / eBot.dy;
278          eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);
279          eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy);  /* SCALED! */
280          eBot.fx0 = vMin_fx;
281          eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);
282       }
283    }
284 
285    /*
286     * Conceptually, we view a triangle as two subtriangles
287     * separated by a perfectly horizontal line.  The edge that is
288     * intersected by this line is one with maximal absolute dy; we
289     * call it a ``major'' edge.  The other two edges are the
290     * ``top'' edge (for the upper subtriangle) and the ``bottom''
291     * edge (for the lower subtriangle).  If either of these two
292     * edges is horizontal or very close to horizontal, the
293     * corresponding subtriangle might cover zero sample points;
294     * we take care to handle such cases, for performance as well
295     * as correctness.
296     *
297     * By stepping rasterization parameters along the major edge,
298     * we can avoid recomputing them at the discontinuity where
299     * the top and bottom edges meet.  However, this forces us to
300     * be able to scan both left-to-right and right-to-left.
301     * Also, we must determine whether the major edge is at the
302     * left or right side of the triangle.  We do this by
303     * computing the magnitude of the cross-product of the major
304     * and top edges.  Since this magnitude depends on the sine of
305     * the angle between the two edges, its sign tells us whether
306     * we turn to the left or to the right when travelling along
307     * the major edge to the top edge, and from this we infer
308     * whether the major edge is on the left or the right.
309     *
310     * Serendipitously, this cross-product magnitude is also a
311     * value we need to compute the iteration parameter
312     * derivatives for the triangle, and it can be used to perform
313     * backface culling because its sign tells us whether the
314     * triangle is clockwise or counterclockwise.  In this code we
315     * refer to it as ``area'' because it's also proportional to
316     * the pixel area of the triangle.
317     */
318 
319    {
320       GLint scan_from_left_to_right;  /* true if scanning left-to-right */
321 
322       /*
323        * Execute user-supplied setup code
324        */
325 #ifdef SETUP_CODE
326       SETUP_CODE
327 #endif
328 
329       scan_from_left_to_right = (oneOverArea < 0.0F);
330 
331 
332       /* compute d?/dx and d?/dy derivatives */
333 #ifdef INTERP_Z
334       span.interpMask |= SPAN_Z;
335       {
336          GLfloat eMaj_dz = vMax->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2];
337          GLfloat eBot_dz = vMid->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2];
338          span.attrStepX[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
339          if (span.attrStepX[FRAG_ATTRIB_WPOS][2] > maxDepth ||
340              span.attrStepX[FRAG_ATTRIB_WPOS][2] < -maxDepth) {
341             /* probably a sliver triangle */
342             span.attrStepX[FRAG_ATTRIB_WPOS][2] = 0.0;
343             span.attrStepY[FRAG_ATTRIB_WPOS][2] = 0.0;
344          }
345          else {
346             span.attrStepY[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
347          }
348          if (depthBits <= 16)
349             span.zStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_WPOS][2]);
350          else
351             span.zStep = (GLint) span.attrStepX[FRAG_ATTRIB_WPOS][2];
352       }
353 #endif
354 #ifdef INTERP_RGB
355       span.interpMask |= SPAN_RGBA;
356       if (ctx->Light.ShadeModel == GL_SMOOTH) {
357          GLfloat eMaj_dr = (GLfloat) (vMax->color[RCOMP] - vMin->color[RCOMP]);
358          GLfloat eBot_dr = (GLfloat) (vMid->color[RCOMP] - vMin->color[RCOMP]);
359          GLfloat eMaj_dg = (GLfloat) (vMax->color[GCOMP] - vMin->color[GCOMP]);
360          GLfloat eBot_dg = (GLfloat) (vMid->color[GCOMP] - vMin->color[GCOMP]);
361          GLfloat eMaj_db = (GLfloat) (vMax->color[BCOMP] - vMin->color[BCOMP]);
362          GLfloat eBot_db = (GLfloat) (vMid->color[BCOMP] - vMin->color[BCOMP]);
363 #  ifdef INTERP_ALPHA
364          GLfloat eMaj_da = (GLfloat) (vMax->color[ACOMP] - vMin->color[ACOMP]);
365          GLfloat eBot_da = (GLfloat) (vMid->color[ACOMP] - vMin->color[ACOMP]);
366 #  endif
367          span.attrStepX[FRAG_ATTRIB_COL0][0] = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
368          span.attrStepY[FRAG_ATTRIB_COL0][0] = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
369          span.attrStepX[FRAG_ATTRIB_COL0][1] = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
370          span.attrStepY[FRAG_ATTRIB_COL0][1] = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
371          span.attrStepX[FRAG_ATTRIB_COL0][2] = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
372          span.attrStepY[FRAG_ATTRIB_COL0][2] = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
373          span.redStep   = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][0]);
374          span.greenStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][1]);
375          span.blueStep  = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][2]);
376 #  ifdef INTERP_ALPHA
377          span.attrStepX[FRAG_ATTRIB_COL0][3] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
378          span.attrStepY[FRAG_ATTRIB_COL0][3] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
379          span.alphaStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][3]);
380 #  endif /* INTERP_ALPHA */
381       }
382       else {
383          ASSERT(ctx->Light.ShadeModel == GL_FLAT);
384          span.interpMask |= SPAN_FLAT;
385          span.attrStepX[FRAG_ATTRIB_COL0][0] = span.attrStepY[FRAG_ATTRIB_COL0][0] = 0.0F;
386          span.attrStepX[FRAG_ATTRIB_COL0][1] = span.attrStepY[FRAG_ATTRIB_COL0][1] = 0.0F;
387          span.attrStepX[FRAG_ATTRIB_COL0][2] = span.attrStepY[FRAG_ATTRIB_COL0][2] = 0.0F;
388 	 span.redStep   = 0;
389 	 span.greenStep = 0;
390 	 span.blueStep  = 0;
391 #  ifdef INTERP_ALPHA
392          span.attrStepX[FRAG_ATTRIB_COL0][3] = span.attrStepY[FRAG_ATTRIB_COL0][3] = 0.0F;
393 	 span.alphaStep = 0;
394 #  endif
395       }
396 #endif /* INTERP_RGB */
397 #ifdef INTERP_INT_TEX
398       {
399          GLfloat eMaj_ds = (vMax->attrib[FRAG_ATTRIB_TEX0][0] - vMin->attrib[FRAG_ATTRIB_TEX0][0]) * S_SCALE;
400          GLfloat eBot_ds = (vMid->attrib[FRAG_ATTRIB_TEX0][0] - vMin->attrib[FRAG_ATTRIB_TEX0][0]) * S_SCALE;
401          GLfloat eMaj_dt = (vMax->attrib[FRAG_ATTRIB_TEX0][1] - vMin->attrib[FRAG_ATTRIB_TEX0][1]) * T_SCALE;
402          GLfloat eBot_dt = (vMid->attrib[FRAG_ATTRIB_TEX0][1] - vMin->attrib[FRAG_ATTRIB_TEX0][1]) * T_SCALE;
403          span.attrStepX[FRAG_ATTRIB_TEX0][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
404          span.attrStepY[FRAG_ATTRIB_TEX0][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
405          span.attrStepX[FRAG_ATTRIB_TEX0][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
406          span.attrStepY[FRAG_ATTRIB_TEX0][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
407          span.intTexStep[0] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX0][0]);
408          span.intTexStep[1] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX0][1]);
409       }
410 #endif
411 #ifdef INTERP_ATTRIBS
412       {
413          /* attrib[FRAG_ATTRIB_WPOS][3] is 1/W */
414          const GLfloat wMax = vMax->attrib[FRAG_ATTRIB_WPOS][3];
415          const GLfloat wMin = vMin->attrib[FRAG_ATTRIB_WPOS][3];
416          const GLfloat wMid = vMid->attrib[FRAG_ATTRIB_WPOS][3];
417          {
418             const GLfloat eMaj_dw = wMax - wMin;
419             const GLfloat eBot_dw = wMid - wMin;
420             span.attrStepX[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw);
421             span.attrStepY[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx);
422          }
423          ATTRIB_LOOP_BEGIN
424             if (swrast->_InterpMode[attr] == GL_FLAT) {
425                ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0);
426                ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0);
427             }
428             else {
429                GLuint c;
430                for (c = 0; c < 4; c++) {
431                   GLfloat eMaj_da = vMax->attrib[attr][c] * wMax - vMin->attrib[attr][c] * wMin;
432                   GLfloat eBot_da = vMid->attrib[attr][c] * wMid - vMin->attrib[attr][c] * wMin;
433                   span.attrStepX[attr][c] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
434                   span.attrStepY[attr][c] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
435                }
436             }
437          ATTRIB_LOOP_END
438       }
439 #endif
440 
441       /*
442        * We always sample at pixel centers.  However, we avoid
443        * explicit half-pixel offsets in this code by incorporating
444        * the proper offset in each of x and y during the
445        * transformation to window coordinates.
446        *
447        * We also apply the usual rasterization rules to prevent
448        * cracks and overlaps.  A pixel is considered inside a
449        * subtriangle if it meets all of four conditions: it is on or
450        * to the right of the left edge, strictly to the left of the
451        * right edge, on or below the top edge, and strictly above
452        * the bottom edge.  (Some edges may be degenerate.)
453        *
454        * The following discussion assumes left-to-right scanning
455        * (that is, the major edge is on the left); the right-to-left
456        * case is a straightforward variation.
457        *
458        * We start by finding the half-integral y coordinate that is
459        * at or below the top of the triangle.  This gives us the
460        * first scan line that could possibly contain pixels that are
461        * inside the triangle.
462        *
463        * Next we creep down the major edge until we reach that y,
464        * and compute the corresponding x coordinate on the edge.
465        * Then we find the half-integral x that lies on or just
466        * inside the edge.  This is the first pixel that might lie in
467        * the interior of the triangle.  (We won't know for sure
468        * until we check the other edges.)
469        *
470        * As we rasterize the triangle, we'll step down the major
471        * edge.  For each step in y, we'll move an integer number
472        * of steps in x.  There are two possible x step sizes, which
473        * we'll call the ``inner'' step (guaranteed to land on the
474        * edge or inside it) and the ``outer'' step (guaranteed to
475        * land on the edge or outside it).  The inner and outer steps
476        * differ by one.  During rasterization we maintain an error
477        * term that indicates our distance from the true edge, and
478        * select either the inner step or the outer step, whichever
479        * gets us to the first pixel that falls inside the triangle.
480        *
481        * All parameters (z, red, etc.) as well as the buffer
482        * addresses for color and z have inner and outer step values,
483        * so that we can increment them appropriately.  This method
484        * eliminates the need to adjust parameters by creeping a
485        * sub-pixel amount into the triangle at each scanline.
486        */
487 
488       {
489          GLint subTriangle;
490          GLfixed fxLeftEdge = 0, fxRightEdge = 0;
491          GLfixed fdxLeftEdge = 0, fdxRightEdge = 0;
492          GLfixed fError = 0, fdError = 0;
493 #ifdef PIXEL_ADDRESS
494          PIXEL_TYPE *pRow = NULL;
495          GLint dPRowOuter = 0, dPRowInner;  /* offset in bytes */
496 #endif
497 #ifdef INTERP_Z
498 #  ifdef DEPTH_TYPE
499          struct gl_renderbuffer *zrb
500             = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
501          DEPTH_TYPE *zRow = NULL;
502          GLint dZRowOuter = 0, dZRowInner;  /* offset in bytes */
503 #  endif
504          GLuint zLeft = 0;
505          GLfixed fdzOuter = 0, fdzInner;
506 #endif
507 #ifdef INTERP_RGB
508          GLint rLeft = 0, fdrOuter = 0, fdrInner;
509          GLint gLeft = 0, fdgOuter = 0, fdgInner;
510          GLint bLeft = 0, fdbOuter = 0, fdbInner;
511 #endif
512 #ifdef INTERP_ALPHA
513          GLint aLeft = 0, fdaOuter = 0, fdaInner;
514 #endif
515 #ifdef INTERP_INT_TEX
516          GLfixed sLeft=0, dsOuter=0, dsInner;
517          GLfixed tLeft=0, dtOuter=0, dtInner;
518 #endif
519 #ifdef INTERP_ATTRIBS
520          GLfloat wLeft = 0, dwOuter = 0, dwInner;
521          GLfloat attrLeft[FRAG_ATTRIB_MAX][4];
522          GLfloat daOuter[FRAG_ATTRIB_MAX][4], daInner[FRAG_ATTRIB_MAX][4];
523 #endif
524 
525          for (subTriangle=0; subTriangle<=1; subTriangle++) {
526             EdgeT *eLeft, *eRight;
527             int setupLeft, setupRight;
528             int lines;
529 
530             if (subTriangle==0) {
531                /* bottom half */
532                if (scan_from_left_to_right) {
533                   eLeft = &eMaj;
534                   eRight = &eBot;
535                   lines = eRight->lines;
536                   setupLeft = 1;
537                   setupRight = 1;
538                }
539                else {
540                   eLeft = &eBot;
541                   eRight = &eMaj;
542                   lines = eLeft->lines;
543                   setupLeft = 1;
544                   setupRight = 1;
545                }
546             }
547             else {
548                /* top half */
549                if (scan_from_left_to_right) {
550                   eLeft = &eMaj;
551                   eRight = &eTop;
552                   lines = eRight->lines;
553                   setupLeft = 0;
554                   setupRight = 1;
555                }
556                else {
557                   eLeft = &eTop;
558                   eRight = &eMaj;
559                   lines = eLeft->lines;
560                   setupLeft = 1;
561                   setupRight = 0;
562                }
563                if (lines == 0)
564                   return;
565             }
566 
567             if (setupLeft && eLeft->lines > 0) {
568                const SWvertex *vLower = eLeft->v0;
569                const GLfixed fsy = eLeft->fsy;
570                const GLfixed fsx = eLeft->fsx;  /* no fractional part */
571                const GLfixed fx = FixedCeil(fsx);  /* no fractional part */
572                const GLfixed adjx = (GLfixed) (fx - eLeft->fx0); /* SCALED! */
573                const GLfixed adjy = (GLfixed) eLeft->adjy;      /* SCALED! */
574                GLint idxOuter;
575                GLfloat dxOuter;
576                GLfixed fdxOuter;
577 
578                fError = fx - fsx - FIXED_ONE;
579                fxLeftEdge = fsx - FIXED_EPSILON;
580                fdxLeftEdge = eLeft->fdxdy;
581                fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
582                fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
583                idxOuter = FixedToInt(fdxOuter);
584                dxOuter = (GLfloat) idxOuter;
585                span.y = FixedToInt(fsy);
586 
587                /* silence warnings on some compilers */
588                (void) dxOuter;
589                (void) adjx;
590                (void) adjy;
591                (void) vLower;
592 
593 #ifdef PIXEL_ADDRESS
594                {
595                   pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
596                   dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
597                   /* negative because Y=0 at bottom and increases upward */
598                }
599 #endif
600                /*
601                 * Now we need the set of parameter (z, color, etc.) values at
602                 * the point (fx, fsy).  This gives us properly-sampled parameter
603                 * values that we can step from pixel to pixel.  Furthermore,
604                 * although we might have intermediate results that overflow
605                 * the normal parameter range when we step temporarily outside
606                 * the triangle, we shouldn't overflow or underflow for any
607                 * pixel that's actually inside the triangle.
608                 */
609 
610 #ifdef INTERP_Z
611                {
612                   GLfloat z0 = vLower->attrib[FRAG_ATTRIB_WPOS][2];
613                   if (depthBits <= 16) {
614                      /* interpolate fixed-pt values */
615                      GLfloat tmp = (z0 * FIXED_SCALE
616                                     + span.attrStepX[FRAG_ATTRIB_WPOS][2] * adjx
617                                     + span.attrStepY[FRAG_ATTRIB_WPOS][2] * adjy) + FIXED_HALF;
618                      if (tmp < MAX_GLUINT / 2)
619                         zLeft = (GLfixed) tmp;
620                      else
621                         zLeft = MAX_GLUINT / 2;
622                      fdzOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_WPOS][2] +
623                                                    dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]);
624                   }
625                   else {
626                      /* interpolate depth values w/out scaling */
627                      zLeft = (GLuint) (z0 + span.attrStepX[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjx)
628                                           + span.attrStepY[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjy));
629                      fdzOuter = (GLint) (span.attrStepY[FRAG_ATTRIB_WPOS][2] +
630                                          dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]);
631                   }
632 #  ifdef DEPTH_TYPE
633                   zRow = (DEPTH_TYPE *)
634                     _swrast_pixel_address(zrb, FixedToInt(fxLeftEdge), span.y);
635                   dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
636 #  endif
637                }
638 #endif
639 #ifdef INTERP_RGB
640                if (ctx->Light.ShadeModel == GL_SMOOTH) {
641                   rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP])
642                                   + span.attrStepX[FRAG_ATTRIB_COL0][0] * adjx
643                                   + span.attrStepY[FRAG_ATTRIB_COL0][0] * adjy) + FIXED_HALF;
644                   gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP])
645                                   + span.attrStepX[FRAG_ATTRIB_COL0][1] * adjx
646                                   + span.attrStepY[FRAG_ATTRIB_COL0][1] * adjy) + FIXED_HALF;
647                   bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP])
648                                   + span.attrStepX[FRAG_ATTRIB_COL0][2] * adjx
649                                   + span.attrStepY[FRAG_ATTRIB_COL0][2] * adjy) + FIXED_HALF;
650                   fdrOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][0]
651                                                 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][0]);
652                   fdgOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][1]
653                                                 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][1]);
654                   fdbOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][2]
655                                                 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][2]);
656 #  ifdef INTERP_ALPHA
657                   aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP])
658                                   + span.attrStepX[FRAG_ATTRIB_COL0][3] * adjx
659                                   + span.attrStepY[FRAG_ATTRIB_COL0][3] * adjy) + FIXED_HALF;
660                   fdaOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][3]
661                                                 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][3]);
662 #  endif
663                }
664                else {
665                   ASSERT(ctx->Light.ShadeModel == GL_FLAT);
666                   rLeft = ChanToFixed(v2->color[RCOMP]);
667                   gLeft = ChanToFixed(v2->color[GCOMP]);
668                   bLeft = ChanToFixed(v2->color[BCOMP]);
669                   fdrOuter = fdgOuter = fdbOuter = 0;
670 #  ifdef INTERP_ALPHA
671                   aLeft = ChanToFixed(v2->color[ACOMP]);
672                   fdaOuter = 0;
673 #  endif
674                }
675 #endif /* INTERP_RGB */
676 
677 
678 #ifdef INTERP_INT_TEX
679                {
680                   GLfloat s0, t0;
681                   s0 = vLower->attrib[FRAG_ATTRIB_TEX0][0] * S_SCALE;
682                   sLeft = (GLfixed)(s0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX0][0] * adjx
683                                  + span.attrStepY[FRAG_ATTRIB_TEX0][0] * adjy) + FIXED_HALF;
684                   dsOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX0][0]
685                                                + dxOuter * span.attrStepX[FRAG_ATTRIB_TEX0][0]);
686 
687                   t0 = vLower->attrib[FRAG_ATTRIB_TEX0][1] * T_SCALE;
688                   tLeft = (GLfixed)(t0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX0][1] * adjx
689                                  + span.attrStepY[FRAG_ATTRIB_TEX0][1] * adjy) + FIXED_HALF;
690                   dtOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX0][1]
691                                                + dxOuter * span.attrStepX[FRAG_ATTRIB_TEX0][1]);
692                }
693 #endif
694 #ifdef INTERP_ATTRIBS
695                {
696                   const GLuint attr = FRAG_ATTRIB_WPOS;
697                   wLeft = vLower->attrib[FRAG_ATTRIB_WPOS][3]
698                         + (span.attrStepX[attr][3] * adjx
699                            + span.attrStepY[attr][3] * adjy) * (1.0F/FIXED_SCALE);
700                   dwOuter = span.attrStepY[attr][3] + dxOuter * span.attrStepX[attr][3];
701                }
702                ATTRIB_LOOP_BEGIN
703                   const GLfloat invW = vLower->attrib[FRAG_ATTRIB_WPOS][3];
704                   if (swrast->_InterpMode[attr] == GL_FLAT) {
705                      GLuint c;
706                      for (c = 0; c < 4; c++) {
707                         attrLeft[attr][c] = v2->attrib[attr][c] * invW;
708                         daOuter[attr][c] = 0.0;
709                      }
710                   }
711                   else {
712                      GLuint c;
713                      for (c = 0; c < 4; c++) {
714                         const GLfloat a = vLower->attrib[attr][c] * invW;
715                         attrLeft[attr][c] = a + (  span.attrStepX[attr][c] * adjx
716                                                  + span.attrStepY[attr][c] * adjy) * (1.0F/FIXED_SCALE);
717                         daOuter[attr][c] = span.attrStepY[attr][c] + dxOuter * span.attrStepX[attr][c];
718                      }
719                   }
720                ATTRIB_LOOP_END
721 #endif
722             } /*if setupLeft*/
723 
724 
725             if (setupRight && eRight->lines>0) {
726                fxRightEdge = eRight->fsx - FIXED_EPSILON;
727                fdxRightEdge = eRight->fdxdy;
728             }
729 
730             if (lines==0) {
731                continue;
732             }
733 
734 
735             /* Rasterize setup */
736 #ifdef PIXEL_ADDRESS
737             dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
738 #endif
739 #ifdef INTERP_Z
740 #  ifdef DEPTH_TYPE
741             dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
742 #  endif
743             fdzInner = fdzOuter + span.zStep;
744 #endif
745 #ifdef INTERP_RGB
746             fdrInner = fdrOuter + span.redStep;
747             fdgInner = fdgOuter + span.greenStep;
748             fdbInner = fdbOuter + span.blueStep;
749 #endif
750 #ifdef INTERP_ALPHA
751             fdaInner = fdaOuter + span.alphaStep;
752 #endif
753 #ifdef INTERP_INT_TEX
754             dsInner = dsOuter + span.intTexStep[0];
755             dtInner = dtOuter + span.intTexStep[1];
756 #endif
757 #ifdef INTERP_ATTRIBS
758             dwInner = dwOuter + span.attrStepX[FRAG_ATTRIB_WPOS][3];
759             ATTRIB_LOOP_BEGIN
760                GLuint c;
761                for (c = 0; c < 4; c++) {
762                   daInner[attr][c] = daOuter[attr][c] + span.attrStepX[attr][c];
763                }
764             ATTRIB_LOOP_END
765 #endif
766 
767             while (lines > 0) {
768                /* initialize the span interpolants to the leftmost value */
769                /* ff = fixed-pt fragment */
770                const GLint right = FixedToInt(fxRightEdge);
771                span.x = FixedToInt(fxLeftEdge);
772                if (right <= span.x)
773                   span.end = 0;
774                else
775                   span.end = right - span.x;
776 
777 #ifdef INTERP_Z
778                span.z = zLeft;
779 #endif
780 #ifdef INTERP_RGB
781                span.red = rLeft;
782                span.green = gLeft;
783                span.blue = bLeft;
784 #endif
785 #ifdef INTERP_ALPHA
786                span.alpha = aLeft;
787 #endif
788 #ifdef INTERP_INT_TEX
789                span.intTex[0] = sLeft;
790                span.intTex[1] = tLeft;
791 #endif
792 
793 #ifdef INTERP_ATTRIBS
794                span.attrStart[FRAG_ATTRIB_WPOS][3] = wLeft;
795                ATTRIB_LOOP_BEGIN
796                   GLuint c;
797                   for (c = 0; c < 4; c++) {
798                      span.attrStart[attr][c] = attrLeft[attr][c];
799                   }
800                ATTRIB_LOOP_END
801 #endif
802 
803                /* This is where we actually generate fragments */
804                /* XXX the test for span.y > 0 _shouldn't_ be needed but
805                 * it fixes a problem on 64-bit Opterons (bug 4842).
806                 */
807                if (span.end > 0 && span.y >= 0) {
808                   const GLint len = span.end - 1;
809                   (void) len;
810 #ifdef INTERP_RGB
811                   CLAMP_INTERPOLANT(red, redStep, len);
812                   CLAMP_INTERPOLANT(green, greenStep, len);
813                   CLAMP_INTERPOLANT(blue, blueStep, len);
814 #endif
815 #ifdef INTERP_ALPHA
816                   CLAMP_INTERPOLANT(alpha, alphaStep, len);
817 #endif
818                   {
819                      RENDER_SPAN( span );
820                   }
821                }
822 
823                /*
824                 * Advance to the next scan line.  Compute the
825                 * new edge coordinates, and adjust the
826                 * pixel-center x coordinate so that it stays
827                 * on or inside the major edge.
828                 */
829                span.y++;
830                lines--;
831 
832                fxLeftEdge += fdxLeftEdge;
833                fxRightEdge += fdxRightEdge;
834 
835                fError += fdError;
836                if (fError >= 0) {
837                   fError -= FIXED_ONE;
838 
839 #ifdef PIXEL_ADDRESS
840                   pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
841 #endif
842 #ifdef INTERP_Z
843 #  ifdef DEPTH_TYPE
844                   zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
845 #  endif
846                   zLeft += fdzOuter;
847 #endif
848 #ifdef INTERP_RGB
849                   rLeft += fdrOuter;
850                   gLeft += fdgOuter;
851                   bLeft += fdbOuter;
852 #endif
853 #ifdef INTERP_ALPHA
854                   aLeft += fdaOuter;
855 #endif
856 #ifdef INTERP_INT_TEX
857                   sLeft += dsOuter;
858                   tLeft += dtOuter;
859 #endif
860 #ifdef INTERP_ATTRIBS
861                   wLeft += dwOuter;
862                   ATTRIB_LOOP_BEGIN
863                      GLuint c;
864                      for (c = 0; c < 4; c++) {
865                         attrLeft[attr][c] += daOuter[attr][c];
866                      }
867                   ATTRIB_LOOP_END
868 #endif
869                }
870                else {
871 #ifdef PIXEL_ADDRESS
872                   pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
873 #endif
874 #ifdef INTERP_Z
875 #  ifdef DEPTH_TYPE
876                   zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
877 #  endif
878                   zLeft += fdzInner;
879 #endif
880 #ifdef INTERP_RGB
881                   rLeft += fdrInner;
882                   gLeft += fdgInner;
883                   bLeft += fdbInner;
884 #endif
885 #ifdef INTERP_ALPHA
886                   aLeft += fdaInner;
887 #endif
888 #ifdef INTERP_INT_TEX
889                   sLeft += dsInner;
890                   tLeft += dtInner;
891 #endif
892 #ifdef INTERP_ATTRIBS
893                   wLeft += dwInner;
894                   ATTRIB_LOOP_BEGIN
895                      GLuint c;
896                      for (c = 0; c < 4; c++) {
897                         attrLeft[attr][c] += daInner[attr][c];
898                      }
899                   ATTRIB_LOOP_END
900 #endif
901                }
902             } /*while lines>0*/
903 
904          } /* for subTriangle */
905 
906       }
907    }
908 }
909 
910 #undef SETUP_CODE
911 #undef RENDER_SPAN
912 
913 #undef PIXEL_TYPE
914 #undef BYTES_PER_ROW
915 #undef PIXEL_ADDRESS
916 #undef DEPTH_TYPE
917 
918 #undef INTERP_Z
919 #undef INTERP_RGB
920 #undef INTERP_ALPHA
921 #undef INTERP_INT_TEX
922 #undef INTERP_ATTRIBS
923 
924 #undef S_SCALE
925 #undef T_SCALE
926 
927 #undef FixedToDepth
928 
929 #undef NAME
930