Home
last modified time | relevance | path

Searched refs:polynomial (Results 1 – 25 of 30) sorted by relevance

12

/external/ceres-solver/internal/ceres/
Dpolynomial.cc102 void BuildCompanionMatrix(const Vector& polynomial, in BuildCompanionMatrix() argument
107 const int degree = polynomial.size() - 1; in BuildCompanionMatrix()
112 companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree); in BuildCompanionMatrix()
124 void FindLinearPolynomialRoots(const Vector& polynomial, in FindLinearPolynomialRoots() argument
127 CHECK_EQ(polynomial.size(), 2); in FindLinearPolynomialRoots()
130 (*real)(0) = -polynomial(1) / polynomial(0); in FindLinearPolynomialRoots()
138 void FindQuadraticPolynomialRoots(const Vector& polynomial, in FindQuadraticPolynomialRoots() argument
141 CHECK_EQ(polynomial.size(), 3); in FindQuadraticPolynomialRoots()
142 const double a = polynomial(0); in FindQuadraticPolynomialRoots()
143 const double b = polynomial(1); in FindQuadraticPolynomialRoots()
[all …]
Dpolynomial_test.cc225 Vector polynomial(1); in TEST() local
226 polynomial(0) = 1.0; in TEST()
227 const Vector derivative = DifferentiatePolynomial(polynomial); in TEST()
234 Vector polynomial(3); in TEST() local
235 polynomial(0) = 1.0; in TEST()
236 polynomial(1) = 2.0; in TEST()
237 polynomial(2) = 3.0; in TEST()
239 const Vector derivative = DifferentiatePolynomial(polynomial); in TEST()
247 Vector polynomial(1); in TEST() local
248 polynomial(0) = 1.0; in TEST()
[all …]
Dpolynomial.h49 inline double EvaluatePolynomial(const Vector& polynomial, double x) { in EvaluatePolynomial() argument
51 for (int i = 0; i < polynomial.size(); ++i) { in EvaluatePolynomial()
52 v = v * x + polynomial(i); in EvaluatePolynomial()
66 bool FindPolynomialRoots(const Vector& polynomial,
72 Vector DifferentiatePolynomial(const Vector& polynomial);
80 void MinimizePolynomial(const Vector& polynomial,
Ddogleg_strategy.cc426 Vector polynomial(5); in MakePolynomialForBoundaryConstrainedProblem() local
427 polynomial(0) = r2; in MakePolynomialForBoundaryConstrainedProblem()
428 polynomial(1) = 2.0 * r2 * trB; in MakePolynomialForBoundaryConstrainedProblem()
429 polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm(); in MakePolynomialForBoundaryConstrainedProblem()
430 polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_ in MakePolynomialForBoundaryConstrainedProblem()
432 polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm(); in MakePolynomialForBoundaryConstrainedProblem()
434 return polynomial; in MakePolynomialForBoundaryConstrainedProblem()
478 const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem(); in FindMinimumOnTrustRegionBoundary() local
482 if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) { in FindMinimumOnTrustRegionBoundary()
DCMakeLists.txt85 polynomial.cc
269 CERES_TEST(polynomial)
/external/eigen/unsupported/doc/examples/
DPolynomialUtils1.cpp11 Eigen::Matrix<double,5,1> polynomial; in main() local
12 roots_to_monicPolynomial( roots, polynomial ); in main()
14 for( int i=0; i<4; ++i ){ cout << polynomial[i] << ".x^" << i << "+ "; } in main()
15 cout << polynomial[4] << ".x^4" << endl; in main()
18 evaluation[i] = poly_eval( polynomial, roots[i] ); } in main()
DPolynomialSolver1.cpp14 Eigen::Matrix<double,6,1> polynomial; in main() local
15 roots_to_monicPolynomial( roots, polynomial ); in main()
17 PolynomialSolver<double,5> psolve( polynomial ); in main()
/external/eigen/unsupported/Eigen/
DPolynomials29 * \brief This module provides a QR based polynomial solver.
44 and a QR based polynomial solver.
48 polynomials, computing estimates about polynomials and next the QR based polynomial
68 evaluates a polynomial at a given point using stabilized H&ouml;rner method.
70 …The following code: first computes the coefficients in the monomial basis of the monic polynomial
71 then, it evaluates the computed polynomial, using a stabilized H&ouml;rner method.
81 …um bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
91 …(the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e.
98 \section QR polynomial solver class
99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio…
[all …]
/external/opencv3/modules/calib3d/src/
Dtriangulate.cpp190 cv::Ptr<CvMat> polynomial; in cvCorrectMatches() local
247 polynomial.reset(cvCreateMat(1,7,CV_64FC1)); in cvCorrectMatches()
332 cvSetReal2D(polynomial,0,6,( +b*c*c*f1*f1*f1*f1*a-a*a*d*f1*f1*f1*f1*c )); in cvCorrectMatches()
333 …cvSetReal2D(polynomial,0,5,( +f2*f2*f2*f2*c*c*c*c+2*a*a*f2*f2*c*c-a*a*d*d*f1*f1*f1*f1+b*b*c*c*f1*f… in cvCorrectMatches()
334 …cvSetReal2D(polynomial,0,4,( +4*a*a*a*b+2*b*c*c*f1*f1*a+4*f2*f2*f2*f2*c*c*c*d+4*a*b*f2*f2*c*c+4*a*… in cvCorrectMatches()
335 …cvSetReal2D(polynomial,0,3,( +6*a*a*b*b+6*f2*f2*f2*f2*c*c*d*d+2*b*b*f2*f2*c*c+2*a*a*f2*f2*d*d-2*a*… in cvCorrectMatches()
336 …cvSetReal2D(polynomial,0,2,( +4*a*b*b*b+4*b*b*f2*f2*c*d+4*f2*f2*f2*f2*c*d*d*d-a*a*d*c+b*c*c*a+4*a*… in cvCorrectMatches()
337 … cvSetReal2D(polynomial,0,1,( +f2*f2*f2*f2*d*d*d*d+b*b*b*b+2*b*b*f2*f2*d*d-a*a*d*d+b*b*c*c )); in cvCorrectMatches()
338 cvSetReal2D(polynomial,0,0,( -a*d*d*b+b*b*c*d )); in cvCorrectMatches()
342 cvSolvePoly(polynomial, result, 100, 20); in cvCorrectMatches()
/external/bouncycastle/bcprov/src/main/java/org/bouncycastle/math/field/
DGenericPolynomialExtensionField.java12 GenericPolynomialExtensionField(FiniteField subfield, Polynomial polynomial) in GenericPolynomialExtensionField() argument
15 this.minimalPolynomial = polynomial; in GenericPolynomialExtensionField()
/external/mesa3d/src/gallium/auxiliary/gallivm/
Df.cpp88 const boost::math::tools::polynomial<boost::math::ntl::RR>& n, in show_extra()
89 const boost::math::tools::polynomial<boost::math::ntl::RR>& d, in show_extra()
/external/chromium-trace/catapult/third_party/gsutil/third_party/crcmod/docs/source/
Dcrcmod.rst32 :param poly: The generator polynomial to use in calculating the CRC. The value
34 are the coefficients of the polynomial. The only polynomials allowed are
117 :param poly: The generator polynomial to use in calculating the CRC. The value
119 are the coefficients of the polynomial. The only polynomials allowed are
140 The size of the resulting digest in bytes. This depends on the width of the CRC polynomial.
Dcrcmod.predefined.rst15 individual polynomial, reflection, and initial and final-XOR parameters.
Dintro.rst17 generate a Python function for the selected polynomial or an instance of the
/external/webrtc/webrtc/modules/video_processing/test/
DcreateTable.m13 % is a second-order polynomial intersecting the points (0,0)
15 % 2. From r0 to r1, the compander is a third-order polynomial
/external/llvm/test/Transforms/LoopStrengthReduce/
Dquadradic-exit-value.ll6 ; The value of %r is dependent on a polynomial iteration expression.
/external/ceres-solver/jni/
DAndroid.mk156 $(CERES_SRC_PATH)/polynomial.cc \
/external/ceres-solver/
DAndroid.mk165 $(CERES_SRC_PATH)/polynomial.cc \
/external/chromium-trace/catapult/third_party/gsutil/third_party/crcmod/
DREADME13 generate a Python function for the selected polynomial or an instance of the
/external/llvm/test/Analysis/ScalarEvolution/
Dtrip-count10.ll78 ; Trip counts for non-polynomial iterations. It's theoretically possible
/external/llvm/lib/Target/Hexagon/
DHexagonIntrinsicsV4.td41 // Vector polynomial multiply halfwords
/external/llvm/include/llvm/IR/
DIntrinsicsAArch64.td208 // 64-bit polynomial multiply really returns an i128, which is not legal. Fake
/external/llvm/test/MC/Disassembler/Hexagon/
Dxtype_mpy.txt396 # Vector polynomial multiply halfwords
/external/opencv3/doc/
Dopencv.bib249 title = {Two-frame motion estimation based on polynomial expansion},
/external/libogg/doc/
Drfc3533.txt583 The generator polynomial is 0x04c11db7.

12