• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_H_
32 #define CERES_INTERNAL_SCHUR_ELIMINATOR_H_
33 
34 #include <map>
35 #include <vector>
36 #include "ceres/mutex.h"
37 #include "ceres/block_random_access_matrix.h"
38 #include "ceres/block_sparse_matrix.h"
39 #include "ceres/block_structure.h"
40 #include "ceres/linear_solver.h"
41 #include "ceres/internal/eigen.h"
42 #include "ceres/internal/scoped_ptr.h"
43 
44 namespace ceres {
45 namespace internal {
46 
47 // Classes implementing the SchurEliminatorBase interface implement
48 // variable elimination for linear least squares problems. Assuming
49 // that the input linear system Ax = b can be partitioned into
50 //
51 //  E y + F z = b
52 //
53 // Where x = [y;z] is a partition of the variables.  The paritioning
54 // of the variables is such that, E'E is a block diagonal matrix. Or
55 // in other words, the parameter blocks in E form an independent set
56 // of the of the graph implied by the block matrix A'A. Then, this
57 // class provides the functionality to compute the Schur complement
58 // system
59 //
60 //   S z = r
61 //
62 // where
63 //
64 //   S = F'F - F'E (E'E)^{-1} E'F and r = F'b - F'E(E'E)^(-1) E'b
65 //
66 // This is the Eliminate operation, i.e., construct the linear system
67 // obtained by eliminating the variables in E.
68 //
69 // The eliminator also provides the reverse functionality, i.e. given
70 // values for z it can back substitute for the values of y, by solving the
71 // linear system
72 //
73 //  Ey = b - F z
74 //
75 // which is done by observing that
76 //
77 //  y = (E'E)^(-1) [E'b - E'F z]
78 //
79 // The eliminator has a number of requirements.
80 //
81 // The rows of A are ordered so that for every variable block in y,
82 // all the rows containing that variable block occur as a vertically
83 // contiguous block. i.e the matrix A looks like
84 //
85 //              E                 F                   chunk
86 //  A = [ y1   0   0   0 |  z1    0    0   0    z5]     1
87 //      [ y1   0   0   0 |  z1   z2    0   0     0]     1
88 //      [  0  y2   0   0 |   0    0   z3   0     0]     2
89 //      [  0   0  y3   0 |  z1   z2   z3  z4    z5]     3
90 //      [  0   0  y3   0 |  z1    0    0   0    z5]     3
91 //      [  0   0   0  y4 |   0    0    0   0    z5]     4
92 //      [  0   0   0  y4 |   0   z2    0   0     0]     4
93 //      [  0   0   0  y4 |   0    0    0   0     0]     4
94 //      [  0   0   0   0 |  z1    0    0   0     0] non chunk blocks
95 //      [  0   0   0   0 |   0    0   z3  z4    z5] non chunk blocks
96 //
97 // This structure should be reflected in the corresponding
98 // CompressedRowBlockStructure object associated with A. The linear
99 // system Ax = b should either be well posed or the array D below
100 // should be non-null and the diagonal matrix corresponding to it
101 // should be non-singular. For simplicity of exposition only the case
102 // with a null D is described.
103 //
104 // The usual way to do the elimination is as follows. Starting with
105 //
106 //  E y + F z = b
107 //
108 // we can form the normal equations,
109 //
110 //  E'E y + E'F z = E'b
111 //  F'E y + F'F z = F'b
112 //
113 // multiplying both sides of the first equation by (E'E)^(-1) and then
114 // by F'E we get
115 //
116 //  F'E y + F'E (E'E)^(-1) E'F z =  F'E (E'E)^(-1) E'b
117 //  F'E y +                F'F z =  F'b
118 //
119 // now subtracting the two equations we get
120 //
121 // [FF' - F'E (E'E)^(-1) E'F] z = F'b - F'E(E'E)^(-1) E'b
122 //
123 // Instead of forming the normal equations and operating on them as
124 // general sparse matrices, the algorithm here deals with one
125 // parameter block in y at a time. The rows corresponding to a single
126 // parameter block yi are known as a chunk, and the algorithm operates
127 // on one chunk at a time. The mathematics remains the same since the
128 // reduced linear system can be shown to be the sum of the reduced
129 // linear systems for each chunk. This can be seen by observing two
130 // things.
131 //
132 //  1. E'E is a block diagonal matrix.
133 //
134 //  2. When E'F is computed, only the terms within a single chunk
135 //  interact, i.e for y1 column blocks when transposed and multiplied
136 //  with F, the only non-zero contribution comes from the blocks in
137 //  chunk1.
138 //
139 // Thus, the reduced linear system
140 //
141 //  FF' - F'E (E'E)^(-1) E'F
142 //
143 // can be re-written as
144 //
145 //  sum_k F_k F_k' - F_k'E_k (E_k'E_k)^(-1) E_k' F_k
146 //
147 // Where the sum is over chunks and E_k'E_k is dense matrix of size y1
148 // x y1.
149 //
150 // Advanced usage. Uptil now it has been assumed that the user would
151 // be interested in all of the Schur Complement S. However, it is also
152 // possible to use this eliminator to obtain an arbitrary submatrix of
153 // the full Schur complement. When the eliminator is generating the
154 // blocks of S, it asks the RandomAccessBlockMatrix instance passed to
155 // it if it has storage for that block. If it does, the eliminator
156 // computes/updates it, if not it is skipped. This is useful when one
157 // is interested in constructing a preconditioner based on the Schur
158 // Complement, e.g., computing the block diagonal of S so that it can
159 // be used as a preconditioner for an Iterative Substructuring based
160 // solver [See Agarwal et al, Bundle Adjustment in the Large, ECCV
161 // 2008 for an example of such use].
162 //
163 // Example usage: Please see schur_complement_solver.cc
164 class SchurEliminatorBase {
165  public:
~SchurEliminatorBase()166   virtual ~SchurEliminatorBase() {}
167 
168   // Initialize the eliminator. It is the user's responsibilty to call
169   // this function before calling Eliminate or BackSubstitute. It is
170   // also the caller's responsibilty to ensure that the
171   // CompressedRowBlockStructure object passed to this method is the
172   // same one (or is equivalent to) the one associated with the
173   // BlockSparseMatrix objects below.
174   virtual void Init(int num_eliminate_blocks,
175                     const CompressedRowBlockStructure* bs) = 0;
176 
177   // Compute the Schur complement system from the augmented linear
178   // least squares problem [A;D] x = [b;0]. The left hand side and the
179   // right hand side of the reduced linear system are returned in lhs
180   // and rhs respectively.
181   //
182   // It is the caller's responsibility to construct and initialize
183   // lhs. Depending upon the structure of the lhs object passed here,
184   // the full or a submatrix of the Schur complement will be computed.
185   //
186   // Since the Schur complement is a symmetric matrix, only the upper
187   // triangular part of the Schur complement is computed.
188   virtual void Eliminate(const BlockSparseMatrix* A,
189                          const double* b,
190                          const double* D,
191                          BlockRandomAccessMatrix* lhs,
192                          double* rhs) = 0;
193 
194   // Given values for the variables z in the F block of A, solve for
195   // the optimal values of the variables y corresponding to the E
196   // block in A.
197   virtual void BackSubstitute(const BlockSparseMatrix* A,
198                               const double* b,
199                               const double* D,
200                               const double* z,
201                               double* y) = 0;
202   // Factory
203   static SchurEliminatorBase* Create(const LinearSolver::Options& options);
204 };
205 
206 // Templated implementation of the SchurEliminatorBase interface. The
207 // templating is on the sizes of the row, e and f blocks sizes in the
208 // input matrix. In many problems, the sizes of one or more of these
209 // blocks are constant, in that case, its worth passing these
210 // parameters as template arguments so that they are visible to the
211 // compiler and can be used for compile time optimization of the low
212 // level linear algebra routines.
213 //
214 // This implementation is mulithreaded using OpenMP. The level of
215 // parallelism is controlled by LinearSolver::Options::num_threads.
216 template <int kRowBlockSize = Eigen::Dynamic,
217           int kEBlockSize = Eigen::Dynamic,
218           int kFBlockSize = Eigen::Dynamic >
219 class SchurEliminator : public SchurEliminatorBase {
220  public:
SchurEliminator(const LinearSolver::Options & options)221   explicit SchurEliminator(const LinearSolver::Options& options)
222       : num_threads_(options.num_threads) {
223   }
224 
225   // SchurEliminatorBase Interface
226   virtual ~SchurEliminator();
227   virtual void Init(int num_eliminate_blocks,
228                     const CompressedRowBlockStructure* bs);
229   virtual void Eliminate(const BlockSparseMatrix* A,
230                          const double* b,
231                          const double* D,
232                          BlockRandomAccessMatrix* lhs,
233                          double* rhs);
234   virtual void BackSubstitute(const BlockSparseMatrix* A,
235                               const double* b,
236                               const double* D,
237                               const double* z,
238                               double* y);
239 
240  private:
241   // Chunk objects store combinatorial information needed to
242   // efficiently eliminate a whole chunk out of the least squares
243   // problem. Consider the first chunk in the example matrix above.
244   //
245   //      [ y1   0   0   0 |  z1    0    0   0    z5]
246   //      [ y1   0   0   0 |  z1   z2    0   0     0]
247   //
248   // One of the intermediate quantities that needs to be calculated is
249   // for each row the product of the y block transposed with the
250   // non-zero z block, and the sum of these blocks across rows. A
251   // temporary array "buffer_" is used for computing and storing them
252   // and the buffer_layout maps the indices of the z-blocks to
253   // position in the buffer_ array.  The size of the chunk is the
254   // number of row blocks/residual blocks for the particular y block
255   // being considered.
256   //
257   // For the example chunk shown above,
258   //
259   // size = 2
260   //
261   // The entries of buffer_layout will be filled in the following order.
262   //
263   // buffer_layout[z1] = 0
264   // buffer_layout[z5] = y1 * z1
265   // buffer_layout[z2] = y1 * z1 + y1 * z5
266   typedef map<int, int> BufferLayoutType;
267   struct Chunk {
ChunkChunk268     Chunk() : size(0) {}
269     int size;
270     int start;
271     BufferLayoutType buffer_layout;
272   };
273 
274   void ChunkDiagonalBlockAndGradient(
275       const Chunk& chunk,
276       const BlockSparseMatrix* A,
277       const double* b,
278       int row_block_counter,
279       typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* eet,
280       double* g,
281       double* buffer,
282       BlockRandomAccessMatrix* lhs);
283 
284   void UpdateRhs(const Chunk& chunk,
285                  const BlockSparseMatrix* A,
286                  const double* b,
287                  int row_block_counter,
288                  const double* inverse_ete_g,
289                  double* rhs);
290 
291   void ChunkOuterProduct(const CompressedRowBlockStructure* bs,
292                          const Matrix& inverse_eet,
293                          const double* buffer,
294                          const BufferLayoutType& buffer_layout,
295                          BlockRandomAccessMatrix* lhs);
296   void EBlockRowOuterProduct(const BlockSparseMatrix* A,
297                              int row_block_index,
298                              BlockRandomAccessMatrix* lhs);
299 
300 
301   void NoEBlockRowsUpdate(const BlockSparseMatrix* A,
302                              const double* b,
303                              int row_block_counter,
304                              BlockRandomAccessMatrix* lhs,
305                              double* rhs);
306 
307   void NoEBlockRowOuterProduct(const BlockSparseMatrix* A,
308                                int row_block_index,
309                                BlockRandomAccessMatrix* lhs);
310 
311   int num_eliminate_blocks_;
312 
313   // Block layout of the columns of the reduced linear system. Since
314   // the f blocks can be of varying size, this vector stores the
315   // position of each f block in the row/col of the reduced linear
316   // system. Thus lhs_row_layout_[i] is the row/col position of the
317   // i^th f block.
318   vector<int> lhs_row_layout_;
319 
320   // Combinatorial structure of the chunks in A. For more information
321   // see the documentation of the Chunk object above.
322   vector<Chunk> chunks_;
323 
324   // TODO(sameeragarwal): The following two arrays contain per-thread
325   // storage. They should be refactored into a per thread struct.
326 
327   // Buffer to store the products of the y and z blocks generated
328   // during the elimination phase. buffer_ is of size num_threads *
329   // buffer_size_. Each thread accesses the chunk
330   //
331   //   [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_]
332   //
333   scoped_array<double> buffer_;
334 
335   // Buffer to store per thread matrix matrix products used by
336   // ChunkOuterProduct. Like buffer_ it is of size num_threads *
337   // buffer_size_. Each thread accesses the chunk
338   //
339   //   [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_ -1]
340   //
341   scoped_array<double> chunk_outer_product_buffer_;
342 
343   int buffer_size_;
344   int num_threads_;
345   int uneliminated_row_begins_;
346 
347   // Locks for the blocks in the right hand side of the reduced linear
348   // system.
349   vector<Mutex*> rhs_locks_;
350 };
351 
352 }  // namespace internal
353 }  // namespace ceres
354 
355 #endif  // CERES_INTERNAL_SCHUR_ELIMINATOR_H_
356