Home
last modified time | relevance | path

Searched refs:ANN_MLP (Results 1 – 12 of 12) sorted by relevance

/external/opencv3/modules/java/src/
Dml+ANN_MLP.java12 public class ANN_MLP extends StatModel { class
14 protected ANN_MLP(long addr) { super(addr); } in ANN_MLP() method in ANN_MLP
359 public static ANN_MLP create() in create()
362 ANN_MLP retVal = new ANN_MLP(create_0()); in create()
Dml.cpp3480 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_setTrainMethod_10()
3501 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_setTrainMethod_11()
3526 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_setActivationFunction_10()
3547 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_setActivationFunction_11()
3572 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_getTrainMethod_10()
3597 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_setLayerSizes_10()
3623 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_getLayerSizes_10()
3648 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_getTermCriteria_10()
3674 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_setTermCriteria_10()
3700 Ptr<cv::ml::ANN_MLP>* me = (Ptr<cv::ml::ANN_MLP>*) self; //TODO: check for NULL in Java_org_opencv_ml_ANN_1MLP_getBackpropWeightScale_10()
[all …]
/external/opencv3/modules/ml/src/
Dann_mlp.cpp50 trainMethod = ANN_MLP::RPROP; in AnnParams()
75 class ANN_MLPImpl : public ANN_MLP
83 setTrainMethod(ANN_MLP::RPROP, 0.1, FLT_EPSILON); in ANN_MLPImpl()
110 if (method != ANN_MLP::RPROP && method != ANN_MLP::BACKPROP) in setTrainMethod()
111 method = ANN_MLP::RPROP; in setTrainMethod()
113 if(method == ANN_MLP::RPROP ) in setTrainMethod()
120 else if(method == ANN_MLP::BACKPROP ) in setTrainMethod()
709 int iter = params.trainMethod == ANN_MLP::BACKPROP ? in train()
1122 if( params.trainMethod == ANN_MLP::BACKPROP ) in write_params()
1128 else if( params.trainMethod == ANN_MLP::RPROP ) in write_params()
[all …]
/external/opencv3/modules/ml/test/
Dtest_mltests2.cpp81 return ANN_MLP::BACKPROP; in str_to_ann_train_method()
83 return ANN_MLP::RPROP; in str_to_ann_train_method()
358 Ptr<ANN_MLP> m = ANN_MLP::create(); in train()
360 m->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0); in train()
481 model = Algorithm::load<ANN_MLP>( filename ); in load()
Dtest_precomp.hpp37 using cv::ml::ANN_MLP;
Dtest_save_load.cpp195 model = Algorithm::load<ANN_MLP>(filename); in oneTest()
/external/opencv3/samples/cpp/
Dletter_recog.cpp357 Ptr<ANN_MLP> model; in build_mlp_classifier()
365 model = load_classifier<ANN_MLP>(filename_to_load); in build_mlp_classifier()
399 int method = ANN_MLP::BACKPROP; in build_mlp_classifier()
403 int method = ANN_MLP::RPROP; in build_mlp_classifier()
411 model = ANN_MLP::create(); in build_mlp_classifier()
413 model->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0); in build_mlp_classifier()
Dpoints_classifier.cpp227 Ptr<ANN_MLP> ann = ANN_MLP::create(); in find_decision_boundary_ANN()
229 ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1, 1); in find_decision_boundary_ANN()
231 ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001); in find_decision_boundary_ANN()
/external/opencv3/modules/ml/include/opencv2/
Dml.hpp1244 class CV_EXPORTS_W ANN_MLP : public StatModel class
1381 CV_WRAP static Ptr<ANN_MLP> create();
/external/opencv3/samples/python2/
Dletter_recog.py122 self.model = cv2.ANN_MLP()
/external/opencv3/modules/ml/doc/
Dml_intro.markdown384 - Identity function ( cv::ml::ANN_MLP::IDENTITY ): \f$f(x)=x\f$
386 - Symmetrical sigmoid ( cv::ml::ANN_MLP::SIGMOID_SYM ): \f$f(x)=\beta*(1-e^{-\alpha
392 - Gaussian function ( cv::ml::ANN_MLP::GAUSSIAN ): \f$f(x)=\beta e^{-\alpha x*x}\f$ , which is not
428 @sa cv::ml::ANN_MLP
/external/opencv3/doc/tutorials/introduction/transition_guide/
Dtransition_guide.markdown116 | CvANN_MLP | cv::ml::ANN_MLP |