• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef  V8_MIPS_CONSTANTS_H_
6 #define  V8_MIPS_CONSTANTS_H_
7 #include "src/globals.h"
8 // UNIMPLEMENTED_ macro for MIPS.
9 #ifdef DEBUG
10 #define UNIMPLEMENTED_MIPS()                                                  \
11   v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n",    \
12                        __FILE__, __LINE__, __func__)
13 #else
14 #define UNIMPLEMENTED_MIPS()
15 #endif
16 
17 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
18 
19 enum ArchVariants {
20   kMips32r1 = v8::internal::MIPSr1,
21   kMips32r2 = v8::internal::MIPSr2,
22   kMips32r6 = v8::internal::MIPSr6,
23   kLoongson
24 };
25 
26 #ifdef _MIPS_ARCH_MIPS32R2
27   static const ArchVariants kArchVariant = kMips32r2;
28 #elif _MIPS_ARCH_MIPS32R6
29   static const ArchVariants kArchVariant = kMips32r6;
30 #elif _MIPS_ARCH_LOONGSON
31 // The loongson flag refers to the LOONGSON architectures based on MIPS-III,
32 // which predates (and is a subset of) the mips32r2 and r1 architectures.
33   static const ArchVariants kArchVariant = kLoongson;
34 #elif _MIPS_ARCH_MIPS32RX
35 // This flags referred to compatibility mode that creates universal code that
36 // can run on any MIPS32 architecture revision. The dynamically generated code
37 // by v8 is specialized for the MIPS host detected in runtime probing.
38   static const ArchVariants kArchVariant = kMips32r1;
39 #else
40   static const ArchVariants kArchVariant = kMips32r1;
41 #endif
42 
43 enum Endianness {
44   kLittle,
45   kBig
46 };
47 
48 #if defined(V8_TARGET_LITTLE_ENDIAN)
49   static const Endianness kArchEndian = kLittle;
50 #elif defined(V8_TARGET_BIG_ENDIAN)
51   static const Endianness kArchEndian = kBig;
52 #else
53 #error Unknown endianness
54 #endif
55 
56 enum FpuMode {
57   kFP32,
58   kFP64,
59   kFPXX
60 };
61 
62 #if defined(FPU_MODE_FP32)
63   static const FpuMode kFpuMode = kFP32;
64 #elif defined(FPU_MODE_FP64)
65   static const FpuMode kFpuMode = kFP64;
66 #elif defined(FPU_MODE_FPXX)
67   static const FpuMode kFpuMode = kFPXX;
68 #else
69   static const FpuMode kFpuMode = kFP32;
70 #endif
71 
72 #if(defined(__mips_hard_float) && __mips_hard_float != 0)
73 // Use floating-point coprocessor instructions. This flag is raised when
74 // -mhard-float is passed to the compiler.
75 const bool IsMipsSoftFloatABI = false;
76 #elif(defined(__mips_soft_float) && __mips_soft_float != 0)
77 // This flag is raised when -msoft-float is passed to the compiler.
78 // Although FPU is a base requirement for v8, soft-float ABI is used
79 // on soft-float systems with FPU kernel emulation.
80 const bool IsMipsSoftFloatABI = true;
81 #else
82 const bool IsMipsSoftFloatABI = true;
83 #endif
84 
85 #if defined(V8_TARGET_LITTLE_ENDIAN)
86 const uint32_t kHoleNanUpper32Offset = 4;
87 const uint32_t kHoleNanLower32Offset = 0;
88 #elif defined(V8_TARGET_BIG_ENDIAN)
89 const uint32_t kHoleNanUpper32Offset = 0;
90 const uint32_t kHoleNanLower32Offset = 4;
91 #else
92 #error Unknown endianness
93 #endif
94 
95 #ifndef FPU_MODE_FPXX
96 #define IsFp64Mode() \
97   (kFpuMode == kFP64)
98 #else
99 #define IsFp64Mode() \
100   (CpuFeatures::IsSupported(FP64FPU))
101 #endif
102 
103 #ifndef _MIPS_ARCH_MIPS32RX
104 #define IsMipsArchVariant(check) \
105   (kArchVariant == check)
106 #else
107 #define IsMipsArchVariant(check) \
108   (CpuFeatures::IsSupported(static_cast<CpuFeature>(check)))
109 #endif
110 
111 
112 #define __STDC_FORMAT_MACROS
113 #include <inttypes.h>
114 
115 // Defines constants and accessor classes to assemble, disassemble and
116 // simulate MIPS32 instructions.
117 //
118 // See: MIPS32 Architecture For Programmers
119 //      Volume II: The MIPS32 Instruction Set
120 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
121 
122 namespace v8 {
123 namespace internal {
124 
125 // -----------------------------------------------------------------------------
126 // Registers and FPURegisters.
127 
128 // Number of general purpose registers.
129 const int kNumRegisters = 32;
130 const int kInvalidRegister = -1;
131 
132 // Number of registers with HI, LO, and pc.
133 const int kNumSimuRegisters = 35;
134 
135 // In the simulator, the PC register is simulated as the 34th register.
136 const int kPCRegister = 34;
137 
138 // Number coprocessor registers.
139 const int kNumFPURegisters = 32;
140 const int kInvalidFPURegister = -1;
141 
142 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
143 const int kFCSRRegister = 31;
144 const int kInvalidFPUControlRegister = -1;
145 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
146 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1 << 31);
147 const uint64_t kFPU64InvalidResult =
148     static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
149 const int64_t kFPU64InvalidResultNegative =
150     static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
151 
152 // FCSR constants.
153 const uint32_t kFCSRInexactFlagBit = 2;
154 const uint32_t kFCSRUnderflowFlagBit = 3;
155 const uint32_t kFCSROverflowFlagBit = 4;
156 const uint32_t kFCSRDivideByZeroFlagBit = 5;
157 const uint32_t kFCSRInvalidOpFlagBit = 6;
158 const uint32_t kFCSRNaN2008FlagBit = 18;
159 
160 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
161 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
162 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
163 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
164 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
165 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
166 
167 const uint32_t kFCSRFlagMask =
168     kFCSRInexactFlagMask |
169     kFCSRUnderflowFlagMask |
170     kFCSROverflowFlagMask |
171     kFCSRDivideByZeroFlagMask |
172     kFCSRInvalidOpFlagMask;
173 
174 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
175 
176 // 'pref' instruction hints
177 const int32_t kPrefHintLoad = 0;
178 const int32_t kPrefHintStore = 1;
179 const int32_t kPrefHintLoadStreamed = 4;
180 const int32_t kPrefHintStoreStreamed = 5;
181 const int32_t kPrefHintLoadRetained = 6;
182 const int32_t kPrefHintStoreRetained = 7;
183 const int32_t kPrefHintWritebackInvalidate = 25;
184 const int32_t kPrefHintPrepareForStore = 30;
185 
186 // Helper functions for converting between register numbers and names.
187 class Registers {
188  public:
189   // Return the name of the register.
190   static const char* Name(int reg);
191 
192   // Lookup the register number for the name provided.
193   static int Number(const char* name);
194 
195   struct RegisterAlias {
196     int reg;
197     const char* name;
198   };
199 
200   static const int32_t kMaxValue = 0x7fffffff;
201   static const int32_t kMinValue = 0x80000000;
202 
203  private:
204   static const char* names_[kNumSimuRegisters];
205   static const RegisterAlias aliases_[];
206 };
207 
208 // Helper functions for converting between register numbers and names.
209 class FPURegisters {
210  public:
211   // Return the name of the register.
212   static const char* Name(int reg);
213 
214   // Lookup the register number for the name provided.
215   static int Number(const char* name);
216 
217   struct RegisterAlias {
218     int creg;
219     const char* name;
220   };
221 
222  private:
223   static const char* names_[kNumFPURegisters];
224   static const RegisterAlias aliases_[];
225 };
226 
227 
228 // -----------------------------------------------------------------------------
229 // Instructions encoding constants.
230 
231 // On MIPS all instructions are 32 bits.
232 typedef int32_t Instr;
233 
234 // Special Software Interrupt codes when used in the presence of the MIPS
235 // simulator.
236 enum SoftwareInterruptCodes {
237   // Transition to C code.
238   call_rt_redirected = 0xfffff
239 };
240 
241 // On MIPS Simulator breakpoints can have different codes:
242 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
243 //   the simulator will run through them and print the registers.
244 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
245 //   instructions (see Assembler::stop()).
246 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
247 //   debugger.
248 const uint32_t kMaxWatchpointCode = 31;
249 const uint32_t kMaxStopCode = 127;
250 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
251 
252 
253 // ----- Fields offset and length.
254 const int kOpcodeShift   = 26;
255 const int kOpcodeBits    = 6;
256 const int kRsShift       = 21;
257 const int kRsBits        = 5;
258 const int kRtShift       = 16;
259 const int kRtBits        = 5;
260 const int kRdShift       = 11;
261 const int kRdBits        = 5;
262 const int kSaShift       = 6;
263 const int kSaBits        = 5;
264 const int kLsaSaBits = 2;
265 const int kFunctionShift = 0;
266 const int kFunctionBits  = 6;
267 const int kLuiShift      = 16;
268 const int kBp2Shift = 6;
269 const int kBp2Bits = 2;
270 
271 const int kImm16Shift = 0;
272 const int kImm16Bits  = 16;
273 const int kImm18Shift = 0;
274 const int kImm18Bits = 18;
275 const int kImm19Shift = 0;
276 const int kImm19Bits = 19;
277 const int kImm21Shift = 0;
278 const int kImm21Bits  = 21;
279 const int kImm26Shift = 0;
280 const int kImm26Bits  = 26;
281 const int kImm28Shift = 0;
282 const int kImm28Bits  = 28;
283 const int kImm32Shift = 0;
284 const int kImm32Bits  = 32;
285 
286 // In branches and jumps immediate fields point to words, not bytes,
287 // and are therefore shifted by 2.
288 const int kImmFieldShift = 2;
289 
290 const int kFrBits        = 5;
291 const int kFrShift       = 21;
292 const int kFsShift       = 11;
293 const int kFsBits        = 5;
294 const int kFtShift       = 16;
295 const int kFtBits        = 5;
296 const int kFdShift       = 6;
297 const int kFdBits        = 5;
298 const int kFCccShift     = 8;
299 const int kFCccBits      = 3;
300 const int kFBccShift     = 18;
301 const int kFBccBits      = 3;
302 const int kFBtrueShift   = 16;
303 const int kFBtrueBits    = 1;
304 
305 // ----- Miscellaneous useful masks.
306 // Instruction bit masks.
307 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
308 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
309 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
310 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
311 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
312 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
313 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
314 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
315 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
316 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
317 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
318 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
319 // Misc masks.
320 const int kHiMask = 0xffff << 16;
321 const int kLoMask = 0xffff;
322 const int kSignMask = 0x80000000;
323 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
324 
325 // ----- MIPS Opcodes and Function Fields.
326 // We use this presentation to stay close to the table representation in
327 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
328 enum Opcode : uint32_t {
329   SPECIAL = 0U << kOpcodeShift,
330   REGIMM = 1U << kOpcodeShift,
331 
332   J = ((0U << 3) + 2) << kOpcodeShift,
333   JAL = ((0U << 3) + 3) << kOpcodeShift,
334   BEQ = ((0U << 3) + 4) << kOpcodeShift,
335   BNE = ((0U << 3) + 5) << kOpcodeShift,
336   BLEZ = ((0U << 3) + 6) << kOpcodeShift,
337   BGTZ = ((0U << 3) + 7) << kOpcodeShift,
338 
339   ADDI = ((1U << 3) + 0) << kOpcodeShift,
340   ADDIU = ((1U << 3) + 1) << kOpcodeShift,
341   SLTI = ((1U << 3) + 2) << kOpcodeShift,
342   SLTIU = ((1U << 3) + 3) << kOpcodeShift,
343   ANDI = ((1U << 3) + 4) << kOpcodeShift,
344   ORI = ((1U << 3) + 5) << kOpcodeShift,
345   XORI = ((1U << 3) + 6) << kOpcodeShift,
346   LUI = ((1U << 3) + 7) << kOpcodeShift,  // LUI/AUI family.
347 
348   BEQC = ((2U << 3) + 0) << kOpcodeShift,
349   COP1 = ((2U << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class.
350   BEQL = ((2U << 3) + 4) << kOpcodeShift,
351   BNEL = ((2U << 3) + 5) << kOpcodeShift,
352   BLEZL = ((2U << 3) + 6) << kOpcodeShift,
353   BGTZL = ((2U << 3) + 7) << kOpcodeShift,
354 
355   DADDI = ((3U << 3) + 0) << kOpcodeShift,  // This is also BNEC.
356   SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
357   SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
358 
359   LB = ((4U << 3) + 0) << kOpcodeShift,
360   LH = ((4U << 3) + 1) << kOpcodeShift,
361   LWL = ((4U << 3) + 2) << kOpcodeShift,
362   LW = ((4U << 3) + 3) << kOpcodeShift,
363   LBU = ((4U << 3) + 4) << kOpcodeShift,
364   LHU = ((4U << 3) + 5) << kOpcodeShift,
365   LWR = ((4U << 3) + 6) << kOpcodeShift,
366   SB = ((5U << 3) + 0) << kOpcodeShift,
367   SH = ((5U << 3) + 1) << kOpcodeShift,
368   SWL = ((5U << 3) + 2) << kOpcodeShift,
369   SW = ((5U << 3) + 3) << kOpcodeShift,
370   SWR = ((5U << 3) + 6) << kOpcodeShift,
371 
372   LWC1 = ((6U << 3) + 1) << kOpcodeShift,
373   BC = ((6U << 3) + 2) << kOpcodeShift,
374   LDC1 = ((6U << 3) + 5) << kOpcodeShift,
375   POP66 = ((6U << 3) + 6) << kOpcodeShift,  // beqzc, jic
376 
377   PREF = ((6U << 3) + 3) << kOpcodeShift,
378 
379   SWC1 = ((7U << 3) + 1) << kOpcodeShift,
380   BALC = ((7U << 3) + 2) << kOpcodeShift,
381   PCREL = ((7U << 3) + 3) << kOpcodeShift,
382   SDC1 = ((7U << 3) + 5) << kOpcodeShift,
383   POP76 = ((7U << 3) + 6) << kOpcodeShift,  // bnezc, jialc
384 
385   COP1X = ((1U << 4) + 3) << kOpcodeShift,
386 
387   // New r6 instruction.
388   POP06 = BLEZ,   // bgeuc/bleuc, blezalc, bgezalc
389   POP07 = BGTZ,   // bltuc/bgtuc, bgtzalc, bltzalc
390   POP10 = ADDI,   // beqzalc, bovc, beqc
391   POP26 = BLEZL,  // bgezc, blezc, bgec/blec
392   POP27 = BGTZL,  // bgtzc, bltzc, bltc/bgtc
393   POP30 = DADDI,  // bnezalc, bvnc, bnec
394 };
395 
396 enum SecondaryField : uint32_t {
397   // SPECIAL Encoding of Function Field.
398   SLL = ((0U << 3) + 0),
399   MOVCI = ((0U << 3) + 1),
400   SRL = ((0U << 3) + 2),
401   SRA = ((0U << 3) + 3),
402   SLLV = ((0U << 3) + 4),
403   LSA = ((0U << 3) + 5),
404   SRLV = ((0U << 3) + 6),
405   SRAV = ((0U << 3) + 7),
406 
407   JR = ((1U << 3) + 0),
408   JALR = ((1U << 3) + 1),
409   MOVZ = ((1U << 3) + 2),
410   MOVN = ((1U << 3) + 3),
411   BREAK = ((1U << 3) + 5),
412 
413   MFHI = ((2U << 3) + 0),
414   CLZ_R6 = ((2U << 3) + 0),
415   CLO_R6 = ((2U << 3) + 1),
416   MFLO = ((2U << 3) + 2),
417 
418   MULT = ((3U << 3) + 0),
419   MULTU = ((3U << 3) + 1),
420   DIV = ((3U << 3) + 2),
421   DIVU = ((3U << 3) + 3),
422 
423   ADD = ((4U << 3) + 0),
424   ADDU = ((4U << 3) + 1),
425   SUB = ((4U << 3) + 2),
426   SUBU = ((4U << 3) + 3),
427   AND = ((4U << 3) + 4),
428   OR = ((4U << 3) + 5),
429   XOR = ((4U << 3) + 6),
430   NOR = ((4U << 3) + 7),
431 
432   SLT = ((5U << 3) + 2),
433   SLTU = ((5U << 3) + 3),
434 
435   TGE = ((6U << 3) + 0),
436   TGEU = ((6U << 3) + 1),
437   TLT = ((6U << 3) + 2),
438   TLTU = ((6U << 3) + 3),
439   TEQ = ((6U << 3) + 4),
440   SELEQZ_S = ((6U << 3) + 5),
441   TNE = ((6U << 3) + 6),
442   SELNEZ_S = ((6U << 3) + 7),
443 
444   // Multiply integers in r6.
445   MUL_MUH = ((3U << 3) + 0),    // MUL, MUH.
446   MUL_MUH_U = ((3U << 3) + 1),  // MUL_U, MUH_U.
447   RINT = ((3U << 3) + 2),
448 
449   MUL_OP = ((0U << 3) + 2),
450   MUH_OP = ((0U << 3) + 3),
451   DIV_OP = ((0U << 3) + 2),
452   MOD_OP = ((0U << 3) + 3),
453 
454   DIV_MOD = ((3U << 3) + 2),
455   DIV_MOD_U = ((3U << 3) + 3),
456 
457   // SPECIAL2 Encoding of Function Field.
458   MUL = ((0U << 3) + 2),
459   CLZ = ((4U << 3) + 0),
460   CLO = ((4U << 3) + 1),
461 
462   // SPECIAL3 Encoding of Function Field.
463   EXT = ((0U << 3) + 0),
464   INS = ((0U << 3) + 4),
465   BSHFL = ((4U << 3) + 0),
466 
467   // SPECIAL3 Encoding of sa Field.
468   BITSWAP = ((0U << 3) + 0),
469   ALIGN = ((0U << 3) + 2),
470   WSBH = ((0U << 3) + 2),
471   SEB = ((2U << 3) + 0),
472   SEH = ((3U << 3) + 0),
473 
474   // REGIMM  encoding of rt Field.
475   BLTZ = ((0U << 3) + 0) << 16,
476   BGEZ = ((0U << 3) + 1) << 16,
477   BLTZAL = ((2U << 3) + 0) << 16,
478   BGEZAL = ((2U << 3) + 1) << 16,
479   BGEZALL = ((2U << 3) + 3) << 16,
480 
481   // COP1 Encoding of rs Field.
482   MFC1 = ((0U << 3) + 0) << 21,
483   CFC1 = ((0U << 3) + 2) << 21,
484   MFHC1 = ((0U << 3) + 3) << 21,
485   MTC1 = ((0U << 3) + 4) << 21,
486   CTC1 = ((0U << 3) + 6) << 21,
487   MTHC1 = ((0U << 3) + 7) << 21,
488   BC1 = ((1U << 3) + 0) << 21,
489   S = ((2U << 3) + 0) << 21,
490   D = ((2U << 3) + 1) << 21,
491   W = ((2U << 3) + 4) << 21,
492   L = ((2U << 3) + 5) << 21,
493   PS = ((2U << 3) + 6) << 21,
494   // COP1 Encoding of Function Field When rs=S.
495 
496   ADD_S = ((0U << 3) + 0),
497   SUB_S = ((0U << 3) + 1),
498   MUL_S = ((0U << 3) + 2),
499   DIV_S = ((0U << 3) + 3),
500   ABS_S = ((0U << 3) + 5),
501   SQRT_S = ((0U << 3) + 4),
502   MOV_S = ((0U << 3) + 6),
503   NEG_S = ((0U << 3) + 7),
504   ROUND_L_S = ((1U << 3) + 0),
505   TRUNC_L_S = ((1U << 3) + 1),
506   CEIL_L_S = ((1U << 3) + 2),
507   FLOOR_L_S = ((1U << 3) + 3),
508   ROUND_W_S = ((1U << 3) + 4),
509   TRUNC_W_S = ((1U << 3) + 5),
510   CEIL_W_S = ((1U << 3) + 6),
511   FLOOR_W_S = ((1U << 3) + 7),
512   RECIP_S = ((2U << 3) + 5),
513   RSQRT_S = ((2U << 3) + 6),
514   CLASS_S = ((3U << 3) + 3),
515   CVT_D_S = ((4U << 3) + 1),
516   CVT_W_S = ((4U << 3) + 4),
517   CVT_L_S = ((4U << 3) + 5),
518   CVT_PS_S = ((4U << 3) + 6),
519 
520   // COP1 Encoding of Function Field When rs=D.
521   ADD_D = ((0U << 3) + 0),
522   SUB_D = ((0U << 3) + 1),
523   MUL_D = ((0U << 3) + 2),
524   DIV_D = ((0U << 3) + 3),
525   SQRT_D = ((0U << 3) + 4),
526   ABS_D = ((0U << 3) + 5),
527   MOV_D = ((0U << 3) + 6),
528   NEG_D = ((0U << 3) + 7),
529   ROUND_L_D = ((1U << 3) + 0),
530   TRUNC_L_D = ((1U << 3) + 1),
531   CEIL_L_D = ((1U << 3) + 2),
532   FLOOR_L_D = ((1U << 3) + 3),
533   ROUND_W_D = ((1U << 3) + 4),
534   TRUNC_W_D = ((1U << 3) + 5),
535   CEIL_W_D = ((1U << 3) + 6),
536   FLOOR_W_D = ((1U << 3) + 7),
537   RECIP_D = ((2U << 3) + 5),
538   RSQRT_D = ((2U << 3) + 6),
539   CLASS_D = ((3U << 3) + 3),
540   MIN = ((3U << 3) + 4),
541   MINA = ((3U << 3) + 5),
542   MAX = ((3U << 3) + 6),
543   MAXA = ((3U << 3) + 7),
544   CVT_S_D = ((4U << 3) + 0),
545   CVT_W_D = ((4U << 3) + 4),
546   CVT_L_D = ((4U << 3) + 5),
547   C_F_D = ((6U << 3) + 0),
548   C_UN_D = ((6U << 3) + 1),
549   C_EQ_D = ((6U << 3) + 2),
550   C_UEQ_D = ((6U << 3) + 3),
551   C_OLT_D = ((6U << 3) + 4),
552   C_ULT_D = ((6U << 3) + 5),
553   C_OLE_D = ((6U << 3) + 6),
554   C_ULE_D = ((6U << 3) + 7),
555 
556   // COP1 Encoding of Function Field When rs=W or L.
557   CVT_S_W = ((4U << 3) + 0),
558   CVT_D_W = ((4U << 3) + 1),
559   CVT_S_L = ((4U << 3) + 0),
560   CVT_D_L = ((4U << 3) + 1),
561   BC1EQZ = ((2U << 2) + 1) << 21,
562   BC1NEZ = ((3U << 2) + 1) << 21,
563   // COP1 CMP positive predicates Bit 5..4 = 00.
564   CMP_AF = ((0U << 3) + 0),
565   CMP_UN = ((0U << 3) + 1),
566   CMP_EQ = ((0U << 3) + 2),
567   CMP_UEQ = ((0U << 3) + 3),
568   CMP_LT = ((0U << 3) + 4),
569   CMP_ULT = ((0U << 3) + 5),
570   CMP_LE = ((0U << 3) + 6),
571   CMP_ULE = ((0U << 3) + 7),
572   CMP_SAF = ((1U << 3) + 0),
573   CMP_SUN = ((1U << 3) + 1),
574   CMP_SEQ = ((1U << 3) + 2),
575   CMP_SUEQ = ((1U << 3) + 3),
576   CMP_SSLT = ((1U << 3) + 4),
577   CMP_SSULT = ((1U << 3) + 5),
578   CMP_SLE = ((1U << 3) + 6),
579   CMP_SULE = ((1U << 3) + 7),
580   // COP1 CMP negative predicates Bit 5..4 = 01.
581   CMP_AT = ((2U << 3) + 0),  // Reserved, not implemented.
582   CMP_OR = ((2U << 3) + 1),
583   CMP_UNE = ((2U << 3) + 2),
584   CMP_NE = ((2U << 3) + 3),
585   CMP_UGE = ((2U << 3) + 4),  // Reserved, not implemented.
586   CMP_OGE = ((2U << 3) + 5),  // Reserved, not implemented.
587   CMP_UGT = ((2U << 3) + 6),  // Reserved, not implemented.
588   CMP_OGT = ((2U << 3) + 7),  // Reserved, not implemented.
589   CMP_SAT = ((3U << 3) + 0),  // Reserved, not implemented.
590   CMP_SOR = ((3U << 3) + 1),
591   CMP_SUNE = ((3U << 3) + 2),
592   CMP_SNE = ((3U << 3) + 3),
593   CMP_SUGE = ((3U << 3) + 4),  // Reserved, not implemented.
594   CMP_SOGE = ((3U << 3) + 5),  // Reserved, not implemented.
595   CMP_SUGT = ((3U << 3) + 6),  // Reserved, not implemented.
596   CMP_SOGT = ((3U << 3) + 7),  // Reserved, not implemented.
597 
598   SEL = ((2U << 3) + 0),
599   MOVZ_C = ((2U << 3) + 2),
600   MOVN_C = ((2U << 3) + 3),
601   SELEQZ_C = ((2U << 3) + 4),  // COP1 on FPR registers.
602   MOVF = ((2U << 3) + 1),      // Function field for MOVT.fmt and MOVF.fmt
603   SELNEZ_C = ((2U << 3) + 7),  // COP1 on FPR registers.
604   // COP1 Encoding of Function Field When rs=PS.
605   // COP1X Encoding of Function Field.
606   MADD_D = ((4U << 3) + 1),
607 
608   // PCREL Encoding of rt Field.
609   ADDIUPC = ((0U << 2) + 0),
610   LWPC = ((0U << 2) + 1),
611   AUIPC = ((3U << 3) + 6),
612   ALUIPC = ((3U << 3) + 7),
613 
614   // POP66 Encoding of rs Field.
615   JIC = ((0U << 5) + 0),
616 
617   // POP76 Encoding of rs Field.
618   JIALC = ((0U << 5) + 0),
619 
620   NULLSF = 0U
621 };
622 
623 
624 // ----- Emulated conditions.
625 // On MIPS we use this enum to abstract from conditional branch instructions.
626 // The 'U' prefix is used to specify unsigned comparisons.
627 // Opposite conditions must be paired as odd/even numbers
628 // because 'NegateCondition' function flips LSB to negate condition.
629 enum Condition {
630   // Any value < 0 is considered no_condition.
631   kNoCondition = -1,
632   overflow = 0,
633   no_overflow = 1,
634   Uless = 2,
635   Ugreater_equal = 3,
636   Uless_equal = 4,
637   Ugreater = 5,
638   equal = 6,
639   not_equal = 7,  // Unordered or Not Equal.
640   negative = 8,
641   positive = 9,
642   parity_even = 10,
643   parity_odd = 11,
644   less = 12,
645   greater_equal = 13,
646   less_equal = 14,
647   greater = 15,
648   ueq = 16,  // Unordered or Equal.
649   ogl = 17,  // Ordered and Not Equal.
650   cc_always = 18,
651 
652   // Aliases.
653   carry = Uless,
654   not_carry = Ugreater_equal,
655   zero = equal,
656   eq = equal,
657   not_zero = not_equal,
658   ne = not_equal,
659   nz = not_equal,
660   sign = negative,
661   not_sign = positive,
662   mi = negative,
663   pl = positive,
664   hi = Ugreater,
665   ls = Uless_equal,
666   ge = greater_equal,
667   lt = less,
668   gt = greater,
669   le = less_equal,
670   hs = Ugreater_equal,
671   lo = Uless,
672   al = cc_always,
673   ult = Uless,
674   uge = Ugreater_equal,
675   ule = Uless_equal,
676   ugt = Ugreater,
677   cc_default = kNoCondition
678 };
679 
680 
681 // Returns the equivalent of !cc.
682 // Negation of the default kNoCondition (-1) results in a non-default
683 // no_condition value (-2). As long as tests for no_condition check
684 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)685 inline Condition NegateCondition(Condition cc) {
686   DCHECK(cc != cc_always);
687   return static_cast<Condition>(cc ^ 1);
688 }
689 
690 
NegateFpuCondition(Condition cc)691 inline Condition NegateFpuCondition(Condition cc) {
692   DCHECK(cc != cc_always);
693   switch (cc) {
694     case ult:
695       return ge;
696     case ugt:
697       return le;
698     case uge:
699       return lt;
700     case ule:
701       return gt;
702     case lt:
703       return uge;
704     case gt:
705       return ule;
706     case ge:
707       return ult;
708     case le:
709       return ugt;
710     case eq:
711       return ne;
712     case ne:
713       return eq;
714     case ueq:
715       return ogl;
716     case ogl:
717       return ueq;
718     default:
719       return cc;
720   }
721 }
722 
723 
724 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)725 inline Condition CommuteCondition(Condition cc) {
726   switch (cc) {
727     case Uless:
728       return Ugreater;
729     case Ugreater:
730       return Uless;
731     case Ugreater_equal:
732       return Uless_equal;
733     case Uless_equal:
734       return Ugreater_equal;
735     case less:
736       return greater;
737     case greater:
738       return less;
739     case greater_equal:
740       return less_equal;
741     case less_equal:
742       return greater_equal;
743     default:
744       return cc;
745   }
746 }
747 
748 
749 // ----- Coprocessor conditions.
750 enum FPUCondition {
751   kNoFPUCondition = -1,
752 
753   F = 0x00,    // False.
754   UN = 0x01,   // Unordered.
755   EQ = 0x02,   // Equal.
756   UEQ = 0x03,  // Unordered or Equal.
757   OLT = 0x04,  // Ordered or Less Than, on Mips release < 6.
758   LT = 0x04,   // Ordered or Less Than, on Mips release >= 6.
759   ULT = 0x05,  // Unordered or Less Than.
760   OLE = 0x06,  // Ordered or Less Than or Equal, on Mips release < 6.
761   LE = 0x06,   // Ordered or Less Than or Equal, on Mips release >= 6.
762   ULE = 0x07,  // Unordered or Less Than or Equal.
763 
764   // Following constants are available on Mips release >= 6 only.
765   ORD = 0x11,  // Ordered, on Mips release >= 6.
766   UNE = 0x12,  // Not equal, on Mips release >= 6.
767   NE = 0x13,   // Ordered Greater Than or Less Than. on Mips >= 6 only.
768 };
769 
770 
771 // FPU rounding modes.
772 enum FPURoundingMode {
773   RN = 0 << 0,  // Round to Nearest.
774   RZ = 1 << 0,  // Round towards zero.
775   RP = 2 << 0,  // Round towards Plus Infinity.
776   RM = 3 << 0,  // Round towards Minus Infinity.
777 
778   // Aliases.
779   kRoundToNearest = RN,
780   kRoundToZero = RZ,
781   kRoundToPlusInf = RP,
782   kRoundToMinusInf = RM,
783 
784   mode_round = RN,
785   mode_ceil = RP,
786   mode_floor = RM,
787   mode_trunc = RZ
788 };
789 
790 const uint32_t kFPURoundingModeMask = 3 << 0;
791 
792 enum CheckForInexactConversion {
793   kCheckForInexactConversion,
794   kDontCheckForInexactConversion
795 };
796 
797 
798 // -----------------------------------------------------------------------------
799 // Hints.
800 
801 // Branch hints are not used on the MIPS.  They are defined so that they can
802 // appear in shared function signatures, but will be ignored in MIPS
803 // implementations.
804 enum Hint {
805   no_hint = 0
806 };
807 
808 
NegateHint(Hint hint)809 inline Hint NegateHint(Hint hint) {
810   return no_hint;
811 }
812 
813 
814 // -----------------------------------------------------------------------------
815 // Specific instructions, constants, and masks.
816 // These constants are declared in assembler-mips.cc, as they use named
817 // registers and other constants.
818 
819 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
820 // operations as post-increment of sp.
821 extern const Instr kPopInstruction;
822 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
823 extern const Instr kPushInstruction;
824 // sw(r, MemOperand(sp, 0))
825 extern const Instr kPushRegPattern;
826 // lw(r, MemOperand(sp, 0))
827 extern const Instr kPopRegPattern;
828 extern const Instr kLwRegFpOffsetPattern;
829 extern const Instr kSwRegFpOffsetPattern;
830 extern const Instr kLwRegFpNegOffsetPattern;
831 extern const Instr kSwRegFpNegOffsetPattern;
832 // A mask for the Rt register for push, pop, lw, sw instructions.
833 extern const Instr kRtMask;
834 extern const Instr kLwSwInstrTypeMask;
835 extern const Instr kLwSwInstrArgumentMask;
836 extern const Instr kLwSwOffsetMask;
837 
838 // Break 0xfffff, reserved for redirected real time call.
839 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
840 // A nop instruction. (Encoding of sll 0 0 0).
841 const Instr nopInstr = 0;
842 
OpcodeToBitNumber(Opcode opcode)843 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
844   return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
845 }
846 
847 
848 class Instruction {
849  public:
850   enum {
851     kInstrSize = 4,
852     kInstrSizeLog2 = 2,
853     // On MIPS PC cannot actually be directly accessed. We behave as if PC was
854     // always the value of the current instruction being executed.
855     kPCReadOffset = 0
856   };
857 
858   // Get the raw instruction bits.
InstructionBits()859   inline Instr InstructionBits() const {
860     return *reinterpret_cast<const Instr*>(this);
861   }
862 
863   // Set the raw instruction bits to value.
SetInstructionBits(Instr value)864   inline void SetInstructionBits(Instr value) {
865     *reinterpret_cast<Instr*>(this) = value;
866   }
867 
868   // Read one particular bit out of the instruction bits.
Bit(int nr)869   inline int Bit(int nr) const {
870     return (InstructionBits() >> nr) & 1;
871   }
872 
873   // Read a bit field out of the instruction bits.
Bits(int hi,int lo)874   inline int Bits(int hi, int lo) const {
875     return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
876   }
877 
878   // Instruction type.
879   enum Type {
880     kRegisterType,
881     kImmediateType,
882     kJumpType,
883     kUnsupported = -1
884   };
885 
886   enum TypeChecks { NORMAL, EXTRA };
887 
888 
889   static constexpr uint64_t kOpcodeImmediateTypeMask =
890       OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
891       OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
892       OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
893       OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
894       OpcodeToBitNumber(SLTI) | OpcodeToBitNumber(SLTIU) |
895       OpcodeToBitNumber(ANDI) | OpcodeToBitNumber(ORI) |
896       OpcodeToBitNumber(XORI) | OpcodeToBitNumber(LUI) |
897       OpcodeToBitNumber(BEQL) | OpcodeToBitNumber(BNEL) |
898       OpcodeToBitNumber(BLEZL) | OpcodeToBitNumber(BGTZL) |
899       OpcodeToBitNumber(POP66) | OpcodeToBitNumber(POP76) |
900       OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) | OpcodeToBitNumber(LWL) |
901       OpcodeToBitNumber(LW) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
902       OpcodeToBitNumber(LWR) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
903       OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SWR) |
904       OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
905       OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
906       OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(BC) |
907       OpcodeToBitNumber(BALC);
908 
909 #define FunctionFieldToBitNumber(function) (1ULL << function)
910 
911   static const uint64_t kFunctionFieldRegisterTypeMask =
912       FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
913       FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
914       FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(SRA) |
915       FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(SRLV) |
916       FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(LSA) |
917       FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
918       FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(MULTU) |
919       FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DIVU) |
920       FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(ADDU) |
921       FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(SUBU) |
922       FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
923       FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
924       FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
925       FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
926       FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
927       FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
928       FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
929       FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
930       FunctionFieldToBitNumber(SELNEZ_S);
931 
932 
933   // Get the encoding type of the instruction.
934   inline Type InstructionType(TypeChecks checks = NORMAL) const;
935 
936   // Accessors for the different named fields used in the MIPS encoding.
OpcodeValue()937   inline Opcode OpcodeValue() const {
938     return static_cast<Opcode>(
939         Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
940   }
941 
RsValue()942   inline int RsValue() const {
943     DCHECK(InstructionType() == kRegisterType ||
944            InstructionType() == kImmediateType);
945     return Bits(kRsShift + kRsBits - 1, kRsShift);
946   }
947 
RtValue()948   inline int RtValue() const {
949     DCHECK(InstructionType() == kRegisterType ||
950            InstructionType() == kImmediateType);
951     return Bits(kRtShift + kRtBits - 1, kRtShift);
952   }
953 
RdValue()954   inline int RdValue() const {
955     DCHECK(InstructionType() == kRegisterType);
956     return Bits(kRdShift + kRdBits - 1, kRdShift);
957   }
958 
SaValue()959   inline int SaValue() const {
960     DCHECK(InstructionType() == kRegisterType);
961     return Bits(kSaShift + kSaBits - 1, kSaShift);
962   }
963 
LsaSaValue()964   inline int LsaSaValue() const {
965     DCHECK(InstructionType() == kRegisterType);
966     return Bits(kSaShift + kLsaSaBits - 1, kSaShift);
967   }
968 
FunctionValue()969   inline int FunctionValue() const {
970     DCHECK(InstructionType() == kRegisterType ||
971            InstructionType() == kImmediateType);
972     return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
973   }
974 
FdValue()975   inline int FdValue() const {
976     return Bits(kFdShift + kFdBits - 1, kFdShift);
977   }
978 
FsValue()979   inline int FsValue() const {
980     return Bits(kFsShift + kFsBits - 1, kFsShift);
981   }
982 
FtValue()983   inline int FtValue() const {
984     return Bits(kFtShift + kFtBits - 1, kFtShift);
985   }
986 
FrValue()987   inline int FrValue() const {
988     return Bits(kFrShift + kFrBits -1, kFrShift);
989   }
990 
Bp2Value()991   inline int Bp2Value() const {
992     DCHECK(InstructionType() == kRegisterType);
993     return Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
994   }
995 
996   // Float Compare condition code instruction bits.
FCccValue()997   inline int FCccValue() const {
998     return Bits(kFCccShift + kFCccBits - 1, kFCccShift);
999   }
1000 
1001   // Float Branch condition code instruction bits.
FBccValue()1002   inline int FBccValue() const {
1003     return Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1004   }
1005 
1006   // Float Branch true/false instruction bit.
FBtrueValue()1007   inline int FBtrueValue() const {
1008     return Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1009   }
1010 
1011   // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1012   inline Opcode OpcodeFieldRaw() const {
1013     return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1014   }
1015 
RsFieldRaw()1016   inline int RsFieldRaw() const {
1017     DCHECK(InstructionType() == kRegisterType ||
1018            InstructionType() == kImmediateType);
1019     return InstructionBits() & kRsFieldMask;
1020   }
1021 
1022   // Same as above function, but safe to call within InstructionType().
RsFieldRawNoAssert()1023   inline int RsFieldRawNoAssert() const {
1024     return InstructionBits() & kRsFieldMask;
1025   }
1026 
RtFieldRaw()1027   inline int RtFieldRaw() const {
1028     DCHECK(InstructionType() == kRegisterType ||
1029            InstructionType() == kImmediateType);
1030     return InstructionBits() & kRtFieldMask;
1031   }
1032 
RdFieldRaw()1033   inline int RdFieldRaw() const {
1034     DCHECK(InstructionType() == kRegisterType);
1035     return InstructionBits() & kRdFieldMask;
1036   }
1037 
SaFieldRaw()1038   inline int SaFieldRaw() const {
1039     return InstructionBits() & kSaFieldMask;
1040   }
1041 
FunctionFieldRaw()1042   inline int FunctionFieldRaw() const {
1043     return InstructionBits() & kFunctionFieldMask;
1044   }
1045 
1046   // Get the secondary field according to the opcode.
SecondaryValue()1047   inline int SecondaryValue() const {
1048     Opcode op = OpcodeFieldRaw();
1049     switch (op) {
1050       case SPECIAL:
1051       case SPECIAL2:
1052         return FunctionValue();
1053       case COP1:
1054         return RsValue();
1055       case REGIMM:
1056         return RtValue();
1057       default:
1058         return NULLSF;
1059     }
1060   }
1061 
ImmValue(int bits)1062   inline int32_t ImmValue(int bits) const {
1063     DCHECK(InstructionType() == kImmediateType);
1064     return Bits(bits - 1, 0);
1065   }
1066 
Imm16Value()1067   inline int32_t Imm16Value() const {
1068     DCHECK(InstructionType() == kImmediateType);
1069     return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1070   }
1071 
Imm18Value()1072   inline int32_t Imm18Value() const {
1073     DCHECK(InstructionType() == kImmediateType);
1074     return Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1075   }
1076 
Imm19Value()1077   inline int32_t Imm19Value() const {
1078     DCHECK(InstructionType() == kImmediateType);
1079     return Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1080   }
1081 
Imm21Value()1082   inline int32_t Imm21Value() const {
1083     DCHECK(InstructionType() == kImmediateType);
1084     return Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1085   }
1086 
Imm26Value()1087   inline int32_t Imm26Value() const {
1088     DCHECK((InstructionType() == kJumpType) ||
1089            (InstructionType() == kImmediateType));
1090     return Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1091   }
1092 
1093   static bool IsForbiddenAfterBranchInstr(Instr instr);
1094 
1095   // Say if the instruction should not be used in a branch delay slot or
1096   // immediately after a compact branch.
IsForbiddenAfterBranch()1097   inline bool IsForbiddenAfterBranch() const {
1098     return IsForbiddenAfterBranchInstr(InstructionBits());
1099   }
1100 
IsForbiddenInBranchDelay()1101   inline bool IsForbiddenInBranchDelay() const {
1102     return IsForbiddenAfterBranch();
1103   }
1104 
1105   // Say if the instruction 'links'. e.g. jal, bal.
1106   bool IsLinkingInstruction() const;
1107   // Say if the instruction is a break or a trap.
1108   bool IsTrap() const;
1109 
1110   // Instructions are read of out a code stream. The only way to get a
1111   // reference to an instruction is to convert a pointer. There is no way
1112   // to allocate or create instances of class Instruction.
1113   // Use the At(pc) function to create references to Instruction.
At(byte * pc)1114   static Instruction* At(byte* pc) {
1115     return reinterpret_cast<Instruction*>(pc);
1116   }
1117 
1118  private:
1119   // We need to prevent the creation of instances of class Instruction.
1120   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1121 };
1122 
1123 
1124 // -----------------------------------------------------------------------------
1125 // MIPS assembly various constants.
1126 
1127 // C/C++ argument slots size.
1128 const int kCArgSlotCount = 4;
1129 const int kCArgsSlotsSize = kCArgSlotCount * Instruction::kInstrSize;
1130 const int kInvalidStackOffset = -1;
1131 // JS argument slots size.
1132 const int kJSArgsSlotsSize = 0 * Instruction::kInstrSize;
1133 // Assembly builtins argument slots size.
1134 const int kBArgsSlotsSize = 0 * Instruction::kInstrSize;
1135 
1136 const int kBranchReturnOffset = 2 * Instruction::kInstrSize;
1137 
1138 
InstructionType(TypeChecks checks)1139 Instruction::Type Instruction::InstructionType(TypeChecks checks) const {
1140   if (checks == EXTRA) {
1141     if (OpcodeToBitNumber(OpcodeFieldRaw()) & kOpcodeImmediateTypeMask) {
1142       return kImmediateType;
1143     }
1144   }
1145   switch (OpcodeFieldRaw()) {
1146     case SPECIAL:
1147       if (checks == EXTRA) {
1148         if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1149             kFunctionFieldRegisterTypeMask) {
1150           return kRegisterType;
1151         } else {
1152           return kUnsupported;
1153         }
1154       } else {
1155         return kRegisterType;
1156       }
1157       break;
1158     case SPECIAL2:
1159       switch (FunctionFieldRaw()) {
1160         case MUL:
1161         case CLZ:
1162           return kRegisterType;
1163         default:
1164           return kUnsupported;
1165       }
1166       break;
1167     case SPECIAL3:
1168       switch (FunctionFieldRaw()) {
1169         case INS:
1170         case EXT:
1171           return kRegisterType;
1172         case BSHFL: {
1173           int sa = SaFieldRaw() >> kSaShift;
1174           switch (sa) {
1175             case BITSWAP:
1176               return kRegisterType;
1177             case WSBH:
1178             case SEB:
1179             case SEH:
1180               return kUnsupported;
1181           }
1182           sa >>= kBp2Bits;
1183           switch (sa) {
1184             case ALIGN:
1185               return kRegisterType;
1186             default:
1187               return kUnsupported;
1188           }
1189         }
1190         default:
1191           return kUnsupported;
1192       }
1193       break;
1194     case COP1:  // Coprocessor instructions.
1195       switch (RsFieldRawNoAssert()) {
1196         case BC1:  // Branch on coprocessor condition.
1197         case BC1EQZ:
1198         case BC1NEZ:
1199           return kImmediateType;
1200         default:
1201           return kRegisterType;
1202       }
1203       break;
1204     case COP1X:
1205       return kRegisterType;
1206 
1207     // 26 bits immediate type instructions. e.g.: j imm26.
1208     case J:
1209     case JAL:
1210       return kJumpType;
1211 
1212     default:
1213       if (checks == NORMAL) {
1214         return kImmediateType;
1215       } else {
1216         return kUnsupported;
1217       }
1218   }
1219 }
1220 
1221 #undef OpcodeToBitNumber
1222 #undef FunctionFieldToBitNumber
1223 }  // namespace internal
1224 }  // namespace v8
1225 
1226 #endif    // #ifndef V8_MIPS_CONSTANTS_H_
1227