1 /* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkTypes_DEFINED 9 #define SkTypes_DEFINED 10 11 // IWYU pragma: begin_exports 12 #include "SkPreConfig.h" 13 #include "SkUserConfig.h" 14 #include "SkPostConfig.h" 15 #include <stddef.h> 16 #include <stdint.h> 17 18 #if defined(SK_ARM_HAS_NEON) 19 #include <arm_neon.h> 20 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 21 #include <immintrin.h> 22 #endif 23 // IWYU pragma: end_exports 24 25 #include <string.h> 26 27 /** 28 * sk_careful_memcpy() is just like memcpy(), but guards against undefined behavior. 29 * 30 * It is undefined behavior to call memcpy() with null dst or src, even if len is 0. 31 * If an optimizer is "smart" enough, it can exploit this to do unexpected things. 32 * memcpy(dst, src, 0); 33 * if (src) { 34 * printf("%x\n", *src); 35 * } 36 * In this code the compiler can assume src is not null and omit the if (src) {...} check, 37 * unconditionally running the printf, crashing the program if src really is null. 38 * Of the compilers we pay attention to only GCC performs this optimization in practice. 39 */ sk_careful_memcpy(void * dst,const void * src,size_t len)40 static inline void* sk_careful_memcpy(void* dst, const void* src, size_t len) { 41 // When we pass >0 len we had better already be passing valid pointers. 42 // So we just need to skip calling memcpy when len == 0. 43 if (len) { 44 memcpy(dst,src,len); 45 } 46 return dst; 47 } 48 49 /** \file SkTypes.h 50 */ 51 52 /** See SkGraphics::GetVersion() to retrieve these at runtime 53 */ 54 #define SKIA_VERSION_MAJOR 1 55 #define SKIA_VERSION_MINOR 0 56 #define SKIA_VERSION_PATCH 0 57 58 /* 59 memory wrappers to be implemented by the porting layer (platform) 60 */ 61 62 /** Called internally if we run out of memory. The platform implementation must 63 not return, but should either throw an exception or otherwise exit. 64 */ 65 SK_API extern void sk_out_of_memory(void); 66 /** Called internally if we hit an unrecoverable error. 67 The platform implementation must not return, but should either throw 68 an exception or otherwise exit. 69 */ 70 SK_API extern void sk_abort_no_print(void); 71 72 enum { 73 SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame 74 SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated. 75 }; 76 /** Return a block of memory (at least 4-byte aligned) of at least the 77 specified size. If the requested memory cannot be returned, either 78 return null (if SK_MALLOC_TEMP bit is clear) or throw an exception 79 (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free(). 80 */ 81 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags); 82 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag 83 */ 84 SK_API extern void* sk_malloc_throw(size_t size); 85 /** Same as standard realloc(), but this one never returns null on failure. It will throw 86 an exception if it fails. 87 */ 88 SK_API extern void* sk_realloc_throw(void* buffer, size_t size); 89 /** Free memory returned by sk_malloc(). It is safe to pass null. 90 */ 91 SK_API extern void sk_free(void*); 92 93 /** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure. 94 */ 95 SK_API extern void* sk_calloc(size_t size); 96 97 /** Same as sk_calloc, but throws an exception instead of returning NULL on failure. 98 */ 99 SK_API extern void* sk_calloc_throw(size_t size); 100 101 // bzero is safer than memset, but we can't rely on it, so... sk_bzero() sk_bzero(void * buffer,size_t size)102 static inline void sk_bzero(void* buffer, size_t size) { 103 // Please c.f. sk_careful_memcpy. It's undefined behavior to call memset(null, 0, 0). 104 if (size) { 105 memset(buffer, 0, size); 106 } 107 } 108 109 /////////////////////////////////////////////////////////////////////////////// 110 111 #ifdef override_GLOBAL_NEW 112 #include <new> 113 new(size_t size)114 inline void* operator new(size_t size) { 115 return sk_malloc_throw(size); 116 } 117 delete(void * p)118 inline void operator delete(void* p) { 119 sk_free(p); 120 } 121 #endif 122 123 /////////////////////////////////////////////////////////////////////////////// 124 125 #define SK_INIT_TO_AVOID_WARNING = 0 126 127 #ifndef SkDebugf 128 SK_API void SkDebugf(const char format[], ...); 129 #endif 130 131 #define SkASSERT_RELEASE(cond) if(!(cond)) { SK_ABORT(#cond); } 132 133 #ifdef SK_DEBUG 134 #define SkASSERT(cond) SkASSERT_RELEASE(cond) 135 #define SkDEBUGFAIL(message) SkASSERT(false && message) 136 #define SkDEBUGFAILF(fmt, ...) SkASSERTF(false, fmt, ##__VA_ARGS__) 137 #define SkDEBUGCODE(code) code 138 #define SkDECLAREPARAM(type, var) , type var 139 #define SkPARAM(var) , var 140 // #define SkDEBUGF(args ) SkDebugf##args 141 #define SkDEBUGF(args ) SkDebugf args 142 #define SkAssertResult(cond) SkASSERT(cond) 143 #else 144 #define SkASSERT(cond) 145 #define SkDEBUGFAIL(message) 146 #define SkDEBUGCODE(code) 147 #define SkDEBUGF(args) 148 #define SkDECLAREPARAM(type, var) 149 #define SkPARAM(var) 150 151 // unlike SkASSERT, this guy executes its condition in the non-debug build 152 #define SkAssertResult(cond) cond 153 #endif 154 155 // Legacy macro names for SK_ABORT 156 #define SkFAIL(message) SK_ABORT(message) 157 #define sk_throw() SK_ABORT("sk_throw") 158 159 // We want to evaluate cond only once, and inside the SkASSERT somewhere so we see its string form. 160 // So we use the comma operator to make an SkDebugf that always returns false: we'll evaluate cond, 161 // and if it's true the assert passes; if it's false, we'll print the message and the assert fails. 162 #define SkASSERTF(cond, fmt, ...) SkASSERT((cond) || (SkDebugf(fmt"\n", __VA_ARGS__), false)) 163 164 #ifdef SK_DEVELOPER 165 #define SkDEVCODE(code) code 166 #else 167 #define SkDEVCODE(code) 168 #endif 169 170 #ifdef SK_IGNORE_TO_STRING 171 #define SK_TO_STRING_NONVIRT() 172 #define SK_TO_STRING_VIRT() 173 #define SK_TO_STRING_PUREVIRT() 174 #define SK_TO_STRING_OVERRIDE() 175 #else 176 class SkString; 177 // the 'toString' helper functions convert Sk* objects to human-readable 178 // form in developer mode 179 #define SK_TO_STRING_NONVIRT() void toString(SkString* str) const; 180 #define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const; 181 #define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0; 182 #define SK_TO_STRING_OVERRIDE() void toString(SkString* str) const override; 183 #endif 184 185 /* 186 * Usage: SK_MACRO_CONCAT(a, b) to construct the symbol ab 187 * 188 * SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly 189 * 190 */ 191 #define SK_MACRO_CONCAT(X, Y) SK_MACRO_CONCAT_IMPL_PRIV(X, Y) 192 #define SK_MACRO_CONCAT_IMPL_PRIV(X, Y) X ## Y 193 194 /* 195 * Usage: SK_MACRO_APPEND_LINE(foo) to make foo123, where 123 is the current 196 * line number. Easy way to construct 197 * unique names for local functions or 198 * variables. 199 */ 200 #define SK_MACRO_APPEND_LINE(name) SK_MACRO_CONCAT(name, __LINE__) 201 202 /** 203 * For some classes, it's almost always an error to instantiate one without a name, e.g. 204 * { 205 * SkAutoMutexAcquire(&mutex); 206 * <some code> 207 * } 208 * In this case, the writer meant to hold mutex while the rest of the code in the block runs, 209 * but instead the mutex is acquired and then immediately released. The correct usage is 210 * { 211 * SkAutoMutexAcquire lock(&mutex); 212 * <some code> 213 * } 214 * 215 * To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR 216 * like this: 217 * class classname { 218 * <your class> 219 * }; 220 * #define classname(...) SK_REQUIRE_LOCAL_VAR(classname) 221 * 222 * This won't work with templates, and you must inline the class' constructors and destructors. 223 * Take a look at SkAutoFree and SkAutoMalloc in this file for examples. 224 */ 225 #define SK_REQUIRE_LOCAL_VAR(classname) \ 226 static_assert(false, "missing name for " #classname) 227 228 /////////////////////////////////////////////////////////////////////// 229 230 /** 231 * Fast type for signed 8 bits. Use for parameter passing and local variables, 232 * not for storage. 233 */ 234 typedef int S8CPU; 235 236 /** 237 * Fast type for unsigned 8 bits. Use for parameter passing and local 238 * variables, not for storage 239 */ 240 typedef unsigned U8CPU; 241 242 /** 243 * Fast type for signed 16 bits. Use for parameter passing and local variables, 244 * not for storage 245 */ 246 typedef int S16CPU; 247 248 /** 249 * Fast type for unsigned 16 bits. Use for parameter passing and local 250 * variables, not for storage 251 */ 252 typedef unsigned U16CPU; 253 254 /** 255 * Meant to be a small version of bool, for storage purposes. Will be 0 or 1 256 */ 257 typedef uint8_t SkBool8; 258 259 #ifdef SK_DEBUG 260 SK_API int8_t SkToS8(intmax_t); 261 SK_API uint8_t SkToU8(uintmax_t); 262 SK_API int16_t SkToS16(intmax_t); 263 SK_API uint16_t SkToU16(uintmax_t); 264 SK_API int32_t SkToS32(intmax_t); 265 SK_API uint32_t SkToU32(uintmax_t); 266 SK_API int SkToInt(intmax_t); 267 SK_API unsigned SkToUInt(uintmax_t); 268 SK_API size_t SkToSizeT(uintmax_t); 269 #else 270 #define SkToS8(x) ((int8_t)(x)) 271 #define SkToU8(x) ((uint8_t)(x)) 272 #define SkToS16(x) ((int16_t)(x)) 273 #define SkToU16(x) ((uint16_t)(x)) 274 #define SkToS32(x) ((int32_t)(x)) 275 #define SkToU32(x) ((uint32_t)(x)) 276 #define SkToInt(x) ((int)(x)) 277 #define SkToUInt(x) ((unsigned)(x)) 278 #define SkToSizeT(x) ((size_t)(x)) 279 #endif 280 281 /** Returns 0 or 1 based on the condition 282 */ 283 #define SkToBool(cond) ((cond) != 0) 284 285 #define SK_MaxS16 32767 286 #define SK_MinS16 -32767 287 #define SK_MaxU16 0xFFFF 288 #define SK_MinU16 0 289 #define SK_MaxS32 0x7FFFFFFF 290 #define SK_MinS32 -SK_MaxS32 291 #define SK_MaxU32 0xFFFFFFFF 292 #define SK_MinU32 0 293 #define SK_NaN32 (1 << 31) 294 295 /** Returns true if the value can be represented with signed 16bits 296 */ SkIsS16(long x)297 static inline bool SkIsS16(long x) { 298 return (int16_t)x == x; 299 } 300 301 /** Returns true if the value can be represented with unsigned 16bits 302 */ SkIsU16(long x)303 static inline bool SkIsU16(long x) { 304 return (uint16_t)x == x; 305 } 306 SkLeftShift(int32_t value,int32_t shift)307 static inline int32_t SkLeftShift(int32_t value, int32_t shift) { 308 return (int32_t) ((uint32_t) value << shift); 309 } 310 SkLeftShift(int64_t value,int32_t shift)311 static inline int64_t SkLeftShift(int64_t value, int32_t shift) { 312 return (int64_t) ((uint64_t) value << shift); 313 } 314 315 ////////////////////////////////////////////////////////////////////////////// 316 317 /** Returns the number of entries in an array (not a pointer) */ 318 template <typename T, size_t N> char (&SkArrayCountHelper(T (&array)[N]))[N]; 319 #define SK_ARRAY_COUNT(array) (sizeof(SkArrayCountHelper(array))) 320 321 // Can be used to bracket data types that must be dense, e.g. hash keys. 322 #if defined(__clang__) // This should work on GCC too, but GCC diagnostic pop didn't seem to work! 323 #define SK_BEGIN_REQUIRE_DENSE _Pragma("GCC diagnostic push") \ 324 _Pragma("GCC diagnostic error \"-Wpadded\"") 325 #define SK_END_REQUIRE_DENSE _Pragma("GCC diagnostic pop") 326 #else 327 #define SK_BEGIN_REQUIRE_DENSE 328 #define SK_END_REQUIRE_DENSE 329 #endif 330 331 #define SkAlign2(x) (((x) + 1) >> 1 << 1) 332 #define SkIsAlign2(x) (0 == ((x) & 1)) 333 334 #define SkAlign4(x) (((x) + 3) >> 2 << 2) 335 #define SkIsAlign4(x) (0 == ((x) & 3)) 336 337 #define SkAlign8(x) (((x) + 7) >> 3 << 3) 338 #define SkIsAlign8(x) (0 == ((x) & 7)) 339 340 #define SkAlignPtr(x) (sizeof(void*) == 8 ? SkAlign8(x) : SkAlign4(x)) 341 #define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x)) 342 343 typedef uint32_t SkFourByteTag; 344 #define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) 345 346 /** 32 bit integer to hold a unicode value 347 */ 348 typedef int32_t SkUnichar; 349 /** 32 bit value to hold a millisecond count 350 */ 351 typedef uint32_t SkMSec; 352 /** 1 second measured in milliseconds 353 */ 354 #define SK_MSec1 1000 355 /** maximum representable milliseconds 356 */ 357 #define SK_MSecMax 0x7FFFFFFF 358 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0 359 */ 360 #define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0) 361 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0 362 */ 363 #define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0) 364 365 /** The generation IDs in Skia reserve 0 has an invalid marker. 366 */ 367 #define SK_InvalidGenID 0 368 /** The unique IDs in Skia reserve 0 has an invalid marker. 369 */ 370 #define SK_InvalidUniqueID 0 371 372 /**************************************************************************** 373 The rest of these only build with C++ 374 */ 375 #ifdef __cplusplus 376 377 /** Faster than SkToBool for integral conditions. Returns 0 or 1 378 */ Sk32ToBool(uint32_t n)379 static inline int Sk32ToBool(uint32_t n) { 380 return (n | (0-n)) >> 31; 381 } 382 383 /** Generic swap function. Classes with efficient swaps should specialize this function to take 384 their fast path. This function is used by SkTSort. */ SkTSwap(T & a,T & b)385 template <typename T> inline void SkTSwap(T& a, T& b) { 386 T c(a); 387 a = b; 388 b = c; 389 } 390 SkAbs32(int32_t value)391 static inline int32_t SkAbs32(int32_t value) { 392 SkASSERT(value != SK_NaN32); // The most negative int32_t can't be negated. 393 if (value < 0) { 394 value = -value; 395 } 396 return value; 397 } 398 SkTAbs(T value)399 template <typename T> inline T SkTAbs(T value) { 400 if (value < 0) { 401 value = -value; 402 } 403 return value; 404 } 405 SkMax32(int32_t a,int32_t b)406 static inline int32_t SkMax32(int32_t a, int32_t b) { 407 if (a < b) 408 a = b; 409 return a; 410 } 411 SkMin32(int32_t a,int32_t b)412 static inline int32_t SkMin32(int32_t a, int32_t b) { 413 if (a > b) 414 a = b; 415 return a; 416 } 417 SkTMin(const T & a,const T & b)418 template <typename T> const T& SkTMin(const T& a, const T& b) { 419 return (a < b) ? a : b; 420 } 421 SkTMax(const T & a,const T & b)422 template <typename T> const T& SkTMax(const T& a, const T& b) { 423 return (b < a) ? a : b; 424 } 425 SkSign32(int32_t a)426 static inline int32_t SkSign32(int32_t a) { 427 return (a >> 31) | ((unsigned) -a >> 31); 428 } 429 SkFastMin32(int32_t value,int32_t max)430 static inline int32_t SkFastMin32(int32_t value, int32_t max) { 431 if (value > max) { 432 value = max; 433 } 434 return value; 435 } 436 437 /** Returns value pinned between min and max, inclusively. */ SkTPin(const T & value,const T & min,const T & max)438 template <typename T> static inline const T& SkTPin(const T& value, const T& min, const T& max) { 439 return SkTMax(SkTMin(value, max), min); 440 } 441 442 443 /////////////////////////////////////////////////////////////////////////////// 444 445 /** 446 * Indicates whether an allocation should count against a cache budget. 447 */ 448 enum class SkBudgeted : bool { 449 kNo = false, 450 kYes = true 451 }; 452 453 /////////////////////////////////////////////////////////////////////////////// 454 455 /** Use to combine multiple bits in a bitmask in a type safe way. 456 */ 457 template <typename T> SkTBitOr(T a,T b)458 T SkTBitOr(T a, T b) { 459 return (T)(a | b); 460 } 461 462 /** 463 * Use to cast a pointer to a different type, and maintaining strict-aliasing 464 */ SkTCast(const void * ptr)465 template <typename Dst> Dst SkTCast(const void* ptr) { 466 union { 467 const void* src; 468 Dst dst; 469 } data; 470 data.src = ptr; 471 return data.dst; 472 } 473 474 ////////////////////////////////////////////////////////////////////////////// 475 476 /** \class SkNoncopyable 477 478 SkNoncopyable is the base class for objects that do not want to 479 be copied. It hides its copy-constructor and its assignment-operator. 480 */ 481 class SK_API SkNoncopyable { 482 public: SkNoncopyable()483 SkNoncopyable() {} 484 485 private: 486 SkNoncopyable(const SkNoncopyable&); 487 SkNoncopyable& operator=(const SkNoncopyable&); 488 }; 489 490 class SkAutoFree : SkNoncopyable { 491 public: SkAutoFree()492 SkAutoFree() : fPtr(NULL) {} SkAutoFree(void * ptr)493 explicit SkAutoFree(void* ptr) : fPtr(ptr) {} ~SkAutoFree()494 ~SkAutoFree() { sk_free(fPtr); } 495 496 /** Return the currently allocate buffer, or null 497 */ get()498 void* get() const { return fPtr; } 499 500 /** Assign a new ptr allocated with sk_malloc (or null), and return the 501 previous ptr. Note it is the caller's responsibility to sk_free the 502 returned ptr. 503 */ set(void * ptr)504 void* set(void* ptr) { 505 void* prev = fPtr; 506 fPtr = ptr; 507 return prev; 508 } 509 510 /** Transfer ownership of the current ptr to the caller, setting the 511 internal reference to null. Note the caller is reponsible for calling 512 sk_free on the returned address. 513 */ detach()514 void* detach() { return this->set(NULL); } 515 516 /** Free the current buffer, and set the internal reference to NULL. Same 517 as calling sk_free(detach()) 518 */ free()519 void free() { 520 sk_free(fPtr); 521 fPtr = NULL; 522 } 523 524 private: 525 void* fPtr; 526 // illegal 527 SkAutoFree(const SkAutoFree&); 528 SkAutoFree& operator=(const SkAutoFree&); 529 }; 530 #define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree) 531 532 /** 533 * Manage an allocated block of heap memory. This object is the sole manager of 534 * the lifetime of the block, so the caller must not call sk_free() or delete 535 * on the block, unless detach() was called. 536 */ 537 class SkAutoMalloc : SkNoncopyable { 538 public: 539 explicit SkAutoMalloc(size_t size = 0) { 540 fPtr = size ? sk_malloc_throw(size) : NULL; 541 fSize = size; 542 } 543 ~SkAutoMalloc()544 ~SkAutoMalloc() { 545 sk_free(fPtr); 546 } 547 548 /** 549 * Passed to reset to specify what happens if the requested size is smaller 550 * than the current size (and the current block was dynamically allocated). 551 */ 552 enum OnShrink { 553 /** 554 * If the requested size is smaller than the current size, and the 555 * current block is dynamically allocated, free the old block and 556 * malloc a new block of the smaller size. 557 */ 558 kAlloc_OnShrink, 559 560 /** 561 * If the requested size is smaller than the current size, and the 562 * current block is dynamically allocated, just return the old 563 * block. 564 */ 565 kReuse_OnShrink 566 }; 567 568 /** 569 * Reallocates the block to a new size. The ptr may or may not change. 570 */ 571 void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink, bool* didChangeAlloc = NULL) { 572 if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) { 573 if (didChangeAlloc) { 574 *didChangeAlloc = false; 575 } 576 return fPtr; 577 } 578 579 sk_free(fPtr); 580 fPtr = size ? sk_malloc_throw(size) : NULL; 581 fSize = size; 582 if (didChangeAlloc) { 583 *didChangeAlloc = true; 584 } 585 586 return fPtr; 587 } 588 589 /** 590 * Releases the block back to the heap 591 */ free()592 void free() { 593 this->reset(0); 594 } 595 596 /** 597 * Return the allocated block. 598 */ get()599 void* get() { return fPtr; } get()600 const void* get() const { return fPtr; } 601 602 /** Transfer ownership of the current ptr to the caller, setting the 603 internal reference to null. Note the caller is reponsible for calling 604 sk_free on the returned address. 605 */ detach()606 void* detach() { 607 void* ptr = fPtr; 608 fPtr = NULL; 609 fSize = 0; 610 return ptr; 611 } 612 613 private: 614 void* fPtr; 615 size_t fSize; // can be larger than the requested size (see kReuse) 616 }; 617 #define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc) 618 619 /** 620 * Manage an allocated block of memory. If the requested size is <= kSizeRequested (or slightly 621 * more), then the allocation will come from the stack rather than the heap. This object is the 622 * sole manager of the lifetime of the block, so the caller must not call sk_free() or delete on 623 * the block. 624 */ 625 template <size_t kSizeRequested> class SkAutoSMalloc : SkNoncopyable { 626 public: 627 /** 628 * Creates initially empty storage. get() returns a ptr, but it is to a zero-byte allocation. 629 * Must call reset(size) to return an allocated block. 630 */ SkAutoSMalloc()631 SkAutoSMalloc() { 632 fPtr = fStorage; 633 fSize = kSize; 634 } 635 636 /** 637 * Allocate a block of the specified size. If size <= kSizeRequested (or slightly more), then 638 * the allocation will come from the stack, otherwise it will be dynamically allocated. 639 */ SkAutoSMalloc(size_t size)640 explicit SkAutoSMalloc(size_t size) { 641 fPtr = fStorage; 642 fSize = kSize; 643 this->reset(size); 644 } 645 646 /** 647 * Free the allocated block (if any). If the block was small enough to have been allocated on 648 * the stack, then this does nothing. 649 */ ~SkAutoSMalloc()650 ~SkAutoSMalloc() { 651 if (fPtr != (void*)fStorage) { 652 sk_free(fPtr); 653 } 654 } 655 656 /** 657 * Return the allocated block. May return non-null even if the block is of zero size. Since 658 * this may be on the stack or dynamically allocated, the caller must not call sk_free() on it, 659 * but must rely on SkAutoSMalloc to manage it. 660 */ get()661 void* get() const { return fPtr; } 662 663 /** 664 * Return a new block of the requested size, freeing (as necessary) any previously allocated 665 * block. As with the constructor, if size <= kSizeRequested (or slightly more) then the return 666 * block may be allocated locally, rather than from the heap. 667 */ 668 void* reset(size_t size, 669 SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink, 670 bool* didChangeAlloc = NULL) { 671 size = (size < kSize) ? kSize : size; 672 bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize); 673 if (didChangeAlloc) { 674 *didChangeAlloc = alloc; 675 } 676 if (alloc) { 677 if (fPtr != (void*)fStorage) { 678 sk_free(fPtr); 679 } 680 681 if (size == kSize) { 682 SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc. 683 fPtr = fStorage; 684 } else { 685 fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP); 686 } 687 688 fSize = size; 689 } 690 SkASSERT(fSize >= size && fSize >= kSize); 691 SkASSERT((fPtr == fStorage) || fSize > kSize); 692 return fPtr; 693 } 694 695 private: 696 // Align up to 32 bits. 697 static const size_t kSizeAlign4 = SkAlign4(kSizeRequested); 698 #if defined(GOOGLE3) 699 // Stack frame size is limited for GOOGLE3. 4k is less than the actual max, but some functions 700 // have multiple large stack allocations. 701 static const size_t kMaxBytes = 4 * 1024; 702 static const size_t kSize = kSizeRequested > kMaxBytes ? kMaxBytes : kSizeAlign4; 703 #else 704 static const size_t kSize = kSizeAlign4; 705 #endif 706 707 void* fPtr; 708 size_t fSize; // can be larger than the requested size (see kReuse) 709 uint32_t fStorage[kSize >> 2]; 710 }; 711 // Can't guard the constructor because it's a template class. 712 713 #endif /* C++ */ 714 715 #endif 716