1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/IR/Metadata.h"
25 #include <algorithm>
26 using namespace clang;
27 using namespace CodeGen;
28
29 //===----------------------------------------------------------------------===//
30 // Complex Expression Emitter
31 //===----------------------------------------------------------------------===//
32
33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
34
35 /// Return the complex type that we are meant to emit.
getComplexType(QualType type)36 static const ComplexType *getComplexType(QualType type) {
37 type = type.getCanonicalType();
38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
39 return comp;
40 } else {
41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
42 }
43 }
44
45 namespace {
46 class ComplexExprEmitter
47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
48 CodeGenFunction &CGF;
49 CGBuilderTy &Builder;
50 bool IgnoreReal;
51 bool IgnoreImag;
52 public:
ComplexExprEmitter(CodeGenFunction & cgf,bool ir=false,bool ii=false)53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
55 }
56
57
58 //===--------------------------------------------------------------------===//
59 // Utilities
60 //===--------------------------------------------------------------------===//
61
TestAndClearIgnoreReal()62 bool TestAndClearIgnoreReal() {
63 bool I = IgnoreReal;
64 IgnoreReal = false;
65 return I;
66 }
TestAndClearIgnoreImag()67 bool TestAndClearIgnoreImag() {
68 bool I = IgnoreImag;
69 IgnoreImag = false;
70 return I;
71 }
72
73 /// EmitLoadOfLValue - Given an expression with complex type that represents a
74 /// value l-value, this method emits the address of the l-value, then loads
75 /// and returns the result.
EmitLoadOfLValue(const Expr * E)76 ComplexPairTy EmitLoadOfLValue(const Expr *E) {
77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78 }
79
80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
81
82 /// EmitStoreOfComplex - Store the specified real/imag parts into the
83 /// specified value pointer.
84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
85
86 /// Emit a cast from complex value Val to DestType.
87 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
88 QualType DestType, SourceLocation Loc);
89 /// Emit a cast from scalar value Val to DestType.
90 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
91 QualType DestType, SourceLocation Loc);
92
93 //===--------------------------------------------------------------------===//
94 // Visitor Methods
95 //===--------------------------------------------------------------------===//
96
Visit(Expr * E)97 ComplexPairTy Visit(Expr *E) {
98 ApplyDebugLocation DL(CGF, E);
99 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
100 }
101
VisitStmt(Stmt * S)102 ComplexPairTy VisitStmt(Stmt *S) {
103 S->dump(CGF.getContext().getSourceManager());
104 llvm_unreachable("Stmt can't have complex result type!");
105 }
106 ComplexPairTy VisitExpr(Expr *S);
VisitParenExpr(ParenExpr * PE)107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
VisitGenericSelectionExpr(GenericSelectionExpr * GE)108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109 return Visit(GE->getResultExpr());
110 }
111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112 ComplexPairTy
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * PE)113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114 return Visit(PE->getReplacement());
115 }
116
117 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)118 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
119 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
120 if (result.isReference())
121 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
122 E->getExprLoc());
123
124 llvm::Constant *pair = result.getValue();
125 return ComplexPairTy(pair->getAggregateElement(0U),
126 pair->getAggregateElement(1U));
127 }
128 return EmitLoadOfLValue(E);
129 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)130 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
131 return EmitLoadOfLValue(E);
132 }
VisitObjCMessageExpr(ObjCMessageExpr * E)133 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
134 return CGF.EmitObjCMessageExpr(E).getComplexVal();
135 }
VisitArraySubscriptExpr(Expr * E)136 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitMemberExpr(const Expr * E)137 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
VisitOpaqueValueExpr(OpaqueValueExpr * E)138 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
139 if (E->isGLValue())
140 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
141 return CGF.getOpaqueRValueMapping(E).getComplexVal();
142 }
143
VisitPseudoObjectExpr(PseudoObjectExpr * E)144 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
145 return CGF.EmitPseudoObjectRValue(E).getComplexVal();
146 }
147
148 // FIXME: CompoundLiteralExpr
149
150 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
VisitImplicitCastExpr(ImplicitCastExpr * E)151 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
152 // Unlike for scalars, we don't have to worry about function->ptr demotion
153 // here.
154 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
155 }
VisitCastExpr(CastExpr * E)156 ComplexPairTy VisitCastExpr(CastExpr *E) {
157 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
158 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
159 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
160 }
161 ComplexPairTy VisitCallExpr(const CallExpr *E);
162 ComplexPairTy VisitStmtExpr(const StmtExpr *E);
163
164 // Operators.
VisitPrePostIncDec(const UnaryOperator * E,bool isInc,bool isPre)165 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
166 bool isInc, bool isPre) {
167 LValue LV = CGF.EmitLValue(E->getSubExpr());
168 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
169 }
VisitUnaryPostDec(const UnaryOperator * E)170 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
171 return VisitPrePostIncDec(E, false, false);
172 }
VisitUnaryPostInc(const UnaryOperator * E)173 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
174 return VisitPrePostIncDec(E, true, false);
175 }
VisitUnaryPreDec(const UnaryOperator * E)176 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
177 return VisitPrePostIncDec(E, false, true);
178 }
VisitUnaryPreInc(const UnaryOperator * E)179 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
180 return VisitPrePostIncDec(E, true, true);
181 }
VisitUnaryDeref(const Expr * E)182 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
VisitUnaryPlus(const UnaryOperator * E)183 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
184 TestAndClearIgnoreReal();
185 TestAndClearIgnoreImag();
186 return Visit(E->getSubExpr());
187 }
188 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
189 ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
190 // LNot,Real,Imag never return complex.
VisitUnaryExtension(const UnaryOperator * E)191 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
192 return Visit(E->getSubExpr());
193 }
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)194 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
195 return Visit(DAE->getExpr());
196 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)197 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
198 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
199 return Visit(DIE->getExpr());
200 }
VisitExprWithCleanups(ExprWithCleanups * E)201 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
202 CGF.enterFullExpression(E);
203 CodeGenFunction::RunCleanupsScope Scope(CGF);
204 return Visit(E->getSubExpr());
205 }
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)206 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
207 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
208 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
209 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
210 return ComplexPairTy(Null, Null);
211 }
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)212 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
213 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
214 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
215 llvm::Constant *Null =
216 llvm::Constant::getNullValue(CGF.ConvertType(Elem));
217 return ComplexPairTy(Null, Null);
218 }
219
220 struct BinOpInfo {
221 ComplexPairTy LHS;
222 ComplexPairTy RHS;
223 QualType Ty; // Computation Type.
224 };
225
226 BinOpInfo EmitBinOps(const BinaryOperator *E);
227 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
228 ComplexPairTy (ComplexExprEmitter::*Func)
229 (const BinOpInfo &),
230 RValue &Val);
231 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
232 ComplexPairTy (ComplexExprEmitter::*Func)
233 (const BinOpInfo &));
234
235 ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
236 ComplexPairTy EmitBinSub(const BinOpInfo &Op);
237 ComplexPairTy EmitBinMul(const BinOpInfo &Op);
238 ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
239
240 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
241 const BinOpInfo &Op);
242
VisitBinAdd(const BinaryOperator * E)243 ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
244 return EmitBinAdd(EmitBinOps(E));
245 }
VisitBinSub(const BinaryOperator * E)246 ComplexPairTy VisitBinSub(const BinaryOperator *E) {
247 return EmitBinSub(EmitBinOps(E));
248 }
VisitBinMul(const BinaryOperator * E)249 ComplexPairTy VisitBinMul(const BinaryOperator *E) {
250 return EmitBinMul(EmitBinOps(E));
251 }
VisitBinDiv(const BinaryOperator * E)252 ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
253 return EmitBinDiv(EmitBinOps(E));
254 }
255
256 // Compound assignments.
VisitBinAddAssign(const CompoundAssignOperator * E)257 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
258 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
259 }
VisitBinSubAssign(const CompoundAssignOperator * E)260 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
261 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
262 }
VisitBinMulAssign(const CompoundAssignOperator * E)263 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
264 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
265 }
VisitBinDivAssign(const CompoundAssignOperator * E)266 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
267 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
268 }
269
270 // GCC rejects rem/and/or/xor for integer complex.
271 // Logical and/or always return int, never complex.
272
273 // No comparisons produce a complex result.
274
275 LValue EmitBinAssignLValue(const BinaryOperator *E,
276 ComplexPairTy &Val);
277 ComplexPairTy VisitBinAssign (const BinaryOperator *E);
278 ComplexPairTy VisitBinComma (const BinaryOperator *E);
279
280
281 ComplexPairTy
282 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
283 ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
284
285 ComplexPairTy VisitInitListExpr(InitListExpr *E);
286
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)287 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
288 return EmitLoadOfLValue(E);
289 }
290
291 ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
292
VisitAtomicExpr(AtomicExpr * E)293 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
294 return CGF.EmitAtomicExpr(E).getComplexVal();
295 }
296 };
297 } // end anonymous namespace.
298
299 //===----------------------------------------------------------------------===//
300 // Utilities
301 //===----------------------------------------------------------------------===//
302
emitAddrOfRealComponent(Address addr,QualType complexType)303 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
304 QualType complexType) {
305 CharUnits offset = CharUnits::Zero();
306 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
307 }
308
emitAddrOfImagComponent(Address addr,QualType complexType)309 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
310 QualType complexType) {
311 QualType eltType = complexType->castAs<ComplexType>()->getElementType();
312 CharUnits offset = getContext().getTypeSizeInChars(eltType);
313 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
314 }
315
316 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
317 /// load the real and imaginary pieces, returning them as Real/Imag.
EmitLoadOfLValue(LValue lvalue,SourceLocation loc)318 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
319 SourceLocation loc) {
320 assert(lvalue.isSimple() && "non-simple complex l-value?");
321 if (lvalue.getType()->isAtomicType())
322 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
323
324 Address SrcPtr = lvalue.getAddress();
325 bool isVolatile = lvalue.isVolatileQualified();
326
327 llvm::Value *Real = nullptr, *Imag = nullptr;
328
329 if (!IgnoreReal || isVolatile) {
330 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
331 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
332 }
333
334 if (!IgnoreImag || isVolatile) {
335 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
336 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
337 }
338
339 return ComplexPairTy(Real, Imag);
340 }
341
342 /// EmitStoreOfComplex - Store the specified real/imag parts into the
343 /// specified value pointer.
EmitStoreOfComplex(ComplexPairTy Val,LValue lvalue,bool isInit)344 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
345 bool isInit) {
346 if (lvalue.getType()->isAtomicType() ||
347 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
348 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
349
350 Address Ptr = lvalue.getAddress();
351 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
352 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
353
354 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
355 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
356 }
357
358
359
360 //===----------------------------------------------------------------------===//
361 // Visitor Methods
362 //===----------------------------------------------------------------------===//
363
VisitExpr(Expr * E)364 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
365 CGF.ErrorUnsupported(E, "complex expression");
366 llvm::Type *EltTy =
367 CGF.ConvertType(getComplexType(E->getType())->getElementType());
368 llvm::Value *U = llvm::UndefValue::get(EltTy);
369 return ComplexPairTy(U, U);
370 }
371
372 ComplexPairTy ComplexExprEmitter::
VisitImaginaryLiteral(const ImaginaryLiteral * IL)373 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
374 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
375 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
376 }
377
378
VisitCallExpr(const CallExpr * E)379 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
380 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
381 return EmitLoadOfLValue(E);
382
383 return CGF.EmitCallExpr(E).getComplexVal();
384 }
385
VisitStmtExpr(const StmtExpr * E)386 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
387 CodeGenFunction::StmtExprEvaluation eval(CGF);
388 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
389 assert(RetAlloca.isValid() && "Expected complex return value");
390 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
391 E->getExprLoc());
392 }
393
394 /// Emit a cast from complex value Val to DestType.
EmitComplexToComplexCast(ComplexPairTy Val,QualType SrcType,QualType DestType,SourceLocation Loc)395 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
396 QualType SrcType,
397 QualType DestType,
398 SourceLocation Loc) {
399 // Get the src/dest element type.
400 SrcType = SrcType->castAs<ComplexType>()->getElementType();
401 DestType = DestType->castAs<ComplexType>()->getElementType();
402
403 // C99 6.3.1.6: When a value of complex type is converted to another
404 // complex type, both the real and imaginary parts follow the conversion
405 // rules for the corresponding real types.
406 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
407 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
408 return Val;
409 }
410
EmitScalarToComplexCast(llvm::Value * Val,QualType SrcType,QualType DestType,SourceLocation Loc)411 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
412 QualType SrcType,
413 QualType DestType,
414 SourceLocation Loc) {
415 // Convert the input element to the element type of the complex.
416 DestType = DestType->castAs<ComplexType>()->getElementType();
417 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
418
419 // Return (realval, 0).
420 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
421 }
422
EmitCast(CastKind CK,Expr * Op,QualType DestTy)423 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
424 QualType DestTy) {
425 switch (CK) {
426 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
427
428 // Atomic to non-atomic casts may be more than a no-op for some platforms and
429 // for some types.
430 case CK_AtomicToNonAtomic:
431 case CK_NonAtomicToAtomic:
432 case CK_NoOp:
433 case CK_LValueToRValue:
434 case CK_UserDefinedConversion:
435 return Visit(Op);
436
437 case CK_LValueBitCast: {
438 LValue origLV = CGF.EmitLValue(Op);
439 Address V = origLV.getAddress();
440 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
441 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
442 }
443
444 case CK_BitCast:
445 case CK_BaseToDerived:
446 case CK_DerivedToBase:
447 case CK_UncheckedDerivedToBase:
448 case CK_Dynamic:
449 case CK_ToUnion:
450 case CK_ArrayToPointerDecay:
451 case CK_FunctionToPointerDecay:
452 case CK_NullToPointer:
453 case CK_NullToMemberPointer:
454 case CK_BaseToDerivedMemberPointer:
455 case CK_DerivedToBaseMemberPointer:
456 case CK_MemberPointerToBoolean:
457 case CK_ReinterpretMemberPointer:
458 case CK_ConstructorConversion:
459 case CK_IntegralToPointer:
460 case CK_PointerToIntegral:
461 case CK_PointerToBoolean:
462 case CK_ToVoid:
463 case CK_VectorSplat:
464 case CK_IntegralCast:
465 case CK_IntegralToBoolean:
466 case CK_IntegralToFloating:
467 case CK_FloatingToIntegral:
468 case CK_FloatingToBoolean:
469 case CK_FloatingCast:
470 case CK_CPointerToObjCPointerCast:
471 case CK_BlockPointerToObjCPointerCast:
472 case CK_AnyPointerToBlockPointerCast:
473 case CK_ObjCObjectLValueCast:
474 case CK_FloatingComplexToReal:
475 case CK_FloatingComplexToBoolean:
476 case CK_IntegralComplexToReal:
477 case CK_IntegralComplexToBoolean:
478 case CK_ARCProduceObject:
479 case CK_ARCConsumeObject:
480 case CK_ARCReclaimReturnedObject:
481 case CK_ARCExtendBlockObject:
482 case CK_CopyAndAutoreleaseBlockObject:
483 case CK_BuiltinFnToFnPtr:
484 case CK_ZeroToOCLEvent:
485 case CK_AddressSpaceConversion:
486 llvm_unreachable("invalid cast kind for complex value");
487
488 case CK_FloatingRealToComplex:
489 case CK_IntegralRealToComplex:
490 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
491 DestTy, Op->getExprLoc());
492
493 case CK_FloatingComplexCast:
494 case CK_FloatingComplexToIntegralComplex:
495 case CK_IntegralComplexCast:
496 case CK_IntegralComplexToFloatingComplex:
497 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
498 Op->getExprLoc());
499 }
500
501 llvm_unreachable("unknown cast resulting in complex value");
502 }
503
VisitUnaryMinus(const UnaryOperator * E)504 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
505 TestAndClearIgnoreReal();
506 TestAndClearIgnoreImag();
507 ComplexPairTy Op = Visit(E->getSubExpr());
508
509 llvm::Value *ResR, *ResI;
510 if (Op.first->getType()->isFloatingPointTy()) {
511 ResR = Builder.CreateFNeg(Op.first, "neg.r");
512 ResI = Builder.CreateFNeg(Op.second, "neg.i");
513 } else {
514 ResR = Builder.CreateNeg(Op.first, "neg.r");
515 ResI = Builder.CreateNeg(Op.second, "neg.i");
516 }
517 return ComplexPairTy(ResR, ResI);
518 }
519
VisitUnaryNot(const UnaryOperator * E)520 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
521 TestAndClearIgnoreReal();
522 TestAndClearIgnoreImag();
523 // ~(a+ib) = a + i*-b
524 ComplexPairTy Op = Visit(E->getSubExpr());
525 llvm::Value *ResI;
526 if (Op.second->getType()->isFloatingPointTy())
527 ResI = Builder.CreateFNeg(Op.second, "conj.i");
528 else
529 ResI = Builder.CreateNeg(Op.second, "conj.i");
530
531 return ComplexPairTy(Op.first, ResI);
532 }
533
EmitBinAdd(const BinOpInfo & Op)534 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
535 llvm::Value *ResR, *ResI;
536
537 if (Op.LHS.first->getType()->isFloatingPointTy()) {
538 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
539 if (Op.LHS.second && Op.RHS.second)
540 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
541 else
542 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
543 assert(ResI && "Only one operand may be real!");
544 } else {
545 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
546 assert(Op.LHS.second && Op.RHS.second &&
547 "Both operands of integer complex operators must be complex!");
548 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
549 }
550 return ComplexPairTy(ResR, ResI);
551 }
552
EmitBinSub(const BinOpInfo & Op)553 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
554 llvm::Value *ResR, *ResI;
555 if (Op.LHS.first->getType()->isFloatingPointTy()) {
556 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
557 if (Op.LHS.second && Op.RHS.second)
558 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
559 else
560 ResI = Op.LHS.second ? Op.LHS.second
561 : Builder.CreateFNeg(Op.RHS.second, "sub.i");
562 assert(ResI && "Only one operand may be real!");
563 } else {
564 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
565 assert(Op.LHS.second && Op.RHS.second &&
566 "Both operands of integer complex operators must be complex!");
567 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
568 }
569 return ComplexPairTy(ResR, ResI);
570 }
571
572 /// \brief Emit a libcall for a binary operation on complex types.
EmitComplexBinOpLibCall(StringRef LibCallName,const BinOpInfo & Op)573 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
574 const BinOpInfo &Op) {
575 CallArgList Args;
576 Args.add(RValue::get(Op.LHS.first),
577 Op.Ty->castAs<ComplexType>()->getElementType());
578 Args.add(RValue::get(Op.LHS.second),
579 Op.Ty->castAs<ComplexType>()->getElementType());
580 Args.add(RValue::get(Op.RHS.first),
581 Op.Ty->castAs<ComplexType>()->getElementType());
582 Args.add(RValue::get(Op.RHS.second),
583 Op.Ty->castAs<ComplexType>()->getElementType());
584
585 // We *must* use the full CG function call building logic here because the
586 // complex type has special ABI handling. We also should not forget about
587 // special calling convention which may be used for compiler builtins.
588
589 // We create a function qualified type to state that this call does not have
590 // any exceptions.
591 FunctionProtoType::ExtProtoInfo EPI;
592 EPI = EPI.withExceptionSpec(
593 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
594 SmallVector<QualType, 4> ArgsQTys(
595 4, Op.Ty->castAs<ComplexType>()->getElementType());
596 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
597 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
598 Args, cast<FunctionType>(FQTy.getTypePtr()), false);
599
600 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
601 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
602 llvm::Instruction *Call;
603
604 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
605 FQTy->getAs<FunctionProtoType>(), &Call);
606 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
607 return Res.getComplexVal();
608 }
609
610 /// \brief Lookup the libcall name for a given floating point type complex
611 /// multiply.
getComplexMultiplyLibCallName(llvm::Type * Ty)612 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
613 switch (Ty->getTypeID()) {
614 default:
615 llvm_unreachable("Unsupported floating point type!");
616 case llvm::Type::HalfTyID:
617 return "__mulhc3";
618 case llvm::Type::FloatTyID:
619 return "__mulsc3";
620 case llvm::Type::DoubleTyID:
621 return "__muldc3";
622 case llvm::Type::PPC_FP128TyID:
623 return "__multc3";
624 case llvm::Type::X86_FP80TyID:
625 return "__mulxc3";
626 case llvm::Type::FP128TyID:
627 return "__multc3";
628 }
629 }
630
631 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
632 // typed values.
EmitBinMul(const BinOpInfo & Op)633 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
634 using llvm::Value;
635 Value *ResR, *ResI;
636 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
637
638 if (Op.LHS.first->getType()->isFloatingPointTy()) {
639 // The general formulation is:
640 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
641 //
642 // But we can fold away components which would be zero due to a real
643 // operand according to C11 Annex G.5.1p2.
644 // FIXME: C11 also provides for imaginary types which would allow folding
645 // still more of this within the type system.
646
647 if (Op.LHS.second && Op.RHS.second) {
648 // If both operands are complex, emit the core math directly, and then
649 // test for NaNs. If we find NaNs in the result, we delegate to a libcall
650 // to carefully re-compute the correct infinity representation if
651 // possible. The expectation is that the presence of NaNs here is
652 // *extremely* rare, and so the cost of the libcall is almost irrelevant.
653 // This is good, because the libcall re-computes the core multiplication
654 // exactly the same as we do here and re-tests for NaNs in order to be
655 // a generic complex*complex libcall.
656
657 // First compute the four products.
658 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
659 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
660 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
661 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
662
663 // The real part is the difference of the first two, the imaginary part is
664 // the sum of the second.
665 ResR = Builder.CreateFSub(AC, BD, "mul_r");
666 ResI = Builder.CreateFAdd(AD, BC, "mul_i");
667
668 // Emit the test for the real part becoming NaN and create a branch to
669 // handle it. We test for NaN by comparing the number to itself.
670 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
671 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
672 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
673 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
674 llvm::BasicBlock *OrigBB = Branch->getParent();
675
676 // Give hint that we very much don't expect to see NaNs.
677 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
678 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
679 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
680
681 // Now test the imaginary part and create its branch.
682 CGF.EmitBlock(INaNBB);
683 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
684 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
685 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
686 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
687
688 // Now emit the libcall on this slowest of the slow paths.
689 CGF.EmitBlock(LibCallBB);
690 Value *LibCallR, *LibCallI;
691 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
692 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
693 Builder.CreateBr(ContBB);
694
695 // Finally continue execution by phi-ing together the different
696 // computation paths.
697 CGF.EmitBlock(ContBB);
698 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
699 RealPHI->addIncoming(ResR, OrigBB);
700 RealPHI->addIncoming(ResR, INaNBB);
701 RealPHI->addIncoming(LibCallR, LibCallBB);
702 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
703 ImagPHI->addIncoming(ResI, OrigBB);
704 ImagPHI->addIncoming(ResI, INaNBB);
705 ImagPHI->addIncoming(LibCallI, LibCallBB);
706 return ComplexPairTy(RealPHI, ImagPHI);
707 }
708 assert((Op.LHS.second || Op.RHS.second) &&
709 "At least one operand must be complex!");
710
711 // If either of the operands is a real rather than a complex, the
712 // imaginary component is ignored when computing the real component of the
713 // result.
714 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
715
716 ResI = Op.LHS.second
717 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
718 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
719 } else {
720 assert(Op.LHS.second && Op.RHS.second &&
721 "Both operands of integer complex operators must be complex!");
722 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
723 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
724 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
725
726 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
727 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
728 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
729 }
730 return ComplexPairTy(ResR, ResI);
731 }
732
733 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
734 // typed values.
EmitBinDiv(const BinOpInfo & Op)735 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
736 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
737 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
738
739
740 llvm::Value *DSTr, *DSTi;
741 if (LHSr->getType()->isFloatingPointTy()) {
742 // If we have a complex operand on the RHS, we delegate to a libcall to
743 // handle all of the complexities and minimize underflow/overflow cases.
744 //
745 // FIXME: We would be able to avoid the libcall in many places if we
746 // supported imaginary types in addition to complex types.
747 if (RHSi) {
748 BinOpInfo LibCallOp = Op;
749 // If LHS was a real, supply a null imaginary part.
750 if (!LHSi)
751 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
752
753 StringRef LibCallName;
754 switch (LHSr->getType()->getTypeID()) {
755 default:
756 llvm_unreachable("Unsupported floating point type!");
757 case llvm::Type::HalfTyID:
758 return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
759 case llvm::Type::FloatTyID:
760 return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
761 case llvm::Type::DoubleTyID:
762 return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
763 case llvm::Type::PPC_FP128TyID:
764 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
765 case llvm::Type::X86_FP80TyID:
766 return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
767 case llvm::Type::FP128TyID:
768 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
769 }
770 }
771 assert(LHSi && "Can have at most one non-complex operand!");
772
773 DSTr = Builder.CreateFDiv(LHSr, RHSr);
774 DSTi = Builder.CreateFDiv(LHSi, RHSr);
775 } else {
776 assert(Op.LHS.second && Op.RHS.second &&
777 "Both operands of integer complex operators must be complex!");
778 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
779 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
780 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
781 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
782
783 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
784 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
785 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
786
787 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
788 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
789 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
790
791 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
792 DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
793 DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
794 } else {
795 DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
796 DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
797 }
798 }
799
800 return ComplexPairTy(DSTr, DSTi);
801 }
802
803 ComplexExprEmitter::BinOpInfo
EmitBinOps(const BinaryOperator * E)804 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
805 TestAndClearIgnoreReal();
806 TestAndClearIgnoreImag();
807 BinOpInfo Ops;
808 if (E->getLHS()->getType()->isRealFloatingType())
809 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
810 else
811 Ops.LHS = Visit(E->getLHS());
812 if (E->getRHS()->getType()->isRealFloatingType())
813 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
814 else
815 Ops.RHS = Visit(E->getRHS());
816
817 Ops.Ty = E->getType();
818 return Ops;
819 }
820
821
822 LValue ComplexExprEmitter::
EmitCompoundAssignLValue(const CompoundAssignOperator * E,ComplexPairTy (ComplexExprEmitter::* Func)(const BinOpInfo &),RValue & Val)823 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
824 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
825 RValue &Val) {
826 TestAndClearIgnoreReal();
827 TestAndClearIgnoreImag();
828 QualType LHSTy = E->getLHS()->getType();
829 if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
830 LHSTy = AT->getValueType();
831
832 BinOpInfo OpInfo;
833
834 // Load the RHS and LHS operands.
835 // __block variables need to have the rhs evaluated first, plus this should
836 // improve codegen a little.
837 OpInfo.Ty = E->getComputationResultType();
838 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
839
840 // The RHS should have been converted to the computation type.
841 if (E->getRHS()->getType()->isRealFloatingType()) {
842 assert(
843 CGF.getContext()
844 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
845 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
846 } else {
847 assert(CGF.getContext()
848 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
849 OpInfo.RHS = Visit(E->getRHS());
850 }
851
852 LValue LHS = CGF.EmitLValue(E->getLHS());
853
854 // Load from the l-value and convert it.
855 SourceLocation Loc = E->getExprLoc();
856 if (LHSTy->isAnyComplexType()) {
857 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
858 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
859 } else {
860 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
861 // For floating point real operands we can directly pass the scalar form
862 // to the binary operator emission and potentially get more efficient code.
863 if (LHSTy->isRealFloatingType()) {
864 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
865 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
866 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
867 } else {
868 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
869 }
870 }
871
872 // Expand the binary operator.
873 ComplexPairTy Result = (this->*Func)(OpInfo);
874
875 // Truncate the result and store it into the LHS lvalue.
876 if (LHSTy->isAnyComplexType()) {
877 ComplexPairTy ResVal =
878 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
879 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
880 Val = RValue::getComplex(ResVal);
881 } else {
882 llvm::Value *ResVal =
883 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
884 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
885 Val = RValue::get(ResVal);
886 }
887
888 return LHS;
889 }
890
891 // Compound assignments.
892 ComplexPairTy ComplexExprEmitter::
EmitCompoundAssign(const CompoundAssignOperator * E,ComplexPairTy (ComplexExprEmitter::* Func)(const BinOpInfo &))893 EmitCompoundAssign(const CompoundAssignOperator *E,
894 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
895 RValue Val;
896 LValue LV = EmitCompoundAssignLValue(E, Func, Val);
897
898 // The result of an assignment in C is the assigned r-value.
899 if (!CGF.getLangOpts().CPlusPlus)
900 return Val.getComplexVal();
901
902 // If the lvalue is non-volatile, return the computed value of the assignment.
903 if (!LV.isVolatileQualified())
904 return Val.getComplexVal();
905
906 return EmitLoadOfLValue(LV, E->getExprLoc());
907 }
908
EmitBinAssignLValue(const BinaryOperator * E,ComplexPairTy & Val)909 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
910 ComplexPairTy &Val) {
911 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
912 E->getRHS()->getType()) &&
913 "Invalid assignment");
914 TestAndClearIgnoreReal();
915 TestAndClearIgnoreImag();
916
917 // Emit the RHS. __block variables need the RHS evaluated first.
918 Val = Visit(E->getRHS());
919
920 // Compute the address to store into.
921 LValue LHS = CGF.EmitLValue(E->getLHS());
922
923 // Store the result value into the LHS lvalue.
924 EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
925
926 return LHS;
927 }
928
VisitBinAssign(const BinaryOperator * E)929 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
930 ComplexPairTy Val;
931 LValue LV = EmitBinAssignLValue(E, Val);
932
933 // The result of an assignment in C is the assigned r-value.
934 if (!CGF.getLangOpts().CPlusPlus)
935 return Val;
936
937 // If the lvalue is non-volatile, return the computed value of the assignment.
938 if (!LV.isVolatileQualified())
939 return Val;
940
941 return EmitLoadOfLValue(LV, E->getExprLoc());
942 }
943
VisitBinComma(const BinaryOperator * E)944 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
945 CGF.EmitIgnoredExpr(E->getLHS());
946 return Visit(E->getRHS());
947 }
948
949 ComplexPairTy ComplexExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)950 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
951 TestAndClearIgnoreReal();
952 TestAndClearIgnoreImag();
953 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
954 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
955 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
956
957 // Bind the common expression if necessary.
958 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
959
960
961 CodeGenFunction::ConditionalEvaluation eval(CGF);
962 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
963 CGF.getProfileCount(E));
964
965 eval.begin(CGF);
966 CGF.EmitBlock(LHSBlock);
967 CGF.incrementProfileCounter(E);
968 ComplexPairTy LHS = Visit(E->getTrueExpr());
969 LHSBlock = Builder.GetInsertBlock();
970 CGF.EmitBranch(ContBlock);
971 eval.end(CGF);
972
973 eval.begin(CGF);
974 CGF.EmitBlock(RHSBlock);
975 ComplexPairTy RHS = Visit(E->getFalseExpr());
976 RHSBlock = Builder.GetInsertBlock();
977 CGF.EmitBlock(ContBlock);
978 eval.end(CGF);
979
980 // Create a PHI node for the real part.
981 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
982 RealPN->addIncoming(LHS.first, LHSBlock);
983 RealPN->addIncoming(RHS.first, RHSBlock);
984
985 // Create a PHI node for the imaginary part.
986 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
987 ImagPN->addIncoming(LHS.second, LHSBlock);
988 ImagPN->addIncoming(RHS.second, RHSBlock);
989
990 return ComplexPairTy(RealPN, ImagPN);
991 }
992
VisitChooseExpr(ChooseExpr * E)993 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
994 return Visit(E->getChosenSubExpr());
995 }
996
VisitInitListExpr(InitListExpr * E)997 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
998 bool Ignore = TestAndClearIgnoreReal();
999 (void)Ignore;
1000 assert (Ignore == false && "init list ignored");
1001 Ignore = TestAndClearIgnoreImag();
1002 (void)Ignore;
1003 assert (Ignore == false && "init list ignored");
1004
1005 if (E->getNumInits() == 2) {
1006 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1007 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1008 return ComplexPairTy(Real, Imag);
1009 } else if (E->getNumInits() == 1) {
1010 return Visit(E->getInit(0));
1011 }
1012
1013 // Empty init list intializes to null
1014 assert(E->getNumInits() == 0 && "Unexpected number of inits");
1015 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1016 llvm::Type* LTy = CGF.ConvertType(Ty);
1017 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1018 return ComplexPairTy(zeroConstant, zeroConstant);
1019 }
1020
VisitVAArgExpr(VAArgExpr * E)1021 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1022 Address ArgValue = Address::invalid();
1023 Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1024
1025 if (!ArgPtr.isValid()) {
1026 CGF.ErrorUnsupported(E, "complex va_arg expression");
1027 llvm::Type *EltTy =
1028 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1029 llvm::Value *U = llvm::UndefValue::get(EltTy);
1030 return ComplexPairTy(U, U);
1031 }
1032
1033 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1034 E->getExprLoc());
1035 }
1036
1037 //===----------------------------------------------------------------------===//
1038 // Entry Point into this File
1039 //===----------------------------------------------------------------------===//
1040
1041 /// EmitComplexExpr - Emit the computation of the specified expression of
1042 /// complex type, ignoring the result.
EmitComplexExpr(const Expr * E,bool IgnoreReal,bool IgnoreImag)1043 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1044 bool IgnoreImag) {
1045 assert(E && getComplexType(E->getType()) &&
1046 "Invalid complex expression to emit");
1047
1048 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1049 .Visit(const_cast<Expr *>(E));
1050 }
1051
EmitComplexExprIntoLValue(const Expr * E,LValue dest,bool isInit)1052 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1053 bool isInit) {
1054 assert(E && getComplexType(E->getType()) &&
1055 "Invalid complex expression to emit");
1056 ComplexExprEmitter Emitter(*this);
1057 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1058 Emitter.EmitStoreOfComplex(Val, dest, isInit);
1059 }
1060
1061 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
EmitStoreOfComplex(ComplexPairTy V,LValue dest,bool isInit)1062 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1063 bool isInit) {
1064 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1065 }
1066
1067 /// EmitLoadOfComplex - Load a complex number from the specified address.
EmitLoadOfComplex(LValue src,SourceLocation loc)1068 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1069 SourceLocation loc) {
1070 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1071 }
1072
EmitComplexAssignmentLValue(const BinaryOperator * E)1073 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1074 assert(E->getOpcode() == BO_Assign);
1075 ComplexPairTy Val; // ignored
1076 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1077 }
1078
1079 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1080 const ComplexExprEmitter::BinOpInfo &);
1081
getComplexOp(BinaryOperatorKind Op)1082 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1083 switch (Op) {
1084 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1085 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1086 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1087 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1088 default:
1089 llvm_unreachable("unexpected complex compound assignment");
1090 }
1091 }
1092
1093 LValue CodeGenFunction::
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator * E)1094 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1095 CompoundFunc Op = getComplexOp(E->getOpcode());
1096 RValue Val;
1097 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1098 }
1099
1100 LValue CodeGenFunction::
EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator * E,llvm::Value * & Result)1101 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1102 llvm::Value *&Result) {
1103 CompoundFunc Op = getComplexOp(E->getOpcode());
1104 RValue Val;
1105 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1106 Result = Val.getScalarVal();
1107 return Ret;
1108 }
1109