• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <functional>
18 
19 #include "arch/instruction_set.h"
20 #include "arch/arm/instruction_set_features_arm.h"
21 #include "arch/arm/registers_arm.h"
22 #include "arch/arm64/instruction_set_features_arm64.h"
23 #include "arch/mips/instruction_set_features_mips.h"
24 #include "arch/mips/registers_mips.h"
25 #include "arch/mips64/instruction_set_features_mips64.h"
26 #include "arch/mips64/registers_mips64.h"
27 #include "arch/x86/instruction_set_features_x86.h"
28 #include "arch/x86/registers_x86.h"
29 #include "arch/x86_64/instruction_set_features_x86_64.h"
30 #include "base/macros.h"
31 #include "builder.h"
32 #include "code_generator_arm.h"
33 #include "code_generator_arm64.h"
34 #include "code_generator_mips.h"
35 #include "code_generator_mips64.h"
36 #include "code_generator_x86.h"
37 #include "code_generator_x86_64.h"
38 #include "code_simulator_container.h"
39 #include "common_compiler_test.h"
40 #include "dex_file.h"
41 #include "dex_instruction.h"
42 #include "driver/compiler_options.h"
43 #include "graph_checker.h"
44 #include "nodes.h"
45 #include "optimizing_unit_test.h"
46 #include "prepare_for_register_allocation.h"
47 #include "register_allocator.h"
48 #include "ssa_liveness_analysis.h"
49 #include "utils.h"
50 #include "utils/arm/managed_register_arm.h"
51 #include "utils/mips/managed_register_mips.h"
52 #include "utils/mips64/managed_register_mips64.h"
53 #include "utils/x86/managed_register_x86.h"
54 
55 #include "gtest/gtest.h"
56 
57 namespace art {
58 
59 // Provide our own codegen, that ensures the C calling conventions
60 // are preserved. Currently, ART and C do not match as R4 is caller-save
61 // in ART, and callee-save in C. Alternatively, we could use or write
62 // the stub that saves and restores all registers, but it is easier
63 // to just overwrite the code generator.
64 class TestCodeGeneratorARM : public arm::CodeGeneratorARM {
65  public:
TestCodeGeneratorARM(HGraph * graph,const ArmInstructionSetFeatures & isa_features,const CompilerOptions & compiler_options)66   TestCodeGeneratorARM(HGraph* graph,
67                        const ArmInstructionSetFeatures& isa_features,
68                        const CompilerOptions& compiler_options)
69       : arm::CodeGeneratorARM(graph, isa_features, compiler_options) {
70     AddAllocatedRegister(Location::RegisterLocation(arm::R6));
71     AddAllocatedRegister(Location::RegisterLocation(arm::R7));
72   }
73 
SetupBlockedRegisters() const74   void SetupBlockedRegisters() const OVERRIDE {
75     arm::CodeGeneratorARM::SetupBlockedRegisters();
76     blocked_core_registers_[arm::R4] = true;
77     blocked_core_registers_[arm::R6] = false;
78     blocked_core_registers_[arm::R7] = false;
79     // Makes pair R6-R7 available.
80     blocked_register_pairs_[arm::R6_R7] = false;
81   }
82 };
83 
84 class TestCodeGeneratorX86 : public x86::CodeGeneratorX86 {
85  public:
TestCodeGeneratorX86(HGraph * graph,const X86InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options)86   TestCodeGeneratorX86(HGraph* graph,
87                        const X86InstructionSetFeatures& isa_features,
88                        const CompilerOptions& compiler_options)
89       : x86::CodeGeneratorX86(graph, isa_features, compiler_options) {
90     // Save edi, we need it for getting enough registers for long multiplication.
91     AddAllocatedRegister(Location::RegisterLocation(x86::EDI));
92   }
93 
SetupBlockedRegisters() const94   void SetupBlockedRegisters() const OVERRIDE {
95     x86::CodeGeneratorX86::SetupBlockedRegisters();
96     // ebx is a callee-save register in C, but caller-save for ART.
97     blocked_core_registers_[x86::EBX] = true;
98     blocked_register_pairs_[x86::EAX_EBX] = true;
99     blocked_register_pairs_[x86::EDX_EBX] = true;
100     blocked_register_pairs_[x86::ECX_EBX] = true;
101     blocked_register_pairs_[x86::EBX_EDI] = true;
102 
103     // Make edi available.
104     blocked_core_registers_[x86::EDI] = false;
105     blocked_register_pairs_[x86::ECX_EDI] = false;
106   }
107 };
108 
109 class InternalCodeAllocator : public CodeAllocator {
110  public:
InternalCodeAllocator()111   InternalCodeAllocator() : size_(0) { }
112 
Allocate(size_t size)113   virtual uint8_t* Allocate(size_t size) {
114     size_ = size;
115     memory_.reset(new uint8_t[size]);
116     return memory_.get();
117   }
118 
GetSize() const119   size_t GetSize() const { return size_; }
GetMemory() const120   uint8_t* GetMemory() const { return memory_.get(); }
121 
122  private:
123   size_t size_;
124   std::unique_ptr<uint8_t[]> memory_;
125 
126   DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator);
127 };
128 
CanExecuteOnHardware(InstructionSet target_isa)129 static bool CanExecuteOnHardware(InstructionSet target_isa) {
130   return (target_isa == kRuntimeISA)
131       // Handle the special case of ARM, with two instructions sets (ARM32 and Thumb-2).
132       || (kRuntimeISA == kArm && target_isa == kThumb2);
133 }
134 
CanExecute(InstructionSet target_isa)135 static bool CanExecute(InstructionSet target_isa) {
136   CodeSimulatorContainer simulator(target_isa);
137   return CanExecuteOnHardware(target_isa) || simulator.CanSimulate();
138 }
139 
140 template <typename Expected>
141 static Expected SimulatorExecute(CodeSimulator* simulator, Expected (*f)());
142 
143 template <>
SimulatorExecute(CodeSimulator * simulator,bool (* f)())144 bool SimulatorExecute<bool>(CodeSimulator* simulator, bool (*f)()) {
145   simulator->RunFrom(reinterpret_cast<intptr_t>(f));
146   return simulator->GetCReturnBool();
147 }
148 
149 template <>
SimulatorExecute(CodeSimulator * simulator,int32_t (* f)())150 int32_t SimulatorExecute<int32_t>(CodeSimulator* simulator, int32_t (*f)()) {
151   simulator->RunFrom(reinterpret_cast<intptr_t>(f));
152   return simulator->GetCReturnInt32();
153 }
154 
155 template <>
SimulatorExecute(CodeSimulator * simulator,int64_t (* f)())156 int64_t SimulatorExecute<int64_t>(CodeSimulator* simulator, int64_t (*f)()) {
157   simulator->RunFrom(reinterpret_cast<intptr_t>(f));
158   return simulator->GetCReturnInt64();
159 }
160 
161 template <typename Expected>
VerifyGeneratedCode(InstructionSet target_isa,Expected (* f)(),bool has_result,Expected expected)162 static void VerifyGeneratedCode(InstructionSet target_isa,
163                                 Expected (*f)(),
164                                 bool has_result,
165                                 Expected expected) {
166   ASSERT_TRUE(CanExecute(target_isa)) << "Target isa is not executable.";
167 
168   // Verify on simulator.
169   CodeSimulatorContainer simulator(target_isa);
170   if (simulator.CanSimulate()) {
171     Expected result = SimulatorExecute<Expected>(simulator.Get(), f);
172     if (has_result) {
173       ASSERT_EQ(expected, result);
174     }
175   }
176 
177   // Verify on hardware.
178   if (CanExecuteOnHardware(target_isa)) {
179     Expected result = f();
180     if (has_result) {
181       ASSERT_EQ(expected, result);
182     }
183   }
184 }
185 
186 template <typename Expected>
Run(const InternalCodeAllocator & allocator,const CodeGenerator & codegen,bool has_result,Expected expected)187 static void Run(const InternalCodeAllocator& allocator,
188                 const CodeGenerator& codegen,
189                 bool has_result,
190                 Expected expected) {
191   InstructionSet target_isa = codegen.GetInstructionSet();
192 
193   typedef Expected (*fptr)();
194   CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize());
195   fptr f = reinterpret_cast<fptr>(allocator.GetMemory());
196   if (target_isa == kThumb2) {
197     // For thumb we need the bottom bit set.
198     f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1);
199   }
200   VerifyGeneratedCode(target_isa, f, has_result, expected);
201 }
202 
203 template <typename Expected>
RunCode(CodeGenerator * codegen,HGraph * graph,std::function<void (HGraph *)> hook_before_codegen,bool has_result,Expected expected)204 static void RunCode(CodeGenerator* codegen,
205                     HGraph* graph,
206                     std::function<void(HGraph*)> hook_before_codegen,
207                     bool has_result,
208                     Expected expected) {
209   GraphChecker graph_checker(graph);
210   graph_checker.Run();
211   if (!graph_checker.IsValid()) {
212     for (auto error : graph_checker.GetErrors()) {
213       std::cout << error << std::endl;
214     }
215   }
216   ASSERT_TRUE(graph_checker.IsValid());
217 
218   SsaLivenessAnalysis liveness(graph, codegen);
219 
220   PrepareForRegisterAllocation(graph).Run();
221   liveness.Analyze();
222   RegisterAllocator(graph->GetArena(), codegen, liveness).AllocateRegisters();
223   hook_before_codegen(graph);
224 
225   InternalCodeAllocator allocator;
226   codegen->Compile(&allocator);
227   Run(allocator, *codegen, has_result, expected);
228 }
229 
230 template <typename Expected>
RunCode(InstructionSet target_isa,HGraph * graph,std::function<void (HGraph *)> hook_before_codegen,bool has_result,Expected expected)231 static void RunCode(InstructionSet target_isa,
232                     HGraph* graph,
233                     std::function<void(HGraph*)> hook_before_codegen,
234                     bool has_result,
235                     Expected expected) {
236   CompilerOptions compiler_options;
237   if (target_isa == kArm || target_isa == kThumb2) {
238     std::unique_ptr<const ArmInstructionSetFeatures> features_arm(
239         ArmInstructionSetFeatures::FromCppDefines());
240     TestCodeGeneratorARM codegenARM(graph, *features_arm.get(), compiler_options);
241     RunCode(&codegenARM, graph, hook_before_codegen, has_result, expected);
242   } else if (target_isa == kArm64) {
243     std::unique_ptr<const Arm64InstructionSetFeatures> features_arm64(
244         Arm64InstructionSetFeatures::FromCppDefines());
245     arm64::CodeGeneratorARM64 codegenARM64(graph, *features_arm64.get(), compiler_options);
246     RunCode(&codegenARM64, graph, hook_before_codegen, has_result, expected);
247   } else if (target_isa == kX86) {
248     std::unique_ptr<const X86InstructionSetFeatures> features_x86(
249         X86InstructionSetFeatures::FromCppDefines());
250     x86::CodeGeneratorX86 codegenX86(graph, *features_x86.get(), compiler_options);
251     RunCode(&codegenX86, graph, hook_before_codegen, has_result, expected);
252   } else if (target_isa == kX86_64) {
253     std::unique_ptr<const X86_64InstructionSetFeatures> features_x86_64(
254         X86_64InstructionSetFeatures::FromCppDefines());
255     x86_64::CodeGeneratorX86_64 codegenX86_64(graph, *features_x86_64.get(), compiler_options);
256     RunCode(&codegenX86_64, graph, hook_before_codegen, has_result, expected);
257   } else if (target_isa == kMips) {
258     std::unique_ptr<const MipsInstructionSetFeatures> features_mips(
259         MipsInstructionSetFeatures::FromCppDefines());
260     mips::CodeGeneratorMIPS codegenMIPS(graph, *features_mips.get(), compiler_options);
261     RunCode(&codegenMIPS, graph, hook_before_codegen, has_result, expected);
262   } else if (target_isa == kMips64) {
263     std::unique_ptr<const Mips64InstructionSetFeatures> features_mips64(
264         Mips64InstructionSetFeatures::FromCppDefines());
265     mips64::CodeGeneratorMIPS64 codegenMIPS64(graph, *features_mips64.get(), compiler_options);
266     RunCode(&codegenMIPS64, graph, hook_before_codegen, has_result, expected);
267   }
268 }
269 
GetTargetISAs()270 static ::std::vector<InstructionSet> GetTargetISAs() {
271   ::std::vector<InstructionSet> v;
272   // Add all ISAs that are executable on hardware or on simulator.
273   const ::std::vector<InstructionSet> executable_isa_candidates = {
274     kArm,
275     kArm64,
276     kThumb2,
277     kX86,
278     kX86_64,
279     kMips,
280     kMips64
281   };
282 
283   for (auto target_isa : executable_isa_candidates) {
284     if (CanExecute(target_isa)) {
285       v.push_back(target_isa);
286     }
287   }
288 
289   return v;
290 }
291 
TestCode(const uint16_t * data,bool has_result=false,int32_t expected=0)292 static void TestCode(const uint16_t* data,
293                      bool has_result = false,
294                      int32_t expected = 0) {
295   for (InstructionSet target_isa : GetTargetISAs()) {
296     ArenaPool pool;
297     ArenaAllocator arena(&pool);
298     HGraph* graph = CreateCFG(&arena, data);
299     // Remove suspend checks, they cannot be executed in this context.
300     RemoveSuspendChecks(graph);
301     RunCode(target_isa, graph, [](HGraph*) {}, has_result, expected);
302   }
303 }
304 
TestCodeLong(const uint16_t * data,bool has_result,int64_t expected)305 static void TestCodeLong(const uint16_t* data,
306                          bool has_result,
307                          int64_t expected) {
308   for (InstructionSet target_isa : GetTargetISAs()) {
309     ArenaPool pool;
310     ArenaAllocator arena(&pool);
311     HGraph* graph = CreateCFG(&arena, data, Primitive::kPrimLong);
312     // Remove suspend checks, they cannot be executed in this context.
313     RemoveSuspendChecks(graph);
314     RunCode(target_isa, graph, [](HGraph*) {}, has_result, expected);
315   }
316 }
317 
318 class CodegenTest : public CommonCompilerTest {};
319 
TEST_F(CodegenTest,ReturnVoid)320 TEST_F(CodegenTest, ReturnVoid) {
321   const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID);
322   TestCode(data);
323 }
324 
TEST_F(CodegenTest,CFG1)325 TEST_F(CodegenTest, CFG1) {
326   const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
327     Instruction::GOTO | 0x100,
328     Instruction::RETURN_VOID);
329 
330   TestCode(data);
331 }
332 
TEST_F(CodegenTest,CFG2)333 TEST_F(CodegenTest, CFG2) {
334   const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
335     Instruction::GOTO | 0x100,
336     Instruction::GOTO | 0x100,
337     Instruction::RETURN_VOID);
338 
339   TestCode(data);
340 }
341 
TEST_F(CodegenTest,CFG3)342 TEST_F(CodegenTest, CFG3) {
343   const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM(
344     Instruction::GOTO | 0x200,
345     Instruction::RETURN_VOID,
346     Instruction::GOTO | 0xFF00);
347 
348   TestCode(data1);
349 
350   const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM(
351     Instruction::GOTO_16, 3,
352     Instruction::RETURN_VOID,
353     Instruction::GOTO_16, 0xFFFF);
354 
355   TestCode(data2);
356 
357   const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM(
358     Instruction::GOTO_32, 4, 0,
359     Instruction::RETURN_VOID,
360     Instruction::GOTO_32, 0xFFFF, 0xFFFF);
361 
362   TestCode(data3);
363 }
364 
TEST_F(CodegenTest,CFG4)365 TEST_F(CodegenTest, CFG4) {
366   const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
367     Instruction::RETURN_VOID,
368     Instruction::GOTO | 0x100,
369     Instruction::GOTO | 0xFE00);
370 
371   TestCode(data);
372 }
373 
TEST_F(CodegenTest,CFG5)374 TEST_F(CodegenTest, CFG5) {
375   const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
376     Instruction::CONST_4 | 0 | 0,
377     Instruction::IF_EQ, 3,
378     Instruction::GOTO | 0x100,
379     Instruction::RETURN_VOID);
380 
381   TestCode(data);
382 }
383 
TEST_F(CodegenTest,IntConstant)384 TEST_F(CodegenTest, IntConstant) {
385   const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
386     Instruction::CONST_4 | 0 | 0,
387     Instruction::RETURN_VOID);
388 
389   TestCode(data);
390 }
391 
TEST_F(CodegenTest,Return1)392 TEST_F(CodegenTest, Return1) {
393   const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
394     Instruction::CONST_4 | 0 | 0,
395     Instruction::RETURN | 0);
396 
397   TestCode(data, true, 0);
398 }
399 
TEST_F(CodegenTest,Return2)400 TEST_F(CodegenTest, Return2) {
401   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
402     Instruction::CONST_4 | 0 | 0,
403     Instruction::CONST_4 | 0 | 1 << 8,
404     Instruction::RETURN | 1 << 8);
405 
406   TestCode(data, true, 0);
407 }
408 
TEST_F(CodegenTest,Return3)409 TEST_F(CodegenTest, Return3) {
410   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
411     Instruction::CONST_4 | 0 | 0,
412     Instruction::CONST_4 | 1 << 8 | 1 << 12,
413     Instruction::RETURN | 1 << 8);
414 
415   TestCode(data, true, 1);
416 }
417 
TEST_F(CodegenTest,ReturnIf1)418 TEST_F(CodegenTest, ReturnIf1) {
419   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
420     Instruction::CONST_4 | 0 | 0,
421     Instruction::CONST_4 | 1 << 8 | 1 << 12,
422     Instruction::IF_EQ, 3,
423     Instruction::RETURN | 0 << 8,
424     Instruction::RETURN | 1 << 8);
425 
426   TestCode(data, true, 1);
427 }
428 
TEST_F(CodegenTest,ReturnIf2)429 TEST_F(CodegenTest, ReturnIf2) {
430   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
431     Instruction::CONST_4 | 0 | 0,
432     Instruction::CONST_4 | 1 << 8 | 1 << 12,
433     Instruction::IF_EQ | 0 << 4 | 1 << 8, 3,
434     Instruction::RETURN | 0 << 8,
435     Instruction::RETURN | 1 << 8);
436 
437   TestCode(data, true, 0);
438 }
439 
440 // Exercise bit-wise (one's complement) not-int instruction.
441 #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
442 TEST_F(CodegenTest, TEST_NAME) {                        \
443   const int32_t input = INPUT;                          \
444   const uint16_t input_lo = Low16Bits(input);           \
445   const uint16_t input_hi = High16Bits(input);          \
446   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(      \
447       Instruction::CONST | 0 << 8, input_lo, input_hi,  \
448       Instruction::NOT_INT | 1 << 8 | 0 << 12 ,         \
449       Instruction::RETURN | 1 << 8);                    \
450                                                         \
451   TestCode(data, true, EXPECTED_OUTPUT);                \
452 }
453 
454 NOT_INT_TEST(ReturnNotIntMinus2, -2, 1)
455 NOT_INT_TEST(ReturnNotIntMinus1, -1, 0)
456 NOT_INT_TEST(ReturnNotInt0, 0, -1)
457 NOT_INT_TEST(ReturnNotInt1, 1, -2)
458 NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647)  // (2^31) - 1
459 NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646)  // (2^31) - 2
460 NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647)  // -(2^31) - 1
461 NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648)  // -(2^31)
462 
463 #undef NOT_INT_TEST
464 
465 // Exercise bit-wise (one's complement) not-long instruction.
466 #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT)                 \
467 TEST_F(CodegenTest, TEST_NAME) {                                         \
468   const int64_t input = INPUT;                                           \
469   const uint16_t word0 = Low16Bits(Low32Bits(input));   /* LSW. */       \
470   const uint16_t word1 = High16Bits(Low32Bits(input));                   \
471   const uint16_t word2 = Low16Bits(High32Bits(input));                   \
472   const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */       \
473   const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM(                      \
474       Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,      \
475       Instruction::NOT_LONG | 2 << 8 | 0 << 12,                          \
476       Instruction::RETURN_WIDE | 2 << 8);                                \
477                                                                          \
478   TestCodeLong(data, true, EXPECTED_OUTPUT);                             \
479 }
480 
481 NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1))
482 NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0))
483 NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1))
484 NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2))
485 
486 NOT_LONG_TEST(ReturnNotLongINT32_MIN,
487               INT64_C(-2147483648),
488               INT64_C(2147483647))  // (2^31) - 1
489 NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1,
490               INT64_C(-2147483647),
491               INT64_C(2147483646))  // (2^31) - 2
492 NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1,
493               INT64_C(2147483646),
494               INT64_C(-2147483647))  // -(2^31) - 1
495 NOT_LONG_TEST(ReturnNotLongINT32_MAX,
496               INT64_C(2147483647),
497               INT64_C(-2147483648))  // -(2^31)
498 
499 // Note that the C++ compiler won't accept
500 // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid
501 // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead.
502 NOT_LONG_TEST(ReturnNotINT64_MIN,
503               INT64_C(-9223372036854775807)-1,
504               INT64_C(9223372036854775807));  // (2^63) - 1
505 NOT_LONG_TEST(ReturnNotINT64_MINPlus1,
506               INT64_C(-9223372036854775807),
507               INT64_C(9223372036854775806));  // (2^63) - 2
508 NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1,
509               INT64_C(9223372036854775806),
510               INT64_C(-9223372036854775807));  // -(2^63) - 1
511 NOT_LONG_TEST(ReturnNotLongINT64_MAX,
512               INT64_C(9223372036854775807),
513               INT64_C(-9223372036854775807)-1);  // -(2^63)
514 
515 #undef NOT_LONG_TEST
516 
TEST_F(CodegenTest,IntToLongOfLongToInt)517 TEST_F(CodegenTest, IntToLongOfLongToInt) {
518   const int64_t input = INT64_C(4294967296);             // 2^32
519   const uint16_t word0 = Low16Bits(Low32Bits(input));    // LSW.
520   const uint16_t word1 = High16Bits(Low32Bits(input));
521   const uint16_t word2 = Low16Bits(High32Bits(input));
522   const uint16_t word3 = High16Bits(High32Bits(input));  // MSW.
523   const uint16_t data[] = FIVE_REGISTERS_CODE_ITEM(
524       Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,
525       Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0,
526       Instruction::ADD_LONG | 0, 0 << 8 | 2,             // v0 <- 2^32 + 1
527       Instruction::LONG_TO_INT | 4 << 8 | 0 << 12,
528       Instruction::INT_TO_LONG | 2 << 8 | 4 << 12,
529       Instruction::RETURN_WIDE | 2 << 8);
530 
531   TestCodeLong(data, true, 1);
532 }
533 
TEST_F(CodegenTest,ReturnAdd1)534 TEST_F(CodegenTest, ReturnAdd1) {
535   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
536     Instruction::CONST_4 | 3 << 12 | 0,
537     Instruction::CONST_4 | 4 << 12 | 1 << 8,
538     Instruction::ADD_INT, 1 << 8 | 0,
539     Instruction::RETURN);
540 
541   TestCode(data, true, 7);
542 }
543 
TEST_F(CodegenTest,ReturnAdd2)544 TEST_F(CodegenTest, ReturnAdd2) {
545   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
546     Instruction::CONST_4 | 3 << 12 | 0,
547     Instruction::CONST_4 | 4 << 12 | 1 << 8,
548     Instruction::ADD_INT_2ADDR | 1 << 12,
549     Instruction::RETURN);
550 
551   TestCode(data, true, 7);
552 }
553 
TEST_F(CodegenTest,ReturnAdd3)554 TEST_F(CodegenTest, ReturnAdd3) {
555   const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
556     Instruction::CONST_4 | 4 << 12 | 0 << 8,
557     Instruction::ADD_INT_LIT8, 3 << 8 | 0,
558     Instruction::RETURN);
559 
560   TestCode(data, true, 7);
561 }
562 
TEST_F(CodegenTest,ReturnAdd4)563 TEST_F(CodegenTest, ReturnAdd4) {
564   const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
565     Instruction::CONST_4 | 4 << 12 | 0 << 8,
566     Instruction::ADD_INT_LIT16, 3,
567     Instruction::RETURN);
568 
569   TestCode(data, true, 7);
570 }
571 
TEST_F(CodegenTest,ReturnMulInt)572 TEST_F(CodegenTest, ReturnMulInt) {
573   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
574     Instruction::CONST_4 | 3 << 12 | 0,
575     Instruction::CONST_4 | 4 << 12 | 1 << 8,
576     Instruction::MUL_INT, 1 << 8 | 0,
577     Instruction::RETURN);
578 
579   TestCode(data, true, 12);
580 }
581 
TEST_F(CodegenTest,ReturnMulInt2addr)582 TEST_F(CodegenTest, ReturnMulInt2addr) {
583   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
584     Instruction::CONST_4 | 3 << 12 | 0,
585     Instruction::CONST_4 | 4 << 12 | 1 << 8,
586     Instruction::MUL_INT_2ADDR | 1 << 12,
587     Instruction::RETURN);
588 
589   TestCode(data, true, 12);
590 }
591 
TEST_F(CodegenTest,ReturnMulLong)592 TEST_F(CodegenTest, ReturnMulLong) {
593   const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM(
594     Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0,
595     Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0,
596     Instruction::MUL_LONG, 2 << 8 | 0,
597     Instruction::RETURN_WIDE);
598 
599   TestCodeLong(data, true, 12);
600 }
601 
TEST_F(CodegenTest,ReturnMulLong2addr)602 TEST_F(CodegenTest, ReturnMulLong2addr) {
603   const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM(
604     Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0,
605     Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0,
606     Instruction::MUL_LONG_2ADDR | 2 << 12,
607     Instruction::RETURN_WIDE);
608 
609   TestCodeLong(data, true, 12);
610 }
611 
TEST_F(CodegenTest,ReturnMulIntLit8)612 TEST_F(CodegenTest, ReturnMulIntLit8) {
613   const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
614     Instruction::CONST_4 | 4 << 12 | 0 << 8,
615     Instruction::MUL_INT_LIT8, 3 << 8 | 0,
616     Instruction::RETURN);
617 
618   TestCode(data, true, 12);
619 }
620 
TEST_F(CodegenTest,ReturnMulIntLit16)621 TEST_F(CodegenTest, ReturnMulIntLit16) {
622   const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
623     Instruction::CONST_4 | 4 << 12 | 0 << 8,
624     Instruction::MUL_INT_LIT16, 3,
625     Instruction::RETURN);
626 
627   TestCode(data, true, 12);
628 }
629 
TEST_F(CodegenTest,NonMaterializedCondition)630 TEST_F(CodegenTest, NonMaterializedCondition) {
631   for (InstructionSet target_isa : GetTargetISAs()) {
632     ArenaPool pool;
633     ArenaAllocator allocator(&pool);
634 
635     HGraph* graph = CreateGraph(&allocator);
636 
637     HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
638     graph->AddBlock(entry);
639     graph->SetEntryBlock(entry);
640     entry->AddInstruction(new (&allocator) HGoto());
641 
642     HBasicBlock* first_block = new (&allocator) HBasicBlock(graph);
643     graph->AddBlock(first_block);
644     entry->AddSuccessor(first_block);
645     HIntConstant* constant0 = graph->GetIntConstant(0);
646     HIntConstant* constant1 = graph->GetIntConstant(1);
647     HEqual* equal = new (&allocator) HEqual(constant0, constant0);
648     first_block->AddInstruction(equal);
649     first_block->AddInstruction(new (&allocator) HIf(equal));
650 
651     HBasicBlock* then_block = new (&allocator) HBasicBlock(graph);
652     HBasicBlock* else_block = new (&allocator) HBasicBlock(graph);
653     HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
654     graph->SetExitBlock(exit_block);
655 
656     graph->AddBlock(then_block);
657     graph->AddBlock(else_block);
658     graph->AddBlock(exit_block);
659     first_block->AddSuccessor(then_block);
660     first_block->AddSuccessor(else_block);
661     then_block->AddSuccessor(exit_block);
662     else_block->AddSuccessor(exit_block);
663 
664     exit_block->AddInstruction(new (&allocator) HExit());
665     then_block->AddInstruction(new (&allocator) HReturn(constant0));
666     else_block->AddInstruction(new (&allocator) HReturn(constant1));
667 
668     ASSERT_FALSE(equal->IsEmittedAtUseSite());
669     graph->BuildDominatorTree();
670     PrepareForRegisterAllocation(graph).Run();
671     ASSERT_TRUE(equal->IsEmittedAtUseSite());
672 
673     auto hook_before_codegen = [](HGraph* graph_in) {
674       HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
675       HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
676       block->InsertInstructionBefore(move, block->GetLastInstruction());
677     };
678 
679     RunCode(target_isa, graph, hook_before_codegen, true, 0);
680   }
681 }
682 
TEST_F(CodegenTest,MaterializedCondition1)683 TEST_F(CodegenTest, MaterializedCondition1) {
684   for (InstructionSet target_isa : GetTargetISAs()) {
685     // Check that condition are materialized correctly. A materialized condition
686     // should yield `1` if it evaluated to true, and `0` otherwise.
687     // We force the materialization of comparisons for different combinations of
688 
689     // inputs and check the results.
690 
691     int lhs[] = {1, 2, -1, 2, 0xabc};
692     int rhs[] = {2, 1, 2, -1, 0xabc};
693 
694     for (size_t i = 0; i < arraysize(lhs); i++) {
695       ArenaPool pool;
696       ArenaAllocator allocator(&pool);
697       HGraph* graph = CreateGraph(&allocator);
698 
699       HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
700       graph->AddBlock(entry_block);
701       graph->SetEntryBlock(entry_block);
702       entry_block->AddInstruction(new (&allocator) HGoto());
703       HBasicBlock* code_block = new (&allocator) HBasicBlock(graph);
704       graph->AddBlock(code_block);
705       HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
706       graph->AddBlock(exit_block);
707       exit_block->AddInstruction(new (&allocator) HExit());
708 
709       entry_block->AddSuccessor(code_block);
710       code_block->AddSuccessor(exit_block);
711       graph->SetExitBlock(exit_block);
712 
713       HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]);
714       HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]);
715       HLessThan cmp_lt(cst_lhs, cst_rhs);
716       code_block->AddInstruction(&cmp_lt);
717       HReturn ret(&cmp_lt);
718       code_block->AddInstruction(&ret);
719 
720       graph->BuildDominatorTree();
721       auto hook_before_codegen = [](HGraph* graph_in) {
722         HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
723         HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
724         block->InsertInstructionBefore(move, block->GetLastInstruction());
725       };
726       RunCode(target_isa, graph, hook_before_codegen, true, lhs[i] < rhs[i]);
727     }
728   }
729 }
730 
TEST_F(CodegenTest,MaterializedCondition2)731 TEST_F(CodegenTest, MaterializedCondition2) {
732   for (InstructionSet target_isa : GetTargetISAs()) {
733     // Check that HIf correctly interprets a materialized condition.
734     // We force the materialization of comparisons for different combinations of
735     // inputs. An HIf takes the materialized combination as input and returns a
736     // value that we verify.
737 
738     int lhs[] = {1, 2, -1, 2, 0xabc};
739     int rhs[] = {2, 1, 2, -1, 0xabc};
740 
741 
742     for (size_t i = 0; i < arraysize(lhs); i++) {
743       ArenaPool pool;
744       ArenaAllocator allocator(&pool);
745       HGraph* graph = CreateGraph(&allocator);
746 
747       HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
748       graph->AddBlock(entry_block);
749       graph->SetEntryBlock(entry_block);
750       entry_block->AddInstruction(new (&allocator) HGoto());
751 
752       HBasicBlock* if_block = new (&allocator) HBasicBlock(graph);
753       graph->AddBlock(if_block);
754       HBasicBlock* if_true_block = new (&allocator) HBasicBlock(graph);
755       graph->AddBlock(if_true_block);
756       HBasicBlock* if_false_block = new (&allocator) HBasicBlock(graph);
757       graph->AddBlock(if_false_block);
758       HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
759       graph->AddBlock(exit_block);
760       exit_block->AddInstruction(new (&allocator) HExit());
761 
762       graph->SetEntryBlock(entry_block);
763       entry_block->AddSuccessor(if_block);
764       if_block->AddSuccessor(if_true_block);
765       if_block->AddSuccessor(if_false_block);
766       if_true_block->AddSuccessor(exit_block);
767       if_false_block->AddSuccessor(exit_block);
768       graph->SetExitBlock(exit_block);
769 
770       HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]);
771       HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]);
772       HLessThan cmp_lt(cst_lhs, cst_rhs);
773       if_block->AddInstruction(&cmp_lt);
774       // We insert a dummy instruction to separate the HIf from the HLessThan
775       // and force the materialization of the condition.
776       HMemoryBarrier force_materialization(MemBarrierKind::kAnyAny, 0);
777       if_block->AddInstruction(&force_materialization);
778       HIf if_lt(&cmp_lt);
779       if_block->AddInstruction(&if_lt);
780 
781       HIntConstant* cst_lt = graph->GetIntConstant(1);
782       HReturn ret_lt(cst_lt);
783       if_true_block->AddInstruction(&ret_lt);
784       HIntConstant* cst_ge = graph->GetIntConstant(0);
785       HReturn ret_ge(cst_ge);
786       if_false_block->AddInstruction(&ret_ge);
787 
788       graph->BuildDominatorTree();
789       auto hook_before_codegen = [](HGraph* graph_in) {
790         HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
791         HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
792         block->InsertInstructionBefore(move, block->GetLastInstruction());
793       };
794       RunCode(target_isa, graph, hook_before_codegen, true, lhs[i] < rhs[i]);
795     }
796   }
797 }
798 
TEST_F(CodegenTest,ReturnDivIntLit8)799 TEST_F(CodegenTest, ReturnDivIntLit8) {
800   const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
801     Instruction::CONST_4 | 4 << 12 | 0 << 8,
802     Instruction::DIV_INT_LIT8, 3 << 8 | 0,
803     Instruction::RETURN);
804 
805   TestCode(data, true, 1);
806 }
807 
TEST_F(CodegenTest,ReturnDivInt2Addr)808 TEST_F(CodegenTest, ReturnDivInt2Addr) {
809   const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
810     Instruction::CONST_4 | 4 << 12 | 0,
811     Instruction::CONST_4 | 2 << 12 | 1 << 8,
812     Instruction::DIV_INT_2ADDR | 1 << 12,
813     Instruction::RETURN);
814 
815   TestCode(data, true, 2);
816 }
817 
818 // Helper method.
TestComparison(IfCondition condition,int64_t i,int64_t j,Primitive::Type type,const InstructionSet target_isa)819 static void TestComparison(IfCondition condition,
820                            int64_t i,
821                            int64_t j,
822                            Primitive::Type type,
823                            const InstructionSet target_isa) {
824   ArenaPool pool;
825   ArenaAllocator allocator(&pool);
826   HGraph* graph = CreateGraph(&allocator);
827 
828   HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
829   graph->AddBlock(entry_block);
830   graph->SetEntryBlock(entry_block);
831   entry_block->AddInstruction(new (&allocator) HGoto());
832 
833   HBasicBlock* block = new (&allocator) HBasicBlock(graph);
834   graph->AddBlock(block);
835 
836   HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
837   graph->AddBlock(exit_block);
838   graph->SetExitBlock(exit_block);
839   exit_block->AddInstruction(new (&allocator) HExit());
840 
841   entry_block->AddSuccessor(block);
842   block->AddSuccessor(exit_block);
843 
844   HInstruction* op1;
845   HInstruction* op2;
846   if (type == Primitive::kPrimInt) {
847     op1 = graph->GetIntConstant(i);
848     op2 = graph->GetIntConstant(j);
849   } else {
850     DCHECK_EQ(type, Primitive::kPrimLong);
851     op1 = graph->GetLongConstant(i);
852     op2 = graph->GetLongConstant(j);
853   }
854 
855   HInstruction* comparison = nullptr;
856   bool expected_result = false;
857   const uint64_t x = i;
858   const uint64_t y = j;
859   switch (condition) {
860     case kCondEQ:
861       comparison = new (&allocator) HEqual(op1, op2);
862       expected_result = (i == j);
863       break;
864     case kCondNE:
865       comparison = new (&allocator) HNotEqual(op1, op2);
866       expected_result = (i != j);
867       break;
868     case kCondLT:
869       comparison = new (&allocator) HLessThan(op1, op2);
870       expected_result = (i < j);
871       break;
872     case kCondLE:
873       comparison = new (&allocator) HLessThanOrEqual(op1, op2);
874       expected_result = (i <= j);
875       break;
876     case kCondGT:
877       comparison = new (&allocator) HGreaterThan(op1, op2);
878       expected_result = (i > j);
879       break;
880     case kCondGE:
881       comparison = new (&allocator) HGreaterThanOrEqual(op1, op2);
882       expected_result = (i >= j);
883       break;
884     case kCondB:
885       comparison = new (&allocator) HBelow(op1, op2);
886       expected_result = (x < y);
887       break;
888     case kCondBE:
889       comparison = new (&allocator) HBelowOrEqual(op1, op2);
890       expected_result = (x <= y);
891       break;
892     case kCondA:
893       comparison = new (&allocator) HAbove(op1, op2);
894       expected_result = (x > y);
895       break;
896     case kCondAE:
897       comparison = new (&allocator) HAboveOrEqual(op1, op2);
898       expected_result = (x >= y);
899       break;
900   }
901   block->AddInstruction(comparison);
902   block->AddInstruction(new (&allocator) HReturn(comparison));
903 
904   graph->BuildDominatorTree();
905   RunCode(target_isa, graph, [](HGraph*) {}, true, expected_result);
906 }
907 
TEST_F(CodegenTest,ComparisonsInt)908 TEST_F(CodegenTest, ComparisonsInt) {
909   for (InstructionSet target_isa : GetTargetISAs()) {
910     for (int64_t i = -1; i <= 1; i++) {
911       for (int64_t j = -1; j <= 1; j++) {
912         TestComparison(kCondEQ, i, j, Primitive::kPrimInt, target_isa);
913         TestComparison(kCondNE, i, j, Primitive::kPrimInt, target_isa);
914         TestComparison(kCondLT, i, j, Primitive::kPrimInt, target_isa);
915         TestComparison(kCondLE, i, j, Primitive::kPrimInt, target_isa);
916         TestComparison(kCondGT, i, j, Primitive::kPrimInt, target_isa);
917         TestComparison(kCondGE, i, j, Primitive::kPrimInt, target_isa);
918         TestComparison(kCondB,  i, j, Primitive::kPrimInt, target_isa);
919         TestComparison(kCondBE, i, j, Primitive::kPrimInt, target_isa);
920         TestComparison(kCondA,  i, j, Primitive::kPrimInt, target_isa);
921         TestComparison(kCondAE, i, j, Primitive::kPrimInt, target_isa);
922       }
923     }
924   }
925 }
926 
TEST_F(CodegenTest,ComparisonsLong)927 TEST_F(CodegenTest, ComparisonsLong) {
928   // TODO: make MIPS work for long
929   if (kRuntimeISA == kMips || kRuntimeISA == kMips64) {
930     return;
931   }
932 
933   for (InstructionSet target_isa : GetTargetISAs()) {
934     if (target_isa == kMips || target_isa == kMips64) {
935       continue;
936     }
937 
938     for (int64_t i = -1; i <= 1; i++) {
939       for (int64_t j = -1; j <= 1; j++) {
940         TestComparison(kCondEQ, i, j, Primitive::kPrimLong, target_isa);
941         TestComparison(kCondNE, i, j, Primitive::kPrimLong, target_isa);
942         TestComparison(kCondLT, i, j, Primitive::kPrimLong, target_isa);
943         TestComparison(kCondLE, i, j, Primitive::kPrimLong, target_isa);
944         TestComparison(kCondGT, i, j, Primitive::kPrimLong, target_isa);
945         TestComparison(kCondGE, i, j, Primitive::kPrimLong, target_isa);
946         TestComparison(kCondB,  i, j, Primitive::kPrimLong, target_isa);
947         TestComparison(kCondBE, i, j, Primitive::kPrimLong, target_isa);
948         TestComparison(kCondA,  i, j, Primitive::kPrimLong, target_isa);
949         TestComparison(kCondAE, i, j, Primitive::kPrimLong, target_isa);
950       }
951     }
952   }
953 }
954 
955 }  // namespace art
956