Home
last modified time | relevance | path

Searched refs:Sobel (Results 1 – 25 of 38) sorted by relevance

12

/external/opencv3/doc/py_tutorials/py_imgproc/py_gradients/
Dpy_gradients.markdown10 - We will see following functions : **cv2.Sobel()**, **cv2.Scharr()**, **cv2.Laplacian()** etc
15 OpenCV provides three types of gradient filters or High-pass filters, Sobel, Scharr and Laplacian.
18 ### 1. Sobel and Scharr Derivatives
20 Sobel operators is a joint Gausssian smoothing plus differentiation operation, so it is more
23 argument ksize. If ksize = -1, a 3x3 Scharr filter is used which gives better results than 3x3 Sobel
30 each derivative is found using Sobel derivatives. If ksize = 1, then following kernel is used for
48 sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
49 sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
56 plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
58 plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
[all …]
/external/opencv3/doc/tutorials/imgproc/imgtrans/sobel_derivatives/
Dsobel_derivatives.markdown1 Sobel Derivatives {#tutorial_sobel_derivatives}
9 - Use the OpenCV function @ref cv::Sobel to calculate the derivatives from an image.
45 ### Sobel Operator
47 -# The Sobel Operator is a discrete differentiation operator. It computes an approximation of the
49 -# The Sobel Operator combines Gaussian smoothing and differentiation.
84 When the size of the kernel is `3`, the Sobel kernel shown above may produce noticeable
85 inaccuracies (after all, Sobel is only an approximation of the derivative). OpenCV addresses
87 but more accurate than the standar Sobel function. It implements the following kernels:
99 Also, in the sample code below, you will notice that above the code for @ref cv::Sobel function
101 commenting the Sobel stuff) should give you an idea of how this function works.
[all …]
/external/opencv3/modules/cudev/test/
Dtest_deriv.cu51 TEST(Sobel, Accuracy) in TEST() argument
64 cv::Sobel(src, dx_gold, CV_16S, 1, 0, 3, 1, 0, BORDER_REPLICATE); in TEST()
65 cv::Sobel(src, dy_gold, CV_16S, 0, 1, 3, 1, 0, BORDER_REPLICATE); in TEST()
/external/opencv3/samples/python2/
Dcoherence.py26 gxx = cv2.Sobel(gray, cv2.CV_32F, 2, 0, ksize=sigma)
27 gxy = cv2.Sobel(gray, cv2.CV_32F, 1, 1, ksize=sigma)
28 gyy = cv2.Sobel(gray, cv2.CV_32F, 0, 2, ksize=sigma)
Ddigits.py129 gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
130 gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
/external/opencv3/modules/imgproc/perf/
Dperf_sepfilters.cpp52 TEST_CYCLE() Sobel(src, dst, ddepth, dx, dy, 3, 1, 0, border);
80 TEST_CYCLE() Sobel(src, dst, ddepth, dx, dy, 3, 1, 0, border);
105 TEST_CYCLE() Sobel(src, dst, ddepth, dx, dy, 5, 1, 0, border);
133 TEST_CYCLE() Sobel(src, dst, ddepth, dx, dy, 5, 1, 0, border);
213 TEST_CYCLE() Sobel(src, dst, ddepth, dx, dy, -1, 1, 0, border);
241 TEST_CYCLE() Sobel(src, dst, ddepth, dx, dy, -1, 1, 0, border);
/external/opencv3/samples/cpp/tutorial_code/ImgTrans/
DSobel_Demo.cpp48 Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT ); in main()
53 Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT ); in main()
/external/opencv3/doc/py_tutorials/py_ml/py_svm/py_svm_opencv/
Dpy_svm_opencv.markdown35 Next we have to find the HOG Descriptor of each cell. For that, we find Sobel derivatives of each
43 gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
44 gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
83 gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
84 gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
/external/opencv3/modules/imgproc/src/
Dcorner.cpp292 Sobel( src, Dx, CV_32F, 1, 0, aperture_size, scale, 0, borderType ); in cornerEigenValsVecs()
293 Sobel( src, Dy, CV_32F, 0, 1, aperture_size, scale, 0, borderType ); in cornerEigenValsVecs()
424 Sobel(_src, Dx, CV_32F, 1, 0, aperture_size, scale, 0, borderType); in extractCovData()
425 Sobel(_src, Dy, CV_32F, 0, 1, aperture_size, scale, 0, borderType); in extractCovData()
498 Sobel( _src, D2x, CV_32F, 2, 0, ksize, 1, 0, borderType ); in ocl_preCornerDetect()
499 Sobel( _src, D2y, CV_32F, 0, 2, ksize, 1, 0, borderType ); in ocl_preCornerDetect()
500 Sobel( _src, Dxy, CV_32F, 1, 1, ksize, 1, 0, borderType ); in ocl_preCornerDetect()
683 Sobel( src, Dx, CV_32F, 1, 0, ksize, 1, 0, borderType ); in preCornerDetect()
684 Sobel( src, Dy, CV_32F, 0, 1, ksize, 1, 0, borderType ); in preCornerDetect()
685 Sobel( src, D2x, CV_32F, 2, 0, ksize, 1, 0, borderType ); in preCornerDetect()
[all …]
Dcanny.cpp172 Sobel(_src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); in ocl_Canny()
173 Sobel(_src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); in ocl_Canny()
278Sobel(src, tempdx.rowRange(1, tempdx.rows - 1), CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICAT… in operator ()()
279Sobel(src, tempdy.rowRange(1, tempdy.rows - 1), CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICAT… in operator ()()
292Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdx.rowRange(1, tempdx.rows), in operator ()()
294Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdy.rowRange(1, tempdy.rows), in operator ()()
308Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdx.rowRange(0, tempdx.rows … in operator ()()
310Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdy.rowRange(0, tempdy.rows … in operator ()()
321 Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdx, in operator ()()
323 Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdy, in operator ()()
[all …]
/external/opencv3/modules/videostab/src/
Ddeblurring.cpp56 Sobel(frame, Gx, CV_32F, 1, 0); in calcBlurriness()
57 Sobel(frame, Gy, CV_32F, 0, 1); in calcBlurriness()
/external/opencv3/modules/cudaimgproc/perf/
Dperf_hough.cpp246 cv::Sobel(image, dx, CV_32F, 1, 0); in PERF_TEST_P()
247 cv::Sobel(image, dy, CV_32F, 0, 1); in PERF_TEST_P()
315 cv::Sobel(image, dx, CV_32F, 1, 0); in PERF_TEST_P()
316 cv::Sobel(image, dy, CV_32F, 0, 1); in PERF_TEST_P()
/external/opencv3/doc/tutorials/imgproc/imgtrans/laplace_operator/
Dlaplace_operator.markdown15 -# In the previous tutorial we learned how to use the *Sobel Operator*. It was based on the fact
41 since the Laplacian uses the gradient of images, it calls internally the *Sobel* operator to
94 - *kernel_size*: The kernel size of the Sobel operator to be applied internally. We use 3 in
/external/opencv3/modules/photo/src/
Dnpr.hpp151 Sobel(planes[0], magXR, CV_32FC1, 1, 0, 3); in find_magnitude()
152 Sobel(planes[0], magYR, CV_32FC1, 0, 1, 3); in find_magnitude()
154 Sobel(planes[1], magXG, CV_32FC1, 1, 0, 3); in find_magnitude()
155 Sobel(planes[1], magYG, CV_32FC1, 0, 1, 3); in find_magnitude()
157 Sobel(planes[2], magXB, CV_32FC1, 1, 0, 3); in find_magnitude()
158 Sobel(planes[2], magYB, CV_32FC1, 0, 1, 3); in find_magnitude()
/external/opencv3/doc/tutorials/imgproc/imgtrans/canny_detector/
Dcanny_detector.markdown34 -# Find the intensity gradient of the image. For this, we follow a procedure analogous to Sobel:
98 … -# We set the kernel size of \f$3\f$ (for the Sobel operations to be performed internally by the
149 - *kernel_size*: We defined it to be 3 (the size of the Sobel kernel to be used
/external/opencv3/doc/tutorials/core/
Dmat_operations.markdown57 running Sobel on a 3 channel image):
110 Sobel(img, sobelx, CV_32F, 1, 0);
165 Sobel(grey, sobelx, CV_32F, 1, 0);
/external/opencv3/modules/imgproc/test/ocl/
Dtest_filters.cpp183 OCL_OFF(cv::Sobel(src_roi, dst_roi, -1, dx, dy, ksize, scale, /* delta */0, borderType)); in OCL_TEST_P()
184 OCL_ON(cv::Sobel(usrc_roi, udst_roi, -1, dx, dy, ksize, scale, /* delta */0, borderType)); in OCL_TEST_P()
/external/opencv3/modules/cudafilters/test/
Dtest_filters.cpp290 PARAM_TEST_CASE(Sobel, cv::cuda::DeviceInfo, cv::Size, MatDepth, Channels, KSize, Deriv_X, Deriv_Y,… in PARAM_TEST_CASE() argument
322 CUDA_TEST_P(Sobel, Accuracy) in CUDA_TEST_P() argument
335 cv::Sobel(src, dst_gold, -1, dx, dy, ksize.width, 1.0, 0.0, borderType); in CUDA_TEST_P()
340 INSTANTIATE_TEST_CASE_P(CUDA_Filters, Sobel, testing::Combine(
/external/opencv3/modules/cudafilters/perf/
Dperf_filters.cpp165 PERF_TEST_P(Sz_Type_KernelSz, Sobel, Combine(CUDA_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32…
191 TEST_CYCLE() cv::Sobel(src, dst, -1, 1, 1, ksize);
/external/opencv3/modules/imgproc/perf/opencl/
Dperf_filters.cpp200 OCL_PERF_TEST_P(SobelFixture, Sobel, in OCL_PERF_TEST_P() argument
212 OCL_TEST_CYCLE() cv::Sobel(src, dst, -1, dx, dy); in OCL_PERF_TEST_P()
/external/opencv3/doc/py_tutorials/py_imgproc/py_canny/
Dpy_canny.markdown25 … Smoothened image is then filtered with a Sobel kernel in both horizontal and vertical direction to
77 Third argument is aperture_size. It is the size of Sobel kernel used for find image gradients. By
/external/opencv3/samples/winrt/ImageManipulations/MediaExtensions/OcvTransform/
DOcvTransform.h47 Sobel, enumerator
/external/opencv3/doc/py_tutorials/py_feature2d/py_features_harris/
Dpy_features_harris.markdown38 out using **cv2.Sobel()**).
72 - **ksize** - Aperture parameter of Sobel derivative used.
/external/opencv3/modules/stitching/src/
Dseam_finders.cpp539 Sobel(gray, gradx1_, CV_32F, 1, 0); in computeGradients()
540 Sobel(gray, grady1_, CV_32F, 0, 1); in computeGradients()
547 Sobel(gray, gradx2_, CV_32F, 1, 0); in computeGradients()
548 Sobel(gray, grady2_, CV_32F, 0, 1); in computeGradients()
1095 Sobel(src[i], dx, CV_32F, 1, 0); in find()
1096 Sobel(src[i], dy, CV_32F, 0, 1); in find()
1340 Sobel(src[i], dx, CV_32F, 1, 0); in find()
1341 Sobel(src[i], dy, CV_32F, 0, 1); in find()
/external/opencv3/doc/tutorials/core/how_to_use_ippa_conversion/
Dhow_to_use_ippa_conversion.markdown9 example below illustrates implementation of the Sobel operation, accelerated with Intel® IPP

12