Home
last modified time | relevance | path

Searched refs:f_x (Results 1 – 14 of 14) sorted by relevance

/external/skia/src/svg/parser/
DSkSVGRect.h21 SkString f_x; variable
DSkSVGFilter.h21 SkString f_x; variable
DSkSVGImage.h22 SkString f_x; variable
DSkSVGUse.h20 SkString f_x; variable
DSkSVGMask.h23 SkString f_x; variable
DSkSVGText.h18 SkString f_x;
DSkSVGSVG.h25 SkString f_x; variable
DSkSVGRect.cpp23 f_x.set("0"); in DEFINE_SVG_INFO()
/external/opencv3/modules/viz/src/
Dtypes.cpp113 double f_x = K(0,0); in Camera() local
117 init(f_x, f_y, c_x, c_y, window_size); in Camera()
Dshapes.cpp804 double f_x = K(0,0), f_y = K(1,1), c_y = K(1,2); in WCameraPosition() local
808 double aspect_ratio = f_y / f_x; in WCameraPosition()
/external/opencv3/doc/py_tutorials/py_video/py_lucas_kanade/
Dpy_lucas_kanade.markdown45 \f[f_x u + f_y v + f_t = 0 \;\f]
49 \f[f_x = \frac{\partial f}{\partial x} \; ; \; f_y = \frac{\partial f}{\partial y}\f]\f[u = \frac{d…
51 Above equation is called Optical Flow equation. In it, we can find \f$f_x\f$ and \f$f_y\f$, they ar…
60 can find \f$(f_x, f_y, f_t)\f$ for these 9 points. So now our problem becomes solving 9 equations w…
/external/opencv3/doc/tutorials/calib3d/camera_calibration/
Dcamera_calibration.markdown37 \f[\left [ \begin{matrix} x \\ y \\ w \end{matrix} \right ] = \left [ \begin{matrix} f_x & …
40 unknown parameters are \f$f_x\f$ and \f$f_y\f$ (camera focal lengths) and \f$(c_x, c_y)\f$ which ar…
42 \f$a\f$ aspect ratio (usually 1), then \f$f_y=f_x*a\f$ and in the upper formula we will have a sing…
194 - The camera matrix. If we used the fixed aspect ratio option we need to set \f$f_x\f$:
/external/opencv3/doc/py_tutorials/py_calib3d/py_calibration/
Dpy_calibration.markdown43 length (\f$f_x,f_y\f$), optical centers (\f$c_x, c_y\f$) etc. It is also called camera matrix. It d…
47 \f[camera \; matrix = \left [ \begin{matrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{…
/external/opencv3/doc/tutorials/calib3d/real_time_pose/
Dreal_time_pose.markdown52 \f[s\ \left [ \begin{matrix} u \\ v \\ 1 \end{matrix} \right ] = \left [ \begin{matrix} f_x