• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "class_linker.h"
18 
19 #include <algorithm>
20 #include <deque>
21 #include <iostream>
22 #include <memory>
23 #include <queue>
24 #include <string>
25 #include <tuple>
26 #include <unistd.h>
27 #include <unordered_map>
28 #include <utility>
29 #include <vector>
30 
31 #include "art_field-inl.h"
32 #include "art_method-inl.h"
33 #include "base/arena_allocator.h"
34 #include "base/casts.h"
35 #include "base/logging.h"
36 #include "base/scoped_arena_containers.h"
37 #include "base/scoped_flock.h"
38 #include "base/stl_util.h"
39 #include "base/systrace.h"
40 #include "base/time_utils.h"
41 #include "base/unix_file/fd_file.h"
42 #include "base/value_object.h"
43 #include "class_linker-inl.h"
44 #include "class_table-inl.h"
45 #include "compiler_callbacks.h"
46 #include "debugger.h"
47 #include "dex_file-inl.h"
48 #include "entrypoints/entrypoint_utils.h"
49 #include "entrypoints/runtime_asm_entrypoints.h"
50 #include "experimental_flags.h"
51 #include "gc_root-inl.h"
52 #include "gc/accounting/card_table-inl.h"
53 #include "gc/accounting/heap_bitmap-inl.h"
54 #include "gc/heap.h"
55 #include "gc/scoped_gc_critical_section.h"
56 #include "gc/space/image_space.h"
57 #include "handle_scope-inl.h"
58 #include "image-inl.h"
59 #include "intern_table.h"
60 #include "interpreter/interpreter.h"
61 #include "jit/jit.h"
62 #include "jit/jit_code_cache.h"
63 #include "jit/offline_profiling_info.h"
64 #include "leb128.h"
65 #include "linear_alloc.h"
66 #include "mirror/class.h"
67 #include "mirror/class-inl.h"
68 #include "mirror/class_loader.h"
69 #include "mirror/dex_cache-inl.h"
70 #include "mirror/field.h"
71 #include "mirror/iftable-inl.h"
72 #include "mirror/method.h"
73 #include "mirror/object-inl.h"
74 #include "mirror/object_array-inl.h"
75 #include "mirror/proxy.h"
76 #include "mirror/reference-inl.h"
77 #include "mirror/stack_trace_element.h"
78 #include "mirror/string-inl.h"
79 #include "native/dalvik_system_DexFile.h"
80 #include "oat.h"
81 #include "oat_file.h"
82 #include "oat_file-inl.h"
83 #include "oat_file_assistant.h"
84 #include "oat_file_manager.h"
85 #include "object_lock.h"
86 #include "os.h"
87 #include "runtime.h"
88 #include "ScopedLocalRef.h"
89 #include "scoped_thread_state_change.h"
90 #include "thread-inl.h"
91 #include "trace.h"
92 #include "utils.h"
93 #include "utils/dex_cache_arrays_layout-inl.h"
94 #include "verifier/method_verifier.h"
95 #include "well_known_classes.h"
96 
97 namespace art {
98 
99 static constexpr bool kSanityCheckObjects = kIsDebugBuild;
100 static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild;
101 
102 static void ThrowNoClassDefFoundError(const char* fmt, ...)
103     __attribute__((__format__(__printf__, 1, 2)))
104     SHARED_REQUIRES(Locks::mutator_lock_);
ThrowNoClassDefFoundError(const char * fmt,...)105 static void ThrowNoClassDefFoundError(const char* fmt, ...) {
106   va_list args;
107   va_start(args, fmt);
108   Thread* self = Thread::Current();
109   self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args);
110   va_end(args);
111 }
112 
HasInitWithString(Thread * self,ClassLinker * class_linker,const char * descriptor)113 static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor)
114     SHARED_REQUIRES(Locks::mutator_lock_) {
115   ArtMethod* method = self->GetCurrentMethod(nullptr);
116   StackHandleScope<1> hs(self);
117   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method != nullptr ?
118       method->GetDeclaringClass()->GetClassLoader() : nullptr));
119   mirror::Class* exception_class = class_linker->FindClass(self, descriptor, class_loader);
120 
121   if (exception_class == nullptr) {
122     // No exc class ~ no <init>-with-string.
123     CHECK(self->IsExceptionPending());
124     self->ClearException();
125     return false;
126   }
127 
128   ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod(
129       "<init>", "(Ljava/lang/String;)V", class_linker->GetImagePointerSize());
130   return exception_init_method != nullptr;
131 }
132 
133 // Helper for ThrowEarlierClassFailure. Throws the stored error.
HandleEarlierVerifyError(Thread * self,ClassLinker * class_linker,mirror::Class * c)134 static void HandleEarlierVerifyError(Thread* self, ClassLinker* class_linker, mirror::Class* c)
135     SHARED_REQUIRES(Locks::mutator_lock_) {
136   mirror::Object* obj = c->GetVerifyError();
137   DCHECK(obj != nullptr);
138   self->AssertNoPendingException();
139   if (obj->IsClass()) {
140     // Previous error has been stored as class. Create a new exception of that type.
141 
142     // It's possible the exception doesn't have a <init>(String).
143     std::string temp;
144     const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
145 
146     if (HasInitWithString(self, class_linker, descriptor)) {
147       self->ThrowNewException(descriptor, PrettyDescriptor(c).c_str());
148     } else {
149       self->ThrowNewException(descriptor, nullptr);
150     }
151   } else {
152     // Previous error has been stored as an instance. Just rethrow.
153     mirror::Class* throwable_class =
154         self->DecodeJObject(WellKnownClasses::java_lang_Throwable)->AsClass();
155     mirror::Class* error_class = obj->GetClass();
156     CHECK(throwable_class->IsAssignableFrom(error_class));
157     self->SetException(obj->AsThrowable());
158   }
159   self->AssertPendingException();
160 }
161 
ThrowEarlierClassFailure(mirror::Class * c,bool wrap_in_no_class_def)162 void ClassLinker::ThrowEarlierClassFailure(mirror::Class* c, bool wrap_in_no_class_def) {
163   // The class failed to initialize on a previous attempt, so we want to throw
164   // a NoClassDefFoundError (v2 2.17.5).  The exception to this rule is if we
165   // failed in verification, in which case v2 5.4.1 says we need to re-throw
166   // the previous error.
167   Runtime* const runtime = Runtime::Current();
168   if (!runtime->IsAotCompiler()) {  // Give info if this occurs at runtime.
169     std::string extra;
170     if (c->GetVerifyError() != nullptr) {
171       mirror::Object* verify_error = c->GetVerifyError();
172       if (verify_error->IsClass()) {
173         extra = PrettyDescriptor(verify_error->AsClass());
174       } else {
175         extra = verify_error->AsThrowable()->Dump();
176       }
177     }
178     LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c) << ": " << extra;
179   }
180 
181   CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus();
182   Thread* self = Thread::Current();
183   if (runtime->IsAotCompiler()) {
184     // At compile time, accurate errors and NCDFE are disabled to speed compilation.
185     mirror::Throwable* pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError();
186     self->SetException(pre_allocated);
187   } else {
188     if (c->GetVerifyError() != nullptr) {
189       // Rethrow stored error.
190       HandleEarlierVerifyError(self, this, c);
191     }
192     if (c->GetVerifyError() == nullptr || wrap_in_no_class_def) {
193       // If there isn't a recorded earlier error, or this is a repeat throw from initialization,
194       // the top-level exception must be a NoClassDefFoundError. The potentially already pending
195       // exception will be a cause.
196       self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;",
197                                      PrettyDescriptor(c).c_str());
198     }
199   }
200 }
201 
VlogClassInitializationFailure(Handle<mirror::Class> klass)202 static void VlogClassInitializationFailure(Handle<mirror::Class> klass)
203     SHARED_REQUIRES(Locks::mutator_lock_) {
204   if (VLOG_IS_ON(class_linker)) {
205     std::string temp;
206     LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from "
207               << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump();
208   }
209 }
210 
WrapExceptionInInitializer(Handle<mirror::Class> klass)211 static void WrapExceptionInInitializer(Handle<mirror::Class> klass)
212     SHARED_REQUIRES(Locks::mutator_lock_) {
213   Thread* self = Thread::Current();
214   JNIEnv* env = self->GetJniEnv();
215 
216   ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
217   CHECK(cause.get() != nullptr);
218 
219   env->ExceptionClear();
220   bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
221   env->Throw(cause.get());
222 
223   // We only wrap non-Error exceptions; an Error can just be used as-is.
224   if (!is_error) {
225     self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr);
226   }
227   VlogClassInitializationFailure(klass);
228 }
229 
230 // Gap between two fields in object layout.
231 struct FieldGap {
232   uint32_t start_offset;  // The offset from the start of the object.
233   uint32_t size;  // The gap size of 1, 2, or 4 bytes.
234 };
235 struct FieldGapsComparator {
FieldGapsComparatorart::FieldGapsComparator236   explicit FieldGapsComparator() {
237   }
operator ()art::FieldGapsComparator238   bool operator() (const FieldGap& lhs, const FieldGap& rhs)
239       NO_THREAD_SAFETY_ANALYSIS {
240     // Sort by gap size, largest first. Secondary sort by starting offset.
241     // Note that the priority queue returns the largest element, so operator()
242     // should return true if lhs is less than rhs.
243     return lhs.size < rhs.size || (lhs.size == rhs.size && lhs.start_offset > rhs.start_offset);
244   }
245 };
246 typedef std::priority_queue<FieldGap, std::vector<FieldGap>, FieldGapsComparator> FieldGaps;
247 
248 // Adds largest aligned gaps to queue of gaps.
AddFieldGap(uint32_t gap_start,uint32_t gap_end,FieldGaps * gaps)249 static void AddFieldGap(uint32_t gap_start, uint32_t gap_end, FieldGaps* gaps) {
250   DCHECK(gaps != nullptr);
251 
252   uint32_t current_offset = gap_start;
253   while (current_offset != gap_end) {
254     size_t remaining = gap_end - current_offset;
255     if (remaining >= sizeof(uint32_t) && IsAligned<4>(current_offset)) {
256       gaps->push(FieldGap {current_offset, sizeof(uint32_t)});
257       current_offset += sizeof(uint32_t);
258     } else if (remaining >= sizeof(uint16_t) && IsAligned<2>(current_offset)) {
259       gaps->push(FieldGap {current_offset, sizeof(uint16_t)});
260       current_offset += sizeof(uint16_t);
261     } else {
262       gaps->push(FieldGap {current_offset, sizeof(uint8_t)});
263       current_offset += sizeof(uint8_t);
264     }
265     DCHECK_LE(current_offset, gap_end) << "Overran gap";
266   }
267 }
268 // Shuffle fields forward, making use of gaps whenever possible.
269 template<int n>
ShuffleForward(size_t * current_field_idx,MemberOffset * field_offset,std::deque<ArtField * > * grouped_and_sorted_fields,FieldGaps * gaps)270 static void ShuffleForward(size_t* current_field_idx,
271                            MemberOffset* field_offset,
272                            std::deque<ArtField*>* grouped_and_sorted_fields,
273                            FieldGaps* gaps)
274     SHARED_REQUIRES(Locks::mutator_lock_) {
275   DCHECK(current_field_idx != nullptr);
276   DCHECK(grouped_and_sorted_fields != nullptr);
277   DCHECK(gaps != nullptr);
278   DCHECK(field_offset != nullptr);
279 
280   DCHECK(IsPowerOfTwo(n));
281   while (!grouped_and_sorted_fields->empty()) {
282     ArtField* field = grouped_and_sorted_fields->front();
283     Primitive::Type type = field->GetTypeAsPrimitiveType();
284     if (Primitive::ComponentSize(type) < n) {
285       break;
286     }
287     if (!IsAligned<n>(field_offset->Uint32Value())) {
288       MemberOffset old_offset = *field_offset;
289       *field_offset = MemberOffset(RoundUp(field_offset->Uint32Value(), n));
290       AddFieldGap(old_offset.Uint32Value(), field_offset->Uint32Value(), gaps);
291     }
292     CHECK(type != Primitive::kPrimNot) << PrettyField(field);  // should be primitive types
293     grouped_and_sorted_fields->pop_front();
294     if (!gaps->empty() && gaps->top().size >= n) {
295       FieldGap gap = gaps->top();
296       gaps->pop();
297       DCHECK_ALIGNED(gap.start_offset, n);
298       field->SetOffset(MemberOffset(gap.start_offset));
299       if (gap.size > n) {
300         AddFieldGap(gap.start_offset + n, gap.start_offset + gap.size, gaps);
301       }
302     } else {
303       DCHECK_ALIGNED(field_offset->Uint32Value(), n);
304       field->SetOffset(*field_offset);
305       *field_offset = MemberOffset(field_offset->Uint32Value() + n);
306     }
307     ++(*current_field_idx);
308   }
309 }
310 
ClassLinker(InternTable * intern_table)311 ClassLinker::ClassLinker(InternTable* intern_table)
312     // dex_lock_ is recursive as it may be used in stack dumping.
313     : dex_lock_("ClassLinker dex lock", kDefaultMutexLevel),
314       dex_cache_boot_image_class_lookup_required_(false),
315       failed_dex_cache_class_lookups_(0),
316       class_roots_(nullptr),
317       array_iftable_(nullptr),
318       find_array_class_cache_next_victim_(0),
319       init_done_(false),
320       log_new_class_table_roots_(false),
321       intern_table_(intern_table),
322       quick_resolution_trampoline_(nullptr),
323       quick_imt_conflict_trampoline_(nullptr),
324       quick_generic_jni_trampoline_(nullptr),
325       quick_to_interpreter_bridge_trampoline_(nullptr),
326       image_pointer_size_(sizeof(void*)) {
327   CHECK(intern_table_ != nullptr);
328   static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_),
329                 "Array cache size wrong.");
330   std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
331 }
332 
CheckSystemClass(Thread * self,Handle<mirror::Class> c1,const char * descriptor)333 void ClassLinker::CheckSystemClass(Thread* self, Handle<mirror::Class> c1, const char* descriptor) {
334   mirror::Class* c2 = FindSystemClass(self, descriptor);
335   if (c2 == nullptr) {
336     LOG(FATAL) << "Could not find class " << descriptor;
337     UNREACHABLE();
338   }
339   if (c1.Get() != c2) {
340     std::ostringstream os1, os2;
341     c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail);
342     c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail);
343     LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor
344                << ". This is most likely the result of a broken build. Make sure that "
345                << "libcore and art projects match.\n\n"
346                << os1.str() << "\n\n" << os2.str();
347     UNREACHABLE();
348   }
349 }
350 
InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,std::string * error_msg)351 bool ClassLinker::InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,
352                                    std::string* error_msg) {
353   VLOG(startup) << "ClassLinker::Init";
354 
355   Thread* const self = Thread::Current();
356   Runtime* const runtime = Runtime::Current();
357   gc::Heap* const heap = runtime->GetHeap();
358 
359   CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it.";
360   CHECK(!init_done_);
361 
362   // Use the pointer size from the runtime since we are probably creating the image.
363   image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet());
364   if (!ValidPointerSize(image_pointer_size_)) {
365     *error_msg = StringPrintf("Invalid image pointer size: %zu", image_pointer_size_);
366     return false;
367   }
368 
369   // java_lang_Class comes first, it's needed for AllocClass
370   // The GC can't handle an object with a null class since we can't get the size of this object.
371   heap->IncrementDisableMovingGC(self);
372   StackHandleScope<64> hs(self);  // 64 is picked arbitrarily.
373   auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_);
374   Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>(
375       heap->AllocNonMovableObject<true>(self, nullptr, class_class_size, VoidFunctor()))));
376   CHECK(java_lang_Class.Get() != nullptr);
377   mirror::Class::SetClassClass(java_lang_Class.Get());
378   java_lang_Class->SetClass(java_lang_Class.Get());
379   if (kUseBakerOrBrooksReadBarrier) {
380     java_lang_Class->AssertReadBarrierPointer();
381   }
382   java_lang_Class->SetClassSize(class_class_size);
383   java_lang_Class->SetPrimitiveType(Primitive::kPrimNot);
384   heap->DecrementDisableMovingGC(self);
385   // AllocClass(mirror::Class*) can now be used
386 
387   // Class[] is used for reflection support.
388   auto class_array_class_size = mirror::ObjectArray<mirror::Class>::ClassSize(image_pointer_size_);
389   Handle<mirror::Class> class_array_class(hs.NewHandle(
390       AllocClass(self, java_lang_Class.Get(), class_array_class_size)));
391   class_array_class->SetComponentType(java_lang_Class.Get());
392 
393   // java_lang_Object comes next so that object_array_class can be created.
394   Handle<mirror::Class> java_lang_Object(hs.NewHandle(
395       AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_))));
396   CHECK(java_lang_Object.Get() != nullptr);
397   // backfill Object as the super class of Class.
398   java_lang_Class->SetSuperClass(java_lang_Object.Get());
399   mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusLoaded, self);
400 
401   java_lang_Object->SetObjectSize(sizeof(mirror::Object));
402   // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
403   // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
404   runtime->SetSentinel(heap->AllocNonMovableObject<true>(self,
405                                                          java_lang_Object.Get(),
406                                                          java_lang_Object->GetObjectSize(),
407                                                          VoidFunctor()));
408 
409   // Object[] next to hold class roots.
410   Handle<mirror::Class> object_array_class(hs.NewHandle(
411       AllocClass(self, java_lang_Class.Get(),
412                  mirror::ObjectArray<mirror::Object>::ClassSize(image_pointer_size_))));
413   object_array_class->SetComponentType(java_lang_Object.Get());
414 
415   // Setup the char (primitive) class to be used for char[].
416   Handle<mirror::Class> char_class(hs.NewHandle(
417       AllocClass(self, java_lang_Class.Get(),
418                  mirror::Class::PrimitiveClassSize(image_pointer_size_))));
419   // The primitive char class won't be initialized by
420   // InitializePrimitiveClass until line 459, but strings (and
421   // internal char arrays) will be allocated before that and the
422   // component size, which is computed from the primitive type, needs
423   // to be set here.
424   char_class->SetPrimitiveType(Primitive::kPrimChar);
425 
426   // Setup the char[] class to be used for String.
427   Handle<mirror::Class> char_array_class(hs.NewHandle(
428       AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
429   char_array_class->SetComponentType(char_class.Get());
430   mirror::CharArray::SetArrayClass(char_array_class.Get());
431 
432   // Setup String.
433   Handle<mirror::Class> java_lang_String(hs.NewHandle(
434       AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_))));
435   java_lang_String->SetStringClass();
436   mirror::String::SetClass(java_lang_String.Get());
437   mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusResolved, self);
438 
439   // Setup java.lang.ref.Reference.
440   Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle(
441       AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_))));
442   mirror::Reference::SetClass(java_lang_ref_Reference.Get());
443   java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize());
444   mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusResolved, self);
445 
446   // Create storage for root classes, save away our work so far (requires descriptors).
447   class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
448       mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(),
449                                                 kClassRootsMax));
450   CHECK(!class_roots_.IsNull());
451   SetClassRoot(kJavaLangClass, java_lang_Class.Get());
452   SetClassRoot(kJavaLangObject, java_lang_Object.Get());
453   SetClassRoot(kClassArrayClass, class_array_class.Get());
454   SetClassRoot(kObjectArrayClass, object_array_class.Get());
455   SetClassRoot(kCharArrayClass, char_array_class.Get());
456   SetClassRoot(kJavaLangString, java_lang_String.Get());
457   SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get());
458 
459   // Setup the primitive type classes.
460   SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean));
461   SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte));
462   SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort));
463   SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt));
464   SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong));
465   SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat));
466   SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble));
467   SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid));
468 
469   // Create array interface entries to populate once we can load system classes.
470   array_iftable_ = GcRoot<mirror::IfTable>(AllocIfTable(self, 2));
471 
472   // Create int array type for AllocDexCache (done in AppendToBootClassPath).
473   Handle<mirror::Class> int_array_class(hs.NewHandle(
474       AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
475   int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
476   mirror::IntArray::SetArrayClass(int_array_class.Get());
477   SetClassRoot(kIntArrayClass, int_array_class.Get());
478 
479   // Create long array type for AllocDexCache (done in AppendToBootClassPath).
480   Handle<mirror::Class> long_array_class(hs.NewHandle(
481       AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
482   long_array_class->SetComponentType(GetClassRoot(kPrimitiveLong));
483   mirror::LongArray::SetArrayClass(long_array_class.Get());
484   SetClassRoot(kLongArrayClass, long_array_class.Get());
485 
486   // now that these are registered, we can use AllocClass() and AllocObjectArray
487 
488   // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache.
489   Handle<mirror::Class> java_lang_DexCache(hs.NewHandle(
490       AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_))));
491   SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get());
492   java_lang_DexCache->SetDexCacheClass();
493   java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize());
494   mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusResolved, self);
495 
496   // Set up array classes for string, field, method
497   Handle<mirror::Class> object_array_string(hs.NewHandle(
498       AllocClass(self, java_lang_Class.Get(),
499                  mirror::ObjectArray<mirror::String>::ClassSize(image_pointer_size_))));
500   object_array_string->SetComponentType(java_lang_String.Get());
501   SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get());
502 
503   LinearAlloc* linear_alloc = runtime->GetLinearAlloc();
504   // Create runtime resolution and imt conflict methods.
505   runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
506   runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc));
507   runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc));
508 
509   // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create
510   // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses
511   // these roots.
512   if (boot_class_path.empty()) {
513     *error_msg = "Boot classpath is empty.";
514     return false;
515   }
516   for (auto& dex_file : boot_class_path) {
517     if (dex_file.get() == nullptr) {
518       *error_msg = "Null dex file.";
519       return false;
520     }
521     AppendToBootClassPath(self, *dex_file);
522     boot_dex_files_.push_back(std::move(dex_file));
523   }
524 
525   // now we can use FindSystemClass
526 
527   // run char class through InitializePrimitiveClass to finish init
528   InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar);
529   SetClassRoot(kPrimitiveChar, char_class.Get());  // needs descriptor
530 
531   // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that
532   // we do not need friend classes or a publicly exposed setter.
533   quick_generic_jni_trampoline_ = GetQuickGenericJniStub();
534   if (!runtime->IsAotCompiler()) {
535     // We need to set up the generic trampolines since we don't have an image.
536     quick_resolution_trampoline_ = GetQuickResolutionStub();
537     quick_imt_conflict_trampoline_ = GetQuickImtConflictStub();
538     quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge();
539   }
540 
541   // Object, String and DexCache need to be rerun through FindSystemClass to finish init
542   mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusNotReady, self);
543   CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;");
544   CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize());
545   mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusNotReady, self);
546   CheckSystemClass(self, java_lang_String, "Ljava/lang/String;");
547   mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusNotReady, self);
548   CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;");
549   CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize());
550 
551   // Setup the primitive array type classes - can't be done until Object has a vtable.
552   SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z"));
553   mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
554 
555   SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B"));
556   mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
557 
558   CheckSystemClass(self, char_array_class, "[C");
559 
560   SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S"));
561   mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
562 
563   CheckSystemClass(self, int_array_class, "[I");
564   CheckSystemClass(self, long_array_class, "[J");
565 
566   SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F"));
567   mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
568 
569   SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D"));
570   mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
571 
572   // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it
573   // in class_table_.
574   CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;");
575 
576   CheckSystemClass(self, class_array_class, "[Ljava/lang/Class;");
577   CheckSystemClass(self, object_array_class, "[Ljava/lang/Object;");
578 
579   // Setup the single, global copy of "iftable".
580   auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;"));
581   CHECK(java_lang_Cloneable.Get() != nullptr);
582   auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;"));
583   CHECK(java_io_Serializable.Get() != nullptr);
584   // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to
585   // crawl up and explicitly list all of the supers as well.
586   array_iftable_.Read()->SetInterface(0, java_lang_Cloneable.Get());
587   array_iftable_.Read()->SetInterface(1, java_io_Serializable.Get());
588 
589   // Sanity check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread
590   // suspension.
591   CHECK_EQ(java_lang_Cloneable.Get(),
592            mirror::Class::GetDirectInterface(self, class_array_class, 0));
593   CHECK_EQ(java_io_Serializable.Get(),
594            mirror::Class::GetDirectInterface(self, class_array_class, 1));
595   CHECK_EQ(java_lang_Cloneable.Get(),
596            mirror::Class::GetDirectInterface(self, object_array_class, 0));
597   CHECK_EQ(java_io_Serializable.Get(),
598            mirror::Class::GetDirectInterface(self, object_array_class, 1));
599 
600   CHECK_EQ(object_array_string.Get(),
601            FindSystemClass(self, GetClassRootDescriptor(kJavaLangStringArrayClass)));
602 
603   // End of special init trickery, all subsequent classes may be loaded via FindSystemClass.
604 
605   // Create java.lang.reflect.Proxy root.
606   SetClassRoot(kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;"));
607 
608   // Create java.lang.reflect.Field.class root.
609   auto* class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;");
610   CHECK(class_root != nullptr);
611   SetClassRoot(kJavaLangReflectField, class_root);
612   mirror::Field::SetClass(class_root);
613 
614   // Create java.lang.reflect.Field array root.
615   class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;");
616   CHECK(class_root != nullptr);
617   SetClassRoot(kJavaLangReflectFieldArrayClass, class_root);
618   mirror::Field::SetArrayClass(class_root);
619 
620   // Create java.lang.reflect.Constructor.class root and array root.
621   class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;");
622   CHECK(class_root != nullptr);
623   SetClassRoot(kJavaLangReflectConstructor, class_root);
624   mirror::Constructor::SetClass(class_root);
625   class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;");
626   CHECK(class_root != nullptr);
627   SetClassRoot(kJavaLangReflectConstructorArrayClass, class_root);
628   mirror::Constructor::SetArrayClass(class_root);
629 
630   // Create java.lang.reflect.Method.class root and array root.
631   class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;");
632   CHECK(class_root != nullptr);
633   SetClassRoot(kJavaLangReflectMethod, class_root);
634   mirror::Method::SetClass(class_root);
635   class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;");
636   CHECK(class_root != nullptr);
637   SetClassRoot(kJavaLangReflectMethodArrayClass, class_root);
638   mirror::Method::SetArrayClass(class_root);
639 
640   // java.lang.ref classes need to be specially flagged, but otherwise are normal classes
641   // finish initializing Reference class
642   mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusNotReady, self);
643   CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;");
644   CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize());
645   CHECK_EQ(java_lang_ref_Reference->GetClassSize(),
646            mirror::Reference::ClassSize(image_pointer_size_));
647   class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
648   CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
649   class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference);
650   class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;");
651   CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
652   class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference);
653   class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;");
654   CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
655   class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference);
656   class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;");
657   CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
658   class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference);
659 
660   // Setup the ClassLoader, verifying the object_size_.
661   class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;");
662   class_root->SetClassLoaderClass();
663   CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize());
664   SetClassRoot(kJavaLangClassLoader, class_root);
665 
666   // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
667   // java.lang.StackTraceElement as a convenience.
668   SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;"));
669   mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
670   SetClassRoot(kJavaLangClassNotFoundException,
671                FindSystemClass(self, "Ljava/lang/ClassNotFoundException;"));
672   SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;"));
673   SetClassRoot(kJavaLangStackTraceElementArrayClass,
674                FindSystemClass(self, "[Ljava/lang/StackTraceElement;"));
675   mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
676 
677   // Ensure void type is resolved in the core's dex cache so java.lang.Void is correctly
678   // initialized.
679   {
680     const DexFile& dex_file = java_lang_Object->GetDexFile();
681     const DexFile::TypeId* void_type_id = dex_file.FindTypeId("V");
682     CHECK(void_type_id != nullptr);
683     uint16_t void_type_idx = dex_file.GetIndexForTypeId(*void_type_id);
684     // Now we resolve void type so the dex cache contains it. We use java.lang.Object class
685     // as referrer so the used dex cache is core's one.
686     mirror::Class* resolved_type = ResolveType(dex_file, void_type_idx, java_lang_Object.Get());
687     CHECK_EQ(resolved_type, GetClassRoot(kPrimitiveVoid));
688     self->AssertNoPendingException();
689   }
690 
691   // Create conflict tables that depend on the class linker.
692   runtime->FixupConflictTables();
693 
694   FinishInit(self);
695 
696   VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
697 
698   return true;
699 }
700 
FinishInit(Thread * self)701 void ClassLinker::FinishInit(Thread* self) {
702   VLOG(startup) << "ClassLinker::FinishInit entering";
703 
704   // Let the heap know some key offsets into java.lang.ref instances
705   // Note: we hard code the field indexes here rather than using FindInstanceField
706   // as the types of the field can't be resolved prior to the runtime being
707   // fully initialized
708   mirror::Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference);
709   mirror::Class* java_lang_ref_FinalizerReference =
710       FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
711 
712   ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
713   CHECK_STREQ(pendingNext->GetName(), "pendingNext");
714   CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
715 
716   ArtField* queue = java_lang_ref_Reference->GetInstanceField(1);
717   CHECK_STREQ(queue->GetName(), "queue");
718   CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;");
719 
720   ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2);
721   CHECK_STREQ(queueNext->GetName(), "queueNext");
722   CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
723 
724   ArtField* referent = java_lang_ref_Reference->GetInstanceField(3);
725   CHECK_STREQ(referent->GetName(), "referent");
726   CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;");
727 
728   ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
729   CHECK_STREQ(zombie->GetName(), "zombie");
730   CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;");
731 
732   // ensure all class_roots_ are initialized
733   for (size_t i = 0; i < kClassRootsMax; i++) {
734     ClassRoot class_root = static_cast<ClassRoot>(i);
735     mirror::Class* klass = GetClassRoot(class_root);
736     CHECK(klass != nullptr);
737     DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr);
738     // note SetClassRoot does additional validation.
739     // if possible add new checks there to catch errors early
740   }
741 
742   CHECK(!array_iftable_.IsNull());
743 
744   // disable the slow paths in FindClass and CreatePrimitiveClass now
745   // that Object, Class, and Object[] are setup
746   init_done_ = true;
747 
748   VLOG(startup) << "ClassLinker::FinishInit exiting";
749 }
750 
RunRootClinits()751 void ClassLinker::RunRootClinits() {
752   Thread* self = Thread::Current();
753   for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) {
754     mirror::Class* c = GetClassRoot(ClassRoot(i));
755     if (!c->IsArrayClass() && !c->IsPrimitive()) {
756       StackHandleScope<1> hs(self);
757       Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i))));
758       EnsureInitialized(self, h_class, true, true);
759       self->AssertNoPendingException();
760     }
761   }
762 }
763 
SanityCheckArtMethod(ArtMethod * m,mirror::Class * expected_class,const std::vector<gc::space::ImageSpace * > & spaces)764 static void SanityCheckArtMethod(ArtMethod* m,
765                                  mirror::Class* expected_class,
766                                  const std::vector<gc::space::ImageSpace*>& spaces)
767     SHARED_REQUIRES(Locks::mutator_lock_) {
768   if (m->IsRuntimeMethod()) {
769     mirror::Class* declaring_class = m->GetDeclaringClassUnchecked();
770     CHECK(declaring_class == nullptr) << declaring_class << " " << PrettyMethod(m);
771   } else if (m->IsCopied()) {
772     CHECK(m->GetDeclaringClass() != nullptr) << PrettyMethod(m);
773   } else if (expected_class != nullptr) {
774     CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << PrettyMethod(m);
775   }
776   if (!spaces.empty()) {
777     bool contains = false;
778     for (gc::space::ImageSpace* space : spaces) {
779       auto& header = space->GetImageHeader();
780       size_t offset = reinterpret_cast<uint8_t*>(m) - space->Begin();
781 
782       const ImageSection& methods = header.GetMethodsSection();
783       contains = contains || methods.Contains(offset);
784 
785       const ImageSection& runtime_methods = header.GetRuntimeMethodsSection();
786       contains = contains || runtime_methods.Contains(offset);
787     }
788     CHECK(contains) << m << " not found";
789   }
790 }
791 
SanityCheckArtMethodPointerArray(mirror::PointerArray * arr,mirror::Class * expected_class,size_t pointer_size,const std::vector<gc::space::ImageSpace * > & spaces)792 static void SanityCheckArtMethodPointerArray(mirror::PointerArray* arr,
793                                              mirror::Class* expected_class,
794                                              size_t pointer_size,
795                                              const std::vector<gc::space::ImageSpace*>& spaces)
796     SHARED_REQUIRES(Locks::mutator_lock_) {
797   CHECK(arr != nullptr);
798   for (int32_t j = 0; j < arr->GetLength(); ++j) {
799     auto* method = arr->GetElementPtrSize<ArtMethod*>(j, pointer_size);
800     // expected_class == null means we are a dex cache.
801     if (expected_class != nullptr) {
802       CHECK(method != nullptr);
803     }
804     if (method != nullptr) {
805       SanityCheckArtMethod(method, expected_class, spaces);
806     }
807   }
808 }
809 
SanityCheckArtMethodPointerArray(ArtMethod ** arr,size_t size,size_t pointer_size,const std::vector<gc::space::ImageSpace * > & spaces)810 static void SanityCheckArtMethodPointerArray(ArtMethod** arr,
811                                              size_t size,
812                                              size_t pointer_size,
813                                              const std::vector<gc::space::ImageSpace*>& spaces)
814     SHARED_REQUIRES(Locks::mutator_lock_) {
815   CHECK_EQ(arr != nullptr, size != 0u);
816   if (arr != nullptr) {
817     bool contains = false;
818     for (auto space : spaces) {
819       auto offset = reinterpret_cast<uint8_t*>(arr) - space->Begin();
820       if (space->GetImageHeader().GetImageSection(
821           ImageHeader::kSectionDexCacheArrays).Contains(offset)) {
822         contains = true;
823         break;
824       }
825     }
826     CHECK(contains);
827   }
828   for (size_t j = 0; j < size; ++j) {
829     ArtMethod* method = mirror::DexCache::GetElementPtrSize(arr, j, pointer_size);
830     // expected_class == null means we are a dex cache.
831     if (method != nullptr) {
832       SanityCheckArtMethod(method, nullptr, spaces);
833     }
834   }
835 }
836 
SanityCheckObjectsCallback(mirror::Object * obj,void * arg ATTRIBUTE_UNUSED)837 static void SanityCheckObjectsCallback(mirror::Object* obj, void* arg ATTRIBUTE_UNUSED)
838     SHARED_REQUIRES(Locks::mutator_lock_) {
839   DCHECK(obj != nullptr);
840   CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj;
841   CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj;
842   if (obj->IsClass()) {
843     auto klass = obj->AsClass();
844     for (ArtField& field : klass->GetIFields()) {
845       CHECK_EQ(field.GetDeclaringClass(), klass);
846     }
847     for (ArtField& field : klass->GetSFields()) {
848       CHECK_EQ(field.GetDeclaringClass(), klass);
849     }
850     auto* runtime = Runtime::Current();
851     auto image_spaces = runtime->GetHeap()->GetBootImageSpaces();
852     auto pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
853     for (auto& m : klass->GetMethods(pointer_size)) {
854       SanityCheckArtMethod(&m, klass, image_spaces);
855     }
856     auto* vtable = klass->GetVTable();
857     if (vtable != nullptr) {
858       SanityCheckArtMethodPointerArray(vtable, nullptr, pointer_size, image_spaces);
859     }
860     if (klass->ShouldHaveImt()) {
861       ImTable* imt = klass->GetImt(pointer_size);
862       for (size_t i = 0; i < ImTable::kSize; ++i) {
863         SanityCheckArtMethod(imt->Get(i, pointer_size), nullptr, image_spaces);
864       }
865     }
866     if (klass->ShouldHaveEmbeddedVTable()) {
867       for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) {
868         SanityCheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr, image_spaces);
869       }
870     }
871     auto* iftable = klass->GetIfTable();
872     if (iftable != nullptr) {
873       for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
874         if (iftable->GetMethodArrayCount(i) > 0) {
875           SanityCheckArtMethodPointerArray(
876               iftable->GetMethodArray(i), nullptr, pointer_size, image_spaces);
877         }
878       }
879     }
880   }
881 }
882 
883 // Set image methods' entry point to interpreter.
884 class SetInterpreterEntrypointArtMethodVisitor : public ArtMethodVisitor {
885  public:
SetInterpreterEntrypointArtMethodVisitor(size_t image_pointer_size)886   explicit SetInterpreterEntrypointArtMethodVisitor(size_t image_pointer_size)
887     : image_pointer_size_(image_pointer_size) {}
888 
Visit(ArtMethod * method)889   void Visit(ArtMethod* method) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
890     if (kIsDebugBuild && !method->IsRuntimeMethod()) {
891       CHECK(method->GetDeclaringClass() != nullptr);
892     }
893     if (!method->IsNative() && !method->IsRuntimeMethod() && !method->IsResolutionMethod()) {
894       method->SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(),
895                                                         image_pointer_size_);
896     }
897   }
898 
899  private:
900   const size_t image_pointer_size_;
901 
902   DISALLOW_COPY_AND_ASSIGN(SetInterpreterEntrypointArtMethodVisitor);
903 };
904 
905 struct TrampolineCheckData {
906   const void* quick_resolution_trampoline;
907   const void* quick_imt_conflict_trampoline;
908   const void* quick_generic_jni_trampoline;
909   const void* quick_to_interpreter_bridge_trampoline;
910   size_t pointer_size;
911   ArtMethod* m;
912   bool error;
913 };
914 
CheckTrampolines(mirror::Object * obj,void * arg)915 static void CheckTrampolines(mirror::Object* obj, void* arg) NO_THREAD_SAFETY_ANALYSIS {
916   if (obj->IsClass()) {
917     mirror::Class* klass = obj->AsClass();
918     TrampolineCheckData* d = reinterpret_cast<TrampolineCheckData*>(arg);
919     for (ArtMethod& m : klass->GetMethods(d->pointer_size)) {
920       const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(d->pointer_size);
921       if (entrypoint == d->quick_resolution_trampoline ||
922           entrypoint == d->quick_imt_conflict_trampoline ||
923           entrypoint == d->quick_generic_jni_trampoline ||
924           entrypoint == d->quick_to_interpreter_bridge_trampoline) {
925         d->m = &m;
926         d->error = true;
927         return;
928       }
929     }
930   }
931 }
932 
InitFromBootImage(std::string * error_msg)933 bool ClassLinker::InitFromBootImage(std::string* error_msg) {
934   VLOG(startup) << __FUNCTION__ << " entering";
935   CHECK(!init_done_);
936 
937   Runtime* const runtime = Runtime::Current();
938   Thread* const self = Thread::Current();
939   gc::Heap* const heap = runtime->GetHeap();
940   std::vector<gc::space::ImageSpace*> spaces = heap->GetBootImageSpaces();
941   CHECK(!spaces.empty());
942   image_pointer_size_ = spaces[0]->GetImageHeader().GetPointerSize();
943   if (!ValidPointerSize(image_pointer_size_)) {
944     *error_msg = StringPrintf("Invalid image pointer size: %zu", image_pointer_size_);
945     return false;
946   }
947   if (!runtime->IsAotCompiler()) {
948     // Only the Aot compiler supports having an image with a different pointer size than the
949     // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart
950     // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps.
951     if (image_pointer_size_ != sizeof(void*)) {
952       *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu",
953                                 image_pointer_size_,
954                                 sizeof(void*));
955       return false;
956     }
957   }
958   dex_cache_boot_image_class_lookup_required_ = true;
959   std::vector<const OatFile*> oat_files =
960       runtime->GetOatFileManager().RegisterImageOatFiles(spaces);
961   DCHECK(!oat_files.empty());
962   const OatHeader& default_oat_header = oat_files[0]->GetOatHeader();
963   CHECK_EQ(default_oat_header.GetImageFileLocationOatChecksum(), 0U);
964   CHECK_EQ(default_oat_header.GetImageFileLocationOatDataBegin(), 0U);
965   const char* image_file_location = oat_files[0]->GetOatHeader().
966       GetStoreValueByKey(OatHeader::kImageLocationKey);
967   CHECK(image_file_location == nullptr || *image_file_location == 0);
968   quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline();
969   quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline();
970   quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline();
971   quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge();
972   if (kIsDebugBuild) {
973     // Check that the other images use the same trampoline.
974     for (size_t i = 1; i < oat_files.size(); ++i) {
975       const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader();
976       const void* ith_quick_resolution_trampoline =
977           ith_oat_header.GetQuickResolutionTrampoline();
978       const void* ith_quick_imt_conflict_trampoline =
979           ith_oat_header.GetQuickImtConflictTrampoline();
980       const void* ith_quick_generic_jni_trampoline =
981           ith_oat_header.GetQuickGenericJniTrampoline();
982       const void* ith_quick_to_interpreter_bridge_trampoline =
983           ith_oat_header.GetQuickToInterpreterBridge();
984       if (ith_quick_resolution_trampoline != quick_resolution_trampoline_ ||
985           ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ ||
986           ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ ||
987           ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_) {
988         // Make sure that all methods in this image do not contain those trampolines as
989         // entrypoints. Otherwise the class-linker won't be able to work with a single set.
990         TrampolineCheckData data;
991         data.error = false;
992         data.pointer_size = GetImagePointerSize();
993         data.quick_resolution_trampoline = ith_quick_resolution_trampoline;
994         data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline;
995         data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline;
996         data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline;
997         ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
998         spaces[i]->GetLiveBitmap()->Walk(CheckTrampolines, &data);
999         if (data.error) {
1000           ArtMethod* m = data.m;
1001           LOG(ERROR) << "Found a broken ArtMethod: " << PrettyMethod(m);
1002           *error_msg = "Found an ArtMethod with a bad entrypoint";
1003           return false;
1004         }
1005       }
1006     }
1007   }
1008 
1009   class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
1010       down_cast<mirror::ObjectArray<mirror::Class>*>(
1011           spaces[0]->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)));
1012   mirror::Class::SetClassClass(class_roots_.Read()->Get(kJavaLangClass));
1013 
1014   // Special case of setting up the String class early so that we can test arbitrary objects
1015   // as being Strings or not
1016   mirror::String::SetClass(GetClassRoot(kJavaLangString));
1017 
1018   mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject);
1019   java_lang_Object->SetObjectSize(sizeof(mirror::Object));
1020   // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
1021   // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
1022   runtime->SetSentinel(heap->AllocNonMovableObject<true>(
1023       self, java_lang_Object, java_lang_Object->GetObjectSize(), VoidFunctor()));
1024 
1025   // reinit array_iftable_ from any array class instance, they should be ==
1026   array_iftable_ = GcRoot<mirror::IfTable>(GetClassRoot(kObjectArrayClass)->GetIfTable());
1027   DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable());
1028   // String class root was set above
1029   mirror::Field::SetClass(GetClassRoot(kJavaLangReflectField));
1030   mirror::Field::SetArrayClass(GetClassRoot(kJavaLangReflectFieldArrayClass));
1031   mirror::Constructor::SetClass(GetClassRoot(kJavaLangReflectConstructor));
1032   mirror::Constructor::SetArrayClass(GetClassRoot(kJavaLangReflectConstructorArrayClass));
1033   mirror::Method::SetClass(GetClassRoot(kJavaLangReflectMethod));
1034   mirror::Method::SetArrayClass(GetClassRoot(kJavaLangReflectMethodArrayClass));
1035   mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference));
1036   mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
1037   mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
1038   mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
1039   mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
1040   mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
1041   mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
1042   mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
1043   mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
1044   mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
1045   mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
1046 
1047   for (gc::space::ImageSpace* image_space : spaces) {
1048     // Boot class loader, use a null handle.
1049     std::vector<std::unique_ptr<const DexFile>> dex_files;
1050     if (!AddImageSpace(image_space,
1051                        ScopedNullHandle<mirror::ClassLoader>(),
1052                        /*dex_elements*/nullptr,
1053                        /*dex_location*/nullptr,
1054                        /*out*/&dex_files,
1055                        error_msg)) {
1056       return false;
1057     }
1058     // Append opened dex files at the end.
1059     boot_dex_files_.insert(boot_dex_files_.end(),
1060                            std::make_move_iterator(dex_files.begin()),
1061                            std::make_move_iterator(dex_files.end()));
1062   }
1063   FinishInit(self);
1064 
1065   VLOG(startup) << __FUNCTION__ << " exiting";
1066   return true;
1067 }
1068 
IsBootClassLoader(ScopedObjectAccessAlreadyRunnable & soa,mirror::ClassLoader * class_loader)1069 bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
1070                                     mirror::ClassLoader* class_loader) {
1071   return class_loader == nullptr ||
1072       class_loader->GetClass() ==
1073           soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader);
1074 }
1075 
GetDexPathListElementName(ScopedObjectAccessUnchecked & soa,mirror::Object * element)1076 static mirror::String* GetDexPathListElementName(ScopedObjectAccessUnchecked& soa,
1077                                                  mirror::Object* element)
1078     SHARED_REQUIRES(Locks::mutator_lock_) {
1079   ArtField* const dex_file_field =
1080       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
1081   ArtField* const dex_file_name_field =
1082       soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_fileName);
1083   DCHECK(dex_file_field != nullptr);
1084   DCHECK(dex_file_name_field != nullptr);
1085   DCHECK(element != nullptr);
1086   CHECK_EQ(dex_file_field->GetDeclaringClass(), element->GetClass()) << PrettyTypeOf(element);
1087   mirror::Object* dex_file = dex_file_field->GetObject(element);
1088   if (dex_file == nullptr) {
1089     return nullptr;
1090   }
1091   mirror::Object* const name_object = dex_file_name_field->GetObject(dex_file);
1092   if (name_object != nullptr) {
1093     return name_object->AsString();
1094   }
1095   return nullptr;
1096 }
1097 
FlattenPathClassLoader(mirror::ClassLoader * class_loader,std::list<mirror::String * > * out_dex_file_names,std::string * error_msg)1098 static bool FlattenPathClassLoader(mirror::ClassLoader* class_loader,
1099                                    std::list<mirror::String*>* out_dex_file_names,
1100                                    std::string* error_msg)
1101     SHARED_REQUIRES(Locks::mutator_lock_) {
1102   DCHECK(out_dex_file_names != nullptr);
1103   DCHECK(error_msg != nullptr);
1104   ScopedObjectAccessUnchecked soa(Thread::Current());
1105   ArtField* const dex_path_list_field =
1106       soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList);
1107   ArtField* const dex_elements_field =
1108       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
1109   CHECK(dex_path_list_field != nullptr);
1110   CHECK(dex_elements_field != nullptr);
1111   while (!ClassLinker::IsBootClassLoader(soa, class_loader)) {
1112     if (class_loader->GetClass() !=
1113         soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)) {
1114       *error_msg = StringPrintf("Unknown class loader type %s", PrettyTypeOf(class_loader).c_str());
1115       // Unsupported class loader.
1116       return false;
1117     }
1118     mirror::Object* dex_path_list = dex_path_list_field->GetObject(class_loader);
1119     if (dex_path_list != nullptr) {
1120       // DexPathList has an array dexElements of Elements[] which each contain a dex file.
1121       mirror::Object* dex_elements_obj = dex_elements_field->GetObject(dex_path_list);
1122       // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
1123       // at the mCookie which is a DexFile vector.
1124       if (dex_elements_obj != nullptr) {
1125         mirror::ObjectArray<mirror::Object>* dex_elements =
1126             dex_elements_obj->AsObjectArray<mirror::Object>();
1127         // Reverse order since we insert the parent at the front.
1128         for (int32_t i = dex_elements->GetLength() - 1; i >= 0; --i) {
1129           mirror::Object* const element = dex_elements->GetWithoutChecks(i);
1130           if (element == nullptr) {
1131             *error_msg = StringPrintf("Null dex element at index %d", i);
1132             return false;
1133           }
1134           mirror::String* const name = GetDexPathListElementName(soa, element);
1135           if (name == nullptr) {
1136             *error_msg = StringPrintf("Null name for dex element at index %d", i);
1137             return false;
1138           }
1139           out_dex_file_names->push_front(name);
1140         }
1141       }
1142     }
1143     class_loader = class_loader->GetParent();
1144   }
1145   return true;
1146 }
1147 
1148 class FixupArtMethodArrayVisitor : public ArtMethodVisitor {
1149  public:
FixupArtMethodArrayVisitor(const ImageHeader & header)1150   explicit FixupArtMethodArrayVisitor(const ImageHeader& header) : header_(header) {}
1151 
Visit(ArtMethod * method)1152   virtual void Visit(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) {
1153     GcRoot<mirror::Class>* resolved_types = method->GetDexCacheResolvedTypes(sizeof(void*));
1154     const bool is_copied = method->IsCopied();
1155     if (resolved_types != nullptr) {
1156       bool in_image_space = false;
1157       if (kIsDebugBuild || is_copied) {
1158         in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1159             reinterpret_cast<const uint8_t*>(resolved_types) - header_.GetImageBegin());
1160       }
1161       // Must be in image space for non-miranda method.
1162       DCHECK(is_copied || in_image_space)
1163           << resolved_types << " is not in image starting at "
1164           << reinterpret_cast<void*>(header_.GetImageBegin());
1165       if (!is_copied || in_image_space) {
1166         // Go through the array so that we don't need to do a slow map lookup.
1167         method->SetDexCacheResolvedTypes(*reinterpret_cast<GcRoot<mirror::Class>**>(resolved_types),
1168                                          sizeof(void*));
1169       }
1170     }
1171     ArtMethod** resolved_methods = method->GetDexCacheResolvedMethods(sizeof(void*));
1172     if (resolved_methods != nullptr) {
1173       bool in_image_space = false;
1174       if (kIsDebugBuild || is_copied) {
1175         in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1176               reinterpret_cast<const uint8_t*>(resolved_methods) - header_.GetImageBegin());
1177       }
1178       // Must be in image space for non-miranda method.
1179       DCHECK(is_copied || in_image_space)
1180           << resolved_methods << " is not in image starting at "
1181           << reinterpret_cast<void*>(header_.GetImageBegin());
1182       if (!is_copied || in_image_space) {
1183         // Go through the array so that we don't need to do a slow map lookup.
1184         method->SetDexCacheResolvedMethods(*reinterpret_cast<ArtMethod***>(resolved_methods),
1185                                            sizeof(void*));
1186       }
1187     }
1188   }
1189 
1190  private:
1191   const ImageHeader& header_;
1192 };
1193 
1194 class VerifyClassInTableArtMethodVisitor : public ArtMethodVisitor {
1195  public:
VerifyClassInTableArtMethodVisitor(ClassTable * table)1196   explicit VerifyClassInTableArtMethodVisitor(ClassTable* table) : table_(table) {}
1197 
Visit(ArtMethod * method)1198   virtual void Visit(ArtMethod* method)
1199       SHARED_REQUIRES(Locks::mutator_lock_, Locks::classlinker_classes_lock_) {
1200     mirror::Class* klass = method->GetDeclaringClass();
1201     if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
1202       CHECK_EQ(table_->LookupByDescriptor(klass), klass) << PrettyClass(klass);
1203     }
1204   }
1205 
1206  private:
1207   ClassTable* const table_;
1208 };
1209 
1210 class VerifyDeclaringClassVisitor : public ArtMethodVisitor {
1211  public:
SHARED_REQUIRES(Locks::mutator_lock_,Locks::heap_bitmap_lock_)1212   VerifyDeclaringClassVisitor() SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1213       : live_bitmap_(Runtime::Current()->GetHeap()->GetLiveBitmap()) {}
1214 
Visit(ArtMethod * method)1215   virtual void Visit(ArtMethod* method)
1216       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1217     mirror::Class* klass = method->GetDeclaringClassUnchecked();
1218     if (klass != nullptr) {
1219       CHECK(live_bitmap_->Test(klass)) << "Image method has unmarked declaring class";
1220     }
1221   }
1222 
1223  private:
1224   gc::accounting::HeapBitmap* const live_bitmap_;
1225 };
1226 
UpdateAppImageClassLoadersAndDexCaches(gc::space::ImageSpace * space,Handle<mirror::ClassLoader> class_loader,Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches,ClassTable::ClassSet * new_class_set,bool * out_forward_dex_cache_array,std::string * out_error_msg)1227 bool ClassLinker::UpdateAppImageClassLoadersAndDexCaches(
1228     gc::space::ImageSpace* space,
1229     Handle<mirror::ClassLoader> class_loader,
1230     Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches,
1231     ClassTable::ClassSet* new_class_set,
1232     bool* out_forward_dex_cache_array,
1233     std::string* out_error_msg) {
1234   DCHECK(out_forward_dex_cache_array != nullptr);
1235   DCHECK(out_error_msg != nullptr);
1236   Thread* const self = Thread::Current();
1237   gc::Heap* const heap = Runtime::Current()->GetHeap();
1238   const ImageHeader& header = space->GetImageHeader();
1239   {
1240     // Add image classes into the class table for the class loader, and fixup the dex caches and
1241     // class loader fields.
1242     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1243     ClassTable* table = InsertClassTableForClassLoader(class_loader.Get());
1244     // Dex cache array fixup is all or nothing, we must reject app images that have mixed since we
1245     // rely on clobering the dex cache arrays in the image to forward to bss.
1246     size_t num_dex_caches_with_bss_arrays = 0;
1247     const size_t num_dex_caches = dex_caches->GetLength();
1248     for (size_t i = 0; i < num_dex_caches; i++) {
1249       mirror::DexCache* const dex_cache = dex_caches->Get(i);
1250       const DexFile* const dex_file = dex_cache->GetDexFile();
1251       const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1252       if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1253         ++num_dex_caches_with_bss_arrays;
1254       }
1255     }
1256     *out_forward_dex_cache_array = num_dex_caches_with_bss_arrays != 0;
1257     if (*out_forward_dex_cache_array) {
1258       if (num_dex_caches_with_bss_arrays != num_dex_caches) {
1259         // Reject application image since we cannot forward only some of the dex cache arrays.
1260         // TODO: We could get around this by having a dedicated forwarding slot. It should be an
1261         // uncommon case.
1262         *out_error_msg = StringPrintf("Dex caches in bss does not match total: %zu vs %zu",
1263                                       num_dex_caches_with_bss_arrays,
1264                                       num_dex_caches);
1265         return false;
1266       }
1267     }
1268     // Only add the classes to the class loader after the points where we can return false.
1269     for (size_t i = 0; i < num_dex_caches; i++) {
1270       mirror::DexCache* const dex_cache = dex_caches->Get(i);
1271       const DexFile* const dex_file = dex_cache->GetDexFile();
1272       const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1273       if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1274       // If the oat file expects the dex cache arrays to be in the BSS, then allocate there and
1275         // copy over the arrays.
1276         DCHECK(dex_file != nullptr);
1277         const size_t num_strings = dex_file->NumStringIds();
1278         const size_t num_types = dex_file->NumTypeIds();
1279         const size_t num_methods = dex_file->NumMethodIds();
1280         const size_t num_fields = dex_file->NumFieldIds();
1281         CHECK_EQ(num_strings, dex_cache->NumStrings());
1282         CHECK_EQ(num_types, dex_cache->NumResolvedTypes());
1283         CHECK_EQ(num_methods, dex_cache->NumResolvedMethods());
1284         CHECK_EQ(num_fields, dex_cache->NumResolvedFields());
1285         DexCacheArraysLayout layout(image_pointer_size_, dex_file);
1286         uint8_t* const raw_arrays = oat_dex_file->GetDexCacheArrays();
1287         // The space is not yet visible to the GC, we can avoid the read barriers and use
1288         // std::copy_n.
1289         if (num_strings != 0u) {
1290           GcRoot<mirror::String>* const image_resolved_strings = dex_cache->GetStrings();
1291           GcRoot<mirror::String>* const strings =
1292               reinterpret_cast<GcRoot<mirror::String>*>(raw_arrays + layout.StringsOffset());
1293           for (size_t j = 0; kIsDebugBuild && j < num_strings; ++j) {
1294             DCHECK(strings[j].IsNull());
1295           }
1296           std::copy_n(image_resolved_strings, num_strings, strings);
1297           dex_cache->SetStrings(strings);
1298         }
1299         if (num_types != 0u) {
1300           GcRoot<mirror::Class>* const image_resolved_types = dex_cache->GetResolvedTypes();
1301           GcRoot<mirror::Class>* const types =
1302               reinterpret_cast<GcRoot<mirror::Class>*>(raw_arrays + layout.TypesOffset());
1303           for (size_t j = 0; kIsDebugBuild && j < num_types; ++j) {
1304             DCHECK(types[j].IsNull());
1305           }
1306           std::copy_n(image_resolved_types, num_types, types);
1307           // Store a pointer to the new location for fast ArtMethod patching without requiring map.
1308           // This leaves random garbage at the start of the dex cache array, but nobody should ever
1309           // read from it again.
1310           *reinterpret_cast<GcRoot<mirror::Class>**>(image_resolved_types) = types;
1311           dex_cache->SetResolvedTypes(types);
1312         }
1313         if (num_methods != 0u) {
1314           ArtMethod** const methods = reinterpret_cast<ArtMethod**>(
1315               raw_arrays + layout.MethodsOffset());
1316           ArtMethod** const image_resolved_methods = dex_cache->GetResolvedMethods();
1317           for (size_t j = 0; kIsDebugBuild && j < num_methods; ++j) {
1318             DCHECK(methods[j] == nullptr);
1319           }
1320           std::copy_n(image_resolved_methods, num_methods, methods);
1321           // Store a pointer to the new location for fast ArtMethod patching without requiring map.
1322           *reinterpret_cast<ArtMethod***>(image_resolved_methods) = methods;
1323           dex_cache->SetResolvedMethods(methods);
1324         }
1325         if (num_fields != 0u) {
1326           ArtField** const fields =
1327               reinterpret_cast<ArtField**>(raw_arrays + layout.FieldsOffset());
1328           for (size_t j = 0; kIsDebugBuild && j < num_fields; ++j) {
1329             DCHECK(fields[j] == nullptr);
1330           }
1331           std::copy_n(dex_cache->GetResolvedFields(), num_fields, fields);
1332           dex_cache->SetResolvedFields(fields);
1333         }
1334       }
1335       {
1336         WriterMutexLock mu2(self, dex_lock_);
1337         // Make sure to do this after we update the arrays since we store the resolved types array
1338         // in DexCacheData in RegisterDexFileLocked. We need the array pointer to be the one in the
1339         // BSS.
1340         mirror::DexCache* existing_dex_cache = FindDexCacheLocked(self,
1341                                                                   *dex_file,
1342                                                                   /*allow_failure*/true);
1343         CHECK(existing_dex_cache == nullptr);
1344         StackHandleScope<1> hs3(self);
1345         RegisterDexFileLocked(*dex_file, hs3.NewHandle(dex_cache));
1346       }
1347       GcRoot<mirror::Class>* const types = dex_cache->GetResolvedTypes();
1348       const size_t num_types = dex_cache->NumResolvedTypes();
1349       if (new_class_set == nullptr) {
1350         for (int32_t j = 0; j < static_cast<int32_t>(num_types); j++) {
1351           // The image space is not yet added to the heap, avoid read barriers.
1352           mirror::Class* klass = types[j].Read();
1353           // There may also be boot image classes,
1354           if (space->HasAddress(klass)) {
1355             DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1356             // Update the class loader from the one in the image class loader to the one that loaded
1357             // the app image.
1358             klass->SetClassLoader(class_loader.Get());
1359             // The resolved type could be from another dex cache, go through the dex cache just in
1360             // case. May be null for array classes.
1361             if (klass->GetDexCacheStrings() != nullptr) {
1362               DCHECK(!klass->IsArrayClass());
1363               klass->SetDexCacheStrings(klass->GetDexCache()->GetStrings());
1364             }
1365             // If there are multiple dex caches, there may be the same class multiple times
1366             // in different dex caches. Check for this since inserting will add duplicates
1367             // otherwise.
1368             if (num_dex_caches > 1) {
1369               mirror::Class* existing = table->LookupByDescriptor(klass);
1370               if (existing != nullptr) {
1371                 DCHECK_EQ(existing, klass) << PrettyClass(klass);
1372               } else {
1373                 table->Insert(klass);
1374               }
1375             } else {
1376               table->Insert(klass);
1377             }
1378             // Double checked VLOG to avoid overhead.
1379             if (VLOG_IS_ON(image)) {
1380               VLOG(image) << PrettyClass(klass) << " " << klass->GetStatus();
1381               if (!klass->IsArrayClass()) {
1382                 VLOG(image) << "From " << klass->GetDexCache()->GetDexFile()->GetBaseLocation();
1383               }
1384               VLOG(image) << "Direct methods";
1385               for (ArtMethod& m : klass->GetDirectMethods(sizeof(void*))) {
1386                 VLOG(image) << PrettyMethod(&m);
1387               }
1388               VLOG(image) << "Virtual methods";
1389               for (ArtMethod& m : klass->GetVirtualMethods(sizeof(void*))) {
1390                 VLOG(image) << PrettyMethod(&m);
1391               }
1392             }
1393           } else {
1394             DCHECK(klass == nullptr || heap->ObjectIsInBootImageSpace(klass))
1395                 << klass << " " << PrettyClass(klass);
1396           }
1397         }
1398       }
1399       if (kIsDebugBuild) {
1400         for (int32_t j = 0; j < static_cast<int32_t>(num_types); j++) {
1401           // The image space is not yet added to the heap, avoid read barriers.
1402           mirror::Class* klass = types[j].Read();
1403           if (space->HasAddress(klass)) {
1404             DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1405             if (kIsDebugBuild) {
1406               if (new_class_set != nullptr) {
1407                 auto it = new_class_set->Find(GcRoot<mirror::Class>(klass));
1408                 DCHECK(it != new_class_set->end());
1409                 DCHECK_EQ(it->Read(), klass);
1410                 mirror::Class* super_class = klass->GetSuperClass();
1411                 if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) {
1412                   auto it2 = new_class_set->Find(GcRoot<mirror::Class>(super_class));
1413                   DCHECK(it2 != new_class_set->end());
1414                   DCHECK_EQ(it2->Read(), super_class);
1415                 }
1416               } else {
1417                 DCHECK_EQ(table->LookupByDescriptor(klass), klass);
1418                 mirror::Class* super_class = klass->GetSuperClass();
1419                 if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) {
1420                   CHECK_EQ(table->LookupByDescriptor(super_class), super_class);
1421                 }
1422               }
1423             }
1424             if (kIsDebugBuild) {
1425               for (ArtMethod& m : klass->GetDirectMethods(sizeof(void*))) {
1426                 const void* code = m.GetEntryPointFromQuickCompiledCode();
1427                 const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1428                 if (!IsQuickResolutionStub(code) &&
1429                     !IsQuickGenericJniStub(code) &&
1430                     !IsQuickToInterpreterBridge(code) &&
1431                     !m.IsNative()) {
1432                   DCHECK_EQ(code, oat_code) << PrettyMethod(&m);
1433                 }
1434               }
1435               for (ArtMethod& m : klass->GetVirtualMethods(sizeof(void*))) {
1436                 const void* code = m.GetEntryPointFromQuickCompiledCode();
1437                 const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1438                 if (!IsQuickResolutionStub(code) &&
1439                     !IsQuickGenericJniStub(code) &&
1440                     !IsQuickToInterpreterBridge(code) &&
1441                     !m.IsNative()) {
1442                   DCHECK_EQ(code, oat_code) << PrettyMethod(&m);
1443                 }
1444               }
1445             }
1446           }
1447         }
1448       }
1449     }
1450   }
1451   if (*out_forward_dex_cache_array) {
1452     ScopedTrace timing("Fixup ArtMethod dex cache arrays");
1453     FixupArtMethodArrayVisitor visitor(header);
1454     header.VisitPackedArtMethods(&visitor, space->Begin(), sizeof(void*));
1455     Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get());
1456   }
1457   if (kVerifyArtMethodDeclaringClasses) {
1458     ScopedTrace timing("Verify declaring classes");
1459     ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_);
1460     VerifyDeclaringClassVisitor visitor;
1461     header.VisitPackedArtMethods(&visitor, space->Begin(), sizeof(void*));
1462   }
1463   return true;
1464 }
1465 
1466 // Update the class loader and resolved string dex cache array of classes. Should only be used on
1467 // classes in the image space.
1468 class UpdateClassLoaderAndResolvedStringsVisitor {
1469  public:
UpdateClassLoaderAndResolvedStringsVisitor(gc::space::ImageSpace * space,mirror::ClassLoader * class_loader,bool forward_strings)1470   UpdateClassLoaderAndResolvedStringsVisitor(gc::space::ImageSpace* space,
1471                                              mirror::ClassLoader* class_loader,
1472                                              bool forward_strings)
1473       : space_(space),
1474         class_loader_(class_loader),
1475         forward_strings_(forward_strings) {}
1476 
operator ()(mirror::Class * klass) const1477   bool operator()(mirror::Class* klass) const SHARED_REQUIRES(Locks::mutator_lock_) {
1478     if (forward_strings_) {
1479       GcRoot<mirror::String>* strings = klass->GetDexCacheStrings();
1480       if (strings != nullptr) {
1481         DCHECK(
1482             space_->GetImageHeader().GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1483                 reinterpret_cast<uint8_t*>(strings) - space_->Begin()))
1484             << "String dex cache array for " << PrettyClass(klass) << " is not in app image";
1485         // Dex caches have already been updated, so take the strings pointer from there.
1486         GcRoot<mirror::String>* new_strings = klass->GetDexCache()->GetStrings();
1487         DCHECK_NE(strings, new_strings);
1488         klass->SetDexCacheStrings(new_strings);
1489       }
1490     }
1491     // Finally, update class loader.
1492     klass->SetClassLoader(class_loader_);
1493     return true;
1494   }
1495 
1496   gc::space::ImageSpace* const space_;
1497   mirror::ClassLoader* const class_loader_;
1498   const bool forward_strings_;
1499 };
1500 
OpenOatDexFile(const OatFile * oat_file,const char * location,std::string * error_msg)1501 static std::unique_ptr<const DexFile> OpenOatDexFile(const OatFile* oat_file,
1502                                                      const char* location,
1503                                                      std::string* error_msg)
1504     SHARED_REQUIRES(Locks::mutator_lock_) {
1505   DCHECK(error_msg != nullptr);
1506   std::unique_ptr<const DexFile> dex_file;
1507   const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr);
1508   if (oat_dex_file == nullptr) {
1509     *error_msg = StringPrintf("Failed finding oat dex file for %s %s",
1510                               oat_file->GetLocation().c_str(),
1511                               location);
1512     return std::unique_ptr<const DexFile>();
1513   }
1514   std::string inner_error_msg;
1515   dex_file = oat_dex_file->OpenDexFile(&inner_error_msg);
1516   if (dex_file == nullptr) {
1517     *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'",
1518                               location,
1519                               oat_file->GetLocation().c_str(),
1520                               inner_error_msg.c_str());
1521     return std::unique_ptr<const DexFile>();
1522   }
1523 
1524   if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) {
1525     *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x",
1526                               location,
1527                               dex_file->GetLocationChecksum(),
1528                               oat_dex_file->GetDexFileLocationChecksum());
1529     return std::unique_ptr<const DexFile>();
1530   }
1531   return dex_file;
1532 }
1533 
OpenImageDexFiles(gc::space::ImageSpace * space,std::vector<std::unique_ptr<const DexFile>> * out_dex_files,std::string * error_msg)1534 bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space,
1535                                     std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1536                                     std::string* error_msg) {
1537   ScopedAssertNoThreadSuspension nts(Thread::Current(), __FUNCTION__);
1538   const ImageHeader& header = space->GetImageHeader();
1539   mirror::Object* dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1540   DCHECK(dex_caches_object != nullptr);
1541   mirror::ObjectArray<mirror::DexCache>* dex_caches =
1542       dex_caches_object->AsObjectArray<mirror::DexCache>();
1543   const OatFile* oat_file = space->GetOatFile();
1544   for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1545     mirror::DexCache* dex_cache = dex_caches->Get(i);
1546     std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
1547     std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1548                                                              dex_file_location.c_str(),
1549                                                              error_msg);
1550     if (dex_file == nullptr) {
1551       return false;
1552     }
1553     dex_cache->SetDexFile(dex_file.get());
1554     out_dex_files->push_back(std::move(dex_file));
1555   }
1556   return true;
1557 }
1558 
AddImageSpace(gc::space::ImageSpace * space,Handle<mirror::ClassLoader> class_loader,jobjectArray dex_elements,const char * dex_location,std::vector<std::unique_ptr<const DexFile>> * out_dex_files,std::string * error_msg)1559 bool ClassLinker::AddImageSpace(
1560     gc::space::ImageSpace* space,
1561     Handle<mirror::ClassLoader> class_loader,
1562     jobjectArray dex_elements,
1563     const char* dex_location,
1564     std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1565     std::string* error_msg) {
1566   DCHECK(out_dex_files != nullptr);
1567   DCHECK(error_msg != nullptr);
1568   const uint64_t start_time = NanoTime();
1569   const bool app_image = class_loader.Get() != nullptr;
1570   const ImageHeader& header = space->GetImageHeader();
1571   mirror::Object* dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1572   DCHECK(dex_caches_object != nullptr);
1573   Runtime* const runtime = Runtime::Current();
1574   gc::Heap* const heap = runtime->GetHeap();
1575   Thread* const self = Thread::Current();
1576   StackHandleScope<2> hs(self);
1577   Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches(
1578       hs.NewHandle(dex_caches_object->AsObjectArray<mirror::DexCache>()));
1579   Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle(
1580       header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray<mirror::Class>()));
1581   const OatFile* oat_file = space->GetOatFile();
1582   std::unordered_set<mirror::ClassLoader*> image_class_loaders;
1583   // Check that the image is what we are expecting.
1584   if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) {
1585     *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu",
1586                               static_cast<size_t>(space->GetImageHeader().GetPointerSize()),
1587                               image_pointer_size_);
1588     return false;
1589   }
1590   DCHECK(class_roots.Get() != nullptr);
1591   if (class_roots->GetLength() != static_cast<int32_t>(kClassRootsMax)) {
1592     *error_msg = StringPrintf("Expected %d class roots but got %d",
1593                               class_roots->GetLength(),
1594                               static_cast<int32_t>(kClassRootsMax));
1595     return false;
1596   }
1597   // Check against existing class roots to make sure they match the ones in the boot image.
1598   for (size_t i = 0; i < kClassRootsMax; i++) {
1599     if (class_roots->Get(i) != GetClassRoot(static_cast<ClassRoot>(i))) {
1600       *error_msg = "App image class roots must have pointer equality with runtime ones.";
1601       return false;
1602     }
1603   }
1604   if (oat_file->GetOatHeader().GetDexFileCount() !=
1605       static_cast<uint32_t>(dex_caches->GetLength())) {
1606     *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from "
1607                  "image";
1608     return false;
1609   }
1610 
1611   StackHandleScope<1> hs2(self);
1612   MutableHandle<mirror::DexCache> h_dex_cache(hs2.NewHandle<mirror::DexCache>(nullptr));
1613   for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1614     h_dex_cache.Assign(dex_caches->Get(i));
1615     std::string dex_file_location(h_dex_cache->GetLocation()->ToModifiedUtf8());
1616     // TODO: Only store qualified paths.
1617     // If non qualified, qualify it.
1618     if (dex_file_location.find('/') == std::string::npos) {
1619       std::string dex_location_path = dex_location;
1620       const size_t pos = dex_location_path.find_last_of('/');
1621       CHECK_NE(pos, std::string::npos);
1622       dex_location_path = dex_location_path.substr(0, pos + 1);  // Keep trailing '/'
1623       dex_file_location = dex_location_path + dex_file_location;
1624     }
1625     std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1626                                                              dex_file_location.c_str(),
1627                                                              error_msg);
1628     if (dex_file == nullptr) {
1629       return false;
1630     }
1631 
1632     if (app_image) {
1633       // The current dex file field is bogus, overwrite it so that we can get the dex file in the
1634       // loop below.
1635       h_dex_cache->SetDexFile(dex_file.get());
1636       // Check that each class loader resolved the same way.
1637       // TODO: Store image class loaders as image roots.
1638       GcRoot<mirror::Class>* const types = h_dex_cache->GetResolvedTypes();
1639       for (int32_t j = 0, num_types = h_dex_cache->NumResolvedTypes(); j < num_types; j++) {
1640         mirror::Class* klass = types[j].Read();
1641         if (klass != nullptr) {
1642           DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1643           mirror::ClassLoader* image_class_loader = klass->GetClassLoader();
1644           image_class_loaders.insert(image_class_loader);
1645         }
1646       }
1647     } else {
1648       if (kSanityCheckObjects) {
1649         SanityCheckArtMethodPointerArray(h_dex_cache->GetResolvedMethods(),
1650                                          h_dex_cache->NumResolvedMethods(),
1651                                          image_pointer_size_,
1652                                          heap->GetBootImageSpaces());
1653       }
1654       // Register dex files, keep track of existing ones that are conflicts.
1655       AppendToBootClassPath(*dex_file.get(), h_dex_cache);
1656     }
1657     out_dex_files->push_back(std::move(dex_file));
1658   }
1659 
1660   if (app_image) {
1661     ScopedObjectAccessUnchecked soa(Thread::Current());
1662     // Check that the class loader resolves the same way as the ones in the image.
1663     // Image class loader [A][B][C][image dex files]
1664     // Class loader = [???][dex_elements][image dex files]
1665     // Need to ensure that [???][dex_elements] == [A][B][C].
1666     // For each class loader, PathClassLoader, the laoder checks the parent first. Also the logic
1667     // for PathClassLoader does this by looping through the array of dex files. To ensure they
1668     // resolve the same way, simply flatten the hierarchy in the way the resolution order would be,
1669     // and check that the dex file names are the same.
1670     for (mirror::ClassLoader* image_class_loader : image_class_loaders) {
1671       if (IsBootClassLoader(soa, image_class_loader)) {
1672         // The dex cache can reference types from the boot class loader.
1673         continue;
1674       }
1675       std::list<mirror::String*> image_dex_file_names;
1676       std::string temp_error_msg;
1677       if (!FlattenPathClassLoader(image_class_loader, &image_dex_file_names, &temp_error_msg)) {
1678         *error_msg = StringPrintf("Failed to flatten image class loader hierarchy '%s'",
1679                                   temp_error_msg.c_str());
1680         return false;
1681       }
1682       std::list<mirror::String*> loader_dex_file_names;
1683       if (!FlattenPathClassLoader(class_loader.Get(), &loader_dex_file_names, &temp_error_msg)) {
1684         *error_msg = StringPrintf("Failed to flatten class loader hierarchy '%s'",
1685                                   temp_error_msg.c_str());
1686         return false;
1687       }
1688       // Add the temporary dex path list elements at the end.
1689       auto* elements = soa.Decode<mirror::ObjectArray<mirror::Object>*>(dex_elements);
1690       for (size_t i = 0, num_elems = elements->GetLength(); i < num_elems; ++i) {
1691         mirror::Object* element = elements->GetWithoutChecks(i);
1692         if (element != nullptr) {
1693           // If we are somewhere in the middle of the array, there may be nulls at the end.
1694           loader_dex_file_names.push_back(GetDexPathListElementName(soa, element));
1695         }
1696       }
1697       // Ignore the number of image dex files since we are adding those to the class loader anyways.
1698       CHECK_GE(static_cast<size_t>(image_dex_file_names.size()),
1699                static_cast<size_t>(dex_caches->GetLength()));
1700       size_t image_count = image_dex_file_names.size() - dex_caches->GetLength();
1701       // Check that the dex file names match.
1702       bool equal = image_count == loader_dex_file_names.size();
1703       if (equal) {
1704         auto it1 = image_dex_file_names.begin();
1705         auto it2 = loader_dex_file_names.begin();
1706         for (size_t i = 0; equal && i < image_count; ++i, ++it1, ++it2) {
1707           equal = equal && (*it1)->Equals(*it2);
1708         }
1709       }
1710       if (!equal) {
1711         VLOG(image) << "Image dex files " << image_dex_file_names.size();
1712         for (mirror::String* name : image_dex_file_names) {
1713           VLOG(image) << name->ToModifiedUtf8();
1714         }
1715         VLOG(image) << "Loader dex files " << loader_dex_file_names.size();
1716         for (mirror::String* name : loader_dex_file_names) {
1717           VLOG(image) << name->ToModifiedUtf8();
1718         }
1719         *error_msg = "Rejecting application image due to class loader mismatch";
1720         // Ignore class loader mismatch for now since these would just use possibly incorrect
1721         // oat code anyways. The structural class check should be done in the parent.
1722       }
1723     }
1724   }
1725 
1726   if (kSanityCheckObjects) {
1727     for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1728       auto* dex_cache = dex_caches->Get(i);
1729       for (size_t j = 0; j < dex_cache->NumResolvedFields(); ++j) {
1730         auto* field = dex_cache->GetResolvedField(j, image_pointer_size_);
1731         if (field != nullptr) {
1732           CHECK(field->GetDeclaringClass()->GetClass() != nullptr);
1733         }
1734       }
1735     }
1736     if (!app_image) {
1737       heap->VisitObjects(SanityCheckObjectsCallback, nullptr);
1738     }
1739   }
1740 
1741   // Set entry point to interpreter if in InterpretOnly mode.
1742   if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) {
1743     SetInterpreterEntrypointArtMethodVisitor visitor(image_pointer_size_);
1744     header.VisitPackedArtMethods(&visitor, space->Begin(), image_pointer_size_);
1745   }
1746 
1747   ClassTable* class_table = nullptr;
1748   {
1749     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1750     class_table = InsertClassTableForClassLoader(class_loader.Get());
1751   }
1752   // If we have a class table section, read it and use it for verification in
1753   // UpdateAppImageClassLoadersAndDexCaches.
1754   ClassTable::ClassSet temp_set;
1755   const ImageSection& class_table_section = header.GetImageSection(ImageHeader::kSectionClassTable);
1756   const bool added_class_table = class_table_section.Size() > 0u;
1757   if (added_class_table) {
1758     const uint64_t start_time2 = NanoTime();
1759     size_t read_count = 0;
1760     temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(),
1761                                     /*make copy*/false,
1762                                     &read_count);
1763     if (!app_image) {
1764       dex_cache_boot_image_class_lookup_required_ = false;
1765     }
1766     VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2);
1767   }
1768   if (app_image) {
1769     bool forward_dex_cache_arrays = false;
1770     if (!UpdateAppImageClassLoadersAndDexCaches(space,
1771                                                 class_loader,
1772                                                 dex_caches,
1773                                                 added_class_table ? &temp_set : nullptr,
1774                                                 /*out*/&forward_dex_cache_arrays,
1775                                                 /*out*/error_msg)) {
1776       return false;
1777     }
1778     // Update class loader and resolved strings. If added_class_table is false, the resolved
1779     // strings were forwarded UpdateAppImageClassLoadersAndDexCaches.
1780     UpdateClassLoaderAndResolvedStringsVisitor visitor(space,
1781                                                        class_loader.Get(),
1782                                                        forward_dex_cache_arrays);
1783     if (added_class_table) {
1784       for (GcRoot<mirror::Class>& root : temp_set) {
1785         visitor(root.Read());
1786       }
1787     }
1788     // forward_dex_cache_arrays is true iff we copied all of the dex cache arrays into the .bss.
1789     // In this case, madvise away the dex cache arrays section of the image to reduce RAM usage and
1790     // mark as PROT_NONE to catch any invalid accesses.
1791     if (forward_dex_cache_arrays) {
1792       const ImageSection& dex_cache_section = header.GetImageSection(
1793           ImageHeader::kSectionDexCacheArrays);
1794       uint8_t* section_begin = AlignUp(space->Begin() + dex_cache_section.Offset(), kPageSize);
1795       uint8_t* section_end = AlignDown(space->Begin() + dex_cache_section.End(), kPageSize);
1796       if (section_begin < section_end) {
1797         madvise(section_begin, section_end - section_begin, MADV_DONTNEED);
1798         mprotect(section_begin, section_end - section_begin, PROT_NONE);
1799         VLOG(image) << "Released and protected dex cache array image section from "
1800                     << reinterpret_cast<const void*>(section_begin) << "-"
1801                     << reinterpret_cast<const void*>(section_end);
1802       }
1803     }
1804   }
1805   if (added_class_table) {
1806     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1807     class_table->AddClassSet(std::move(temp_set));
1808   }
1809   if (kIsDebugBuild && app_image) {
1810     // This verification needs to happen after the classes have been added to the class loader.
1811     // Since it ensures classes are in the class table.
1812     VerifyClassInTableArtMethodVisitor visitor2(class_table);
1813     header.VisitPackedArtMethods(&visitor2, space->Begin(), sizeof(void*));
1814   }
1815   VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time);
1816   return true;
1817 }
1818 
ClassInClassTable(mirror::Class * klass)1819 bool ClassLinker::ClassInClassTable(mirror::Class* klass) {
1820   ClassTable* const class_table = ClassTableForClassLoader(klass->GetClassLoader());
1821   return class_table != nullptr && class_table->Contains(klass);
1822 }
1823 
VisitClassRoots(RootVisitor * visitor,VisitRootFlags flags)1824 void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) {
1825   // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since
1826   // enabling tracing requires the mutator lock, there are no race conditions here.
1827   const bool tracing_enabled = Trace::IsTracingEnabled();
1828   Thread* const self = Thread::Current();
1829   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1830   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
1831       visitor, RootInfo(kRootStickyClass));
1832   if ((flags & kVisitRootFlagAllRoots) != 0) {
1833     // Argument for how root visiting deals with ArtField and ArtMethod roots.
1834     // There is 3 GC cases to handle:
1835     // Non moving concurrent:
1836     // This case is easy to handle since the reference members of ArtMethod and ArtFields are held
1837     // live by the class and class roots.
1838     //
1839     // Moving non-concurrent:
1840     // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move.
1841     // To prevent missing roots, this case needs to ensure that there is no
1842     // suspend points between the point which we allocate ArtMethod arrays and place them in a
1843     // class which is in the class table.
1844     //
1845     // Moving concurrent:
1846     // Need to make sure to not copy ArtMethods without doing read barriers since the roots are
1847     // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy.
1848     boot_class_table_.VisitRoots(buffered_visitor);
1849 
1850     // If tracing is enabled, then mark all the class loaders to prevent unloading.
1851     if (tracing_enabled) {
1852       for (const ClassLoaderData& data : class_loaders_) {
1853         GcRoot<mirror::Object> root(GcRoot<mirror::Object>(self->DecodeJObject(data.weak_root)));
1854         root.VisitRoot(visitor, RootInfo(kRootVMInternal));
1855       }
1856     }
1857   } else if ((flags & kVisitRootFlagNewRoots) != 0) {
1858     for (auto& root : new_class_roots_) {
1859       mirror::Class* old_ref = root.Read<kWithoutReadBarrier>();
1860       root.VisitRoot(visitor, RootInfo(kRootStickyClass));
1861       mirror::Class* new_ref = root.Read<kWithoutReadBarrier>();
1862       // Concurrent moving GC marked new roots through the to-space invariant.
1863       CHECK_EQ(new_ref, old_ref);
1864     }
1865   }
1866   buffered_visitor.Flush();  // Flush before clearing new_class_roots_.
1867   if ((flags & kVisitRootFlagClearRootLog) != 0) {
1868     new_class_roots_.clear();
1869   }
1870   if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
1871     log_new_class_table_roots_ = true;
1872   } else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
1873     log_new_class_table_roots_ = false;
1874   }
1875   // We deliberately ignore the class roots in the image since we
1876   // handle image roots by using the MS/CMS rescanning of dirty cards.
1877 }
1878 
1879 // Keep in sync with InitCallback. Anything we visit, we need to
1880 // reinit references to when reinitializing a ClassLinker from a
1881 // mapped image.
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)1882 void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
1883   class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1884   VisitClassRoots(visitor, flags);
1885   array_iftable_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1886   // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class
1887   // unloading if we are marking roots.
1888   DropFindArrayClassCache();
1889 }
1890 
1891 class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor {
1892  public:
VisitClassLoaderClassesVisitor(ClassVisitor * visitor)1893   explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor)
1894       : visitor_(visitor),
1895         done_(false) {}
1896 
Visit(mirror::ClassLoader * class_loader)1897   void Visit(mirror::ClassLoader* class_loader)
1898       SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
1899     ClassTable* const class_table = class_loader->GetClassTable();
1900     if (!done_ && class_table != nullptr && !class_table->Visit(*visitor_)) {
1901       // If the visitor ClassTable returns false it means that we don't need to continue.
1902       done_ = true;
1903     }
1904   }
1905 
1906  private:
1907   ClassVisitor* const visitor_;
1908   // If done is true then we don't need to do any more visiting.
1909   bool done_;
1910 };
1911 
VisitClassesInternal(ClassVisitor * visitor)1912 void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) {
1913   if (boot_class_table_.Visit(*visitor)) {
1914     VisitClassLoaderClassesVisitor loader_visitor(visitor);
1915     VisitClassLoaders(&loader_visitor);
1916   }
1917 }
1918 
VisitClasses(ClassVisitor * visitor)1919 void ClassLinker::VisitClasses(ClassVisitor* visitor) {
1920   if (dex_cache_boot_image_class_lookup_required_) {
1921     AddBootImageClassesToClassTable();
1922   }
1923   Thread* const self = Thread::Current();
1924   ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1925   // Not safe to have thread suspension when we are holding a lock.
1926   if (self != nullptr) {
1927     ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
1928     VisitClassesInternal(visitor);
1929   } else {
1930     VisitClassesInternal(visitor);
1931   }
1932 }
1933 
1934 class GetClassesInToVector : public ClassVisitor {
1935  public:
operator ()(mirror::Class * klass)1936   bool operator()(mirror::Class* klass) OVERRIDE {
1937     classes_.push_back(klass);
1938     return true;
1939   }
1940   std::vector<mirror::Class*> classes_;
1941 };
1942 
1943 class GetClassInToObjectArray : public ClassVisitor {
1944  public:
GetClassInToObjectArray(mirror::ObjectArray<mirror::Class> * arr)1945   explicit GetClassInToObjectArray(mirror::ObjectArray<mirror::Class>* arr)
1946       : arr_(arr), index_(0) {}
1947 
operator ()(mirror::Class * klass)1948   bool operator()(mirror::Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1949     ++index_;
1950     if (index_ <= arr_->GetLength()) {
1951       arr_->Set(index_ - 1, klass);
1952       return true;
1953     }
1954     return false;
1955   }
1956 
Succeeded() const1957   bool Succeeded() const SHARED_REQUIRES(Locks::mutator_lock_) {
1958     return index_ <= arr_->GetLength();
1959   }
1960 
1961  private:
1962   mirror::ObjectArray<mirror::Class>* const arr_;
1963   int32_t index_;
1964 };
1965 
VisitClassesWithoutClassesLock(ClassVisitor * visitor)1966 void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) {
1967   // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem
1968   // is avoiding duplicates.
1969   Thread* const self = Thread::Current();
1970   if (!kMovingClasses) {
1971     ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
1972     GetClassesInToVector accumulator;
1973     VisitClasses(&accumulator);
1974     for (mirror::Class* klass : accumulator.classes_) {
1975       if (!visitor->operator()(klass)) {
1976         return;
1977       }
1978     }
1979   } else {
1980     StackHandleScope<1> hs(self);
1981     auto classes = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
1982     // We size the array assuming classes won't be added to the class table during the visit.
1983     // If this assumption fails we iterate again.
1984     while (true) {
1985       size_t class_table_size;
1986       {
1987         ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1988         // Add 100 in case new classes get loaded when we are filling in the object array.
1989         class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100;
1990       }
1991       mirror::Class* class_type = mirror::Class::GetJavaLangClass();
1992       mirror::Class* array_of_class = FindArrayClass(self, &class_type);
1993       classes.Assign(
1994           mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size));
1995       CHECK(classes.Get() != nullptr);  // OOME.
1996       GetClassInToObjectArray accumulator(classes.Get());
1997       VisitClasses(&accumulator);
1998       if (accumulator.Succeeded()) {
1999         break;
2000       }
2001     }
2002     for (int32_t i = 0; i < classes->GetLength(); ++i) {
2003       // If the class table shrank during creation of the clases array we expect null elements. If
2004       // the class table grew then the loop repeats. If classes are created after the loop has
2005       // finished then we don't visit.
2006       mirror::Class* klass = classes->Get(i);
2007       if (klass != nullptr && !visitor->operator()(klass)) {
2008         return;
2009       }
2010     }
2011   }
2012 }
2013 
~ClassLinker()2014 ClassLinker::~ClassLinker() {
2015   mirror::Class::ResetClass();
2016   mirror::Constructor::ResetClass();
2017   mirror::Field::ResetClass();
2018   mirror::Method::ResetClass();
2019   mirror::Reference::ResetClass();
2020   mirror::StackTraceElement::ResetClass();
2021   mirror::String::ResetClass();
2022   mirror::Throwable::ResetClass();
2023   mirror::BooleanArray::ResetArrayClass();
2024   mirror::ByteArray::ResetArrayClass();
2025   mirror::CharArray::ResetArrayClass();
2026   mirror::Constructor::ResetArrayClass();
2027   mirror::DoubleArray::ResetArrayClass();
2028   mirror::Field::ResetArrayClass();
2029   mirror::FloatArray::ResetArrayClass();
2030   mirror::Method::ResetArrayClass();
2031   mirror::IntArray::ResetArrayClass();
2032   mirror::LongArray::ResetArrayClass();
2033   mirror::ShortArray::ResetArrayClass();
2034   Thread* const self = Thread::Current();
2035   for (const ClassLoaderData& data : class_loaders_) {
2036     DeleteClassLoader(self, data);
2037   }
2038   class_loaders_.clear();
2039 }
2040 
DeleteClassLoader(Thread * self,const ClassLoaderData & data)2041 void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data) {
2042   Runtime* const runtime = Runtime::Current();
2043   JavaVMExt* const vm = runtime->GetJavaVM();
2044   vm->DeleteWeakGlobalRef(self, data.weak_root);
2045   // Notify the JIT that we need to remove the methods and/or profiling info.
2046   if (runtime->GetJit() != nullptr) {
2047     jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
2048     if (code_cache != nullptr) {
2049       code_cache->RemoveMethodsIn(self, *data.allocator);
2050     }
2051   }
2052   delete data.allocator;
2053   delete data.class_table;
2054 }
2055 
AllocPointerArray(Thread * self,size_t length)2056 mirror::PointerArray* ClassLinker::AllocPointerArray(Thread* self, size_t length) {
2057   return down_cast<mirror::PointerArray*>(image_pointer_size_ == 8u ?
2058       static_cast<mirror::Array*>(mirror::LongArray::Alloc(self, length)) :
2059       static_cast<mirror::Array*>(mirror::IntArray::Alloc(self, length)));
2060 }
2061 
AllocDexCache(Thread * self,const DexFile & dex_file,LinearAlloc * linear_alloc)2062 mirror::DexCache* ClassLinker::AllocDexCache(Thread* self,
2063                                              const DexFile& dex_file,
2064                                              LinearAlloc* linear_alloc) {
2065   StackHandleScope<6> hs(self);
2066   auto dex_cache(hs.NewHandle(down_cast<mirror::DexCache*>(
2067       GetClassRoot(kJavaLangDexCache)->AllocObject(self))));
2068   if (dex_cache.Get() == nullptr) {
2069     self->AssertPendingOOMException();
2070     return nullptr;
2071   }
2072   auto location(hs.NewHandle(intern_table_->InternStrong(dex_file.GetLocation().c_str())));
2073   if (location.Get() == nullptr) {
2074     self->AssertPendingOOMException();
2075     return nullptr;
2076   }
2077   DexCacheArraysLayout layout(image_pointer_size_, &dex_file);
2078   uint8_t* raw_arrays = nullptr;
2079   if (dex_file.GetOatDexFile() != nullptr &&
2080       dex_file.GetOatDexFile()->GetDexCacheArrays() != nullptr) {
2081     raw_arrays = dex_file.GetOatDexFile()->GetDexCacheArrays();
2082   } else if (dex_file.NumStringIds() != 0u || dex_file.NumTypeIds() != 0u ||
2083       dex_file.NumMethodIds() != 0u || dex_file.NumFieldIds() != 0u) {
2084     // NOTE: We "leak" the raw_arrays because we never destroy the dex cache.
2085     DCHECK(image_pointer_size_ == 4u || image_pointer_size_ == 8u);
2086     // Zero-initialized.
2087     raw_arrays = reinterpret_cast<uint8_t*>(linear_alloc->Alloc(self, layout.Size()));
2088   }
2089   GcRoot<mirror::String>* strings = (dex_file.NumStringIds() == 0u) ? nullptr :
2090       reinterpret_cast<GcRoot<mirror::String>*>(raw_arrays + layout.StringsOffset());
2091   GcRoot<mirror::Class>* types = (dex_file.NumTypeIds() == 0u) ? nullptr :
2092       reinterpret_cast<GcRoot<mirror::Class>*>(raw_arrays + layout.TypesOffset());
2093   ArtMethod** methods = (dex_file.NumMethodIds() == 0u) ? nullptr :
2094       reinterpret_cast<ArtMethod**>(raw_arrays + layout.MethodsOffset());
2095   ArtField** fields = (dex_file.NumFieldIds() == 0u) ? nullptr :
2096       reinterpret_cast<ArtField**>(raw_arrays + layout.FieldsOffset());
2097   if (kIsDebugBuild) {
2098     // Sanity check to make sure all the dex cache arrays are empty. b/28992179
2099     for (size_t i = 0; i < dex_file.NumStringIds(); ++i) {
2100       CHECK(strings[i].Read<kWithoutReadBarrier>() == nullptr);
2101     }
2102     for (size_t i = 0; i < dex_file.NumTypeIds(); ++i) {
2103       CHECK(types[i].Read<kWithoutReadBarrier>() == nullptr);
2104     }
2105     for (size_t i = 0; i < dex_file.NumMethodIds(); ++i) {
2106       CHECK(mirror::DexCache::GetElementPtrSize(methods, i, image_pointer_size_) == nullptr);
2107     }
2108     for (size_t i = 0; i < dex_file.NumFieldIds(); ++i) {
2109       CHECK(mirror::DexCache::GetElementPtrSize(fields, i, image_pointer_size_) == nullptr);
2110     }
2111   }
2112   dex_cache->Init(&dex_file,
2113                   location.Get(),
2114                   strings,
2115                   dex_file.NumStringIds(),
2116                   types,
2117                   dex_file.NumTypeIds(),
2118                   methods,
2119                   dex_file.NumMethodIds(),
2120                   fields,
2121                   dex_file.NumFieldIds(),
2122                   image_pointer_size_);
2123   return dex_cache.Get();
2124 }
2125 
AllocClass(Thread * self,mirror::Class * java_lang_Class,uint32_t class_size)2126 mirror::Class* ClassLinker::AllocClass(Thread* self, mirror::Class* java_lang_Class,
2127                                        uint32_t class_size) {
2128   DCHECK_GE(class_size, sizeof(mirror::Class));
2129   gc::Heap* heap = Runtime::Current()->GetHeap();
2130   mirror::Class::InitializeClassVisitor visitor(class_size);
2131   mirror::Object* k = kMovingClasses ?
2132       heap->AllocObject<true>(self, java_lang_Class, class_size, visitor) :
2133       heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor);
2134   if (UNLIKELY(k == nullptr)) {
2135     self->AssertPendingOOMException();
2136     return nullptr;
2137   }
2138   return k->AsClass();
2139 }
2140 
AllocClass(Thread * self,uint32_t class_size)2141 mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) {
2142   return AllocClass(self, GetClassRoot(kJavaLangClass), class_size);
2143 }
2144 
AllocStackTraceElementArray(Thread * self,size_t length)2145 mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray(
2146     Thread* self,
2147     size_t length) {
2148   return mirror::ObjectArray<mirror::StackTraceElement>::Alloc(
2149       self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length);
2150 }
2151 
EnsureResolved(Thread * self,const char * descriptor,mirror::Class * klass)2152 mirror::Class* ClassLinker::EnsureResolved(Thread* self,
2153                                            const char* descriptor,
2154                                            mirror::Class* klass) {
2155   DCHECK(klass != nullptr);
2156 
2157   // For temporary classes we must wait for them to be retired.
2158   if (init_done_ && klass->IsTemp()) {
2159     CHECK(!klass->IsResolved());
2160     if (klass->IsErroneous()) {
2161       ThrowEarlierClassFailure(klass);
2162       return nullptr;
2163     }
2164     StackHandleScope<1> hs(self);
2165     Handle<mirror::Class> h_class(hs.NewHandle(klass));
2166     ObjectLock<mirror::Class> lock(self, h_class);
2167     // Loop and wait for the resolving thread to retire this class.
2168     while (!h_class->IsRetired() && !h_class->IsErroneous()) {
2169       lock.WaitIgnoringInterrupts();
2170     }
2171     if (h_class->IsErroneous()) {
2172       ThrowEarlierClassFailure(h_class.Get());
2173       return nullptr;
2174     }
2175     CHECK(h_class->IsRetired());
2176     // Get the updated class from class table.
2177     klass = LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor),
2178                         h_class.Get()->GetClassLoader());
2179   }
2180 
2181   // Wait for the class if it has not already been linked.
2182   if (!klass->IsResolved() && !klass->IsErroneous()) {
2183     StackHandleScope<1> hs(self);
2184     HandleWrapper<mirror::Class> h_class(hs.NewHandleWrapper(&klass));
2185     ObjectLock<mirror::Class> lock(self, h_class);
2186     // Check for circular dependencies between classes.
2187     if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) {
2188       ThrowClassCircularityError(h_class.Get());
2189       mirror::Class::SetStatus(h_class, mirror::Class::kStatusError, self);
2190       return nullptr;
2191     }
2192     // Wait for the pending initialization to complete.
2193     while (!h_class->IsResolved() && !h_class->IsErroneous()) {
2194       lock.WaitIgnoringInterrupts();
2195     }
2196   }
2197 
2198   if (klass->IsErroneous()) {
2199     ThrowEarlierClassFailure(klass);
2200     return nullptr;
2201   }
2202   // Return the loaded class.  No exceptions should be pending.
2203   CHECK(klass->IsResolved()) << PrettyClass(klass);
2204   self->AssertNoPendingException();
2205   return klass;
2206 }
2207 
2208 typedef std::pair<const DexFile*, const DexFile::ClassDef*> ClassPathEntry;
2209 
2210 // Search a collection of DexFiles for a descriptor
FindInClassPath(const char * descriptor,size_t hash,const std::vector<const DexFile * > & class_path)2211 ClassPathEntry FindInClassPath(const char* descriptor,
2212                                size_t hash, const std::vector<const DexFile*>& class_path) {
2213   for (const DexFile* dex_file : class_path) {
2214     const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor, hash);
2215     if (dex_class_def != nullptr) {
2216       return ClassPathEntry(dex_file, dex_class_def);
2217     }
2218   }
2219   return ClassPathEntry(nullptr, nullptr);
2220 }
2221 
FindClassInPathClassLoader(ScopedObjectAccessAlreadyRunnable & soa,Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,mirror::Class ** result)2222 bool ClassLinker::FindClassInPathClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
2223                                              Thread* self,
2224                                              const char* descriptor,
2225                                              size_t hash,
2226                                              Handle<mirror::ClassLoader> class_loader,
2227                                              mirror::Class** result) {
2228   // Termination case: boot class-loader.
2229   if (IsBootClassLoader(soa, class_loader.Get())) {
2230     // The boot class loader, search the boot class path.
2231     ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2232     if (pair.second != nullptr) {
2233       mirror::Class* klass = LookupClass(self, descriptor, hash, nullptr);
2234       if (klass != nullptr) {
2235         *result = EnsureResolved(self, descriptor, klass);
2236       } else {
2237         *result = DefineClass(self,
2238                               descriptor,
2239                               hash,
2240                               ScopedNullHandle<mirror::ClassLoader>(),
2241                               *pair.first,
2242                               *pair.second);
2243       }
2244       if (*result == nullptr) {
2245         CHECK(self->IsExceptionPending()) << descriptor;
2246         self->ClearException();
2247       }
2248     } else {
2249       *result = nullptr;
2250     }
2251     return true;
2252   }
2253 
2254   // Unsupported class-loader?
2255   if (class_loader->GetClass() !=
2256       soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)) {
2257     *result = nullptr;
2258     return false;
2259   }
2260 
2261   // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension).
2262   StackHandleScope<4> hs(self);
2263   Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent()));
2264   bool recursive_result = FindClassInPathClassLoader(soa, self, descriptor, hash, h_parent, result);
2265 
2266   if (!recursive_result) {
2267     // Something wrong up the chain.
2268     return false;
2269   }
2270 
2271   if (*result != nullptr) {
2272     // Found the class up the chain.
2273     return true;
2274   }
2275 
2276   // Handle this step.
2277   // Handle as if this is the child PathClassLoader.
2278   // The class loader is a PathClassLoader which inherits from BaseDexClassLoader.
2279   // We need to get the DexPathList and loop through it.
2280   ArtField* const cookie_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie);
2281   ArtField* const dex_file_field =
2282       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
2283   mirror::Object* dex_path_list =
2284       soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList)->
2285       GetObject(class_loader.Get());
2286   if (dex_path_list != nullptr && dex_file_field != nullptr && cookie_field != nullptr) {
2287     // DexPathList has an array dexElements of Elements[] which each contain a dex file.
2288     mirror::Object* dex_elements_obj =
2289         soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements)->
2290         GetObject(dex_path_list);
2291     // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
2292     // at the mCookie which is a DexFile vector.
2293     if (dex_elements_obj != nullptr) {
2294       Handle<mirror::ObjectArray<mirror::Object>> dex_elements =
2295           hs.NewHandle(dex_elements_obj->AsObjectArray<mirror::Object>());
2296       for (int32_t i = 0; i < dex_elements->GetLength(); ++i) {
2297         mirror::Object* element = dex_elements->GetWithoutChecks(i);
2298         if (element == nullptr) {
2299           // Should never happen, fall back to java code to throw a NPE.
2300           break;
2301         }
2302         mirror::Object* dex_file = dex_file_field->GetObject(element);
2303         if (dex_file != nullptr) {
2304           mirror::LongArray* long_array = cookie_field->GetObject(dex_file)->AsLongArray();
2305           if (long_array == nullptr) {
2306             // This should never happen so log a warning.
2307             LOG(WARNING) << "Null DexFile::mCookie for " << descriptor;
2308             break;
2309           }
2310           int32_t long_array_size = long_array->GetLength();
2311           // First element is the oat file.
2312           for (int32_t j = kDexFileIndexStart; j < long_array_size; ++j) {
2313             const DexFile* cp_dex_file = reinterpret_cast<const DexFile*>(static_cast<uintptr_t>(
2314                 long_array->GetWithoutChecks(j)));
2315             const DexFile::ClassDef* dex_class_def = cp_dex_file->FindClassDef(descriptor, hash);
2316             if (dex_class_def != nullptr) {
2317               mirror::Class* klass = DefineClass(self,
2318                                                  descriptor,
2319                                                  hash,
2320                                                  class_loader,
2321                                                  *cp_dex_file,
2322                                                  *dex_class_def);
2323               if (klass == nullptr) {
2324                 CHECK(self->IsExceptionPending()) << descriptor;
2325                 self->ClearException();
2326                 // TODO: Is it really right to break here, and not check the other dex files?
2327                 return true;
2328               }
2329               *result = klass;
2330               return true;
2331             }
2332           }
2333         }
2334       }
2335     }
2336     self->AssertNoPendingException();
2337   }
2338 
2339   // Result is still null from the parent call, no need to set it again...
2340   return true;
2341 }
2342 
FindClass(Thread * self,const char * descriptor,Handle<mirror::ClassLoader> class_loader)2343 mirror::Class* ClassLinker::FindClass(Thread* self,
2344                                       const char* descriptor,
2345                                       Handle<mirror::ClassLoader> class_loader) {
2346   DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
2347   DCHECK(self != nullptr);
2348   self->AssertNoPendingException();
2349   if (descriptor[1] == '\0') {
2350     // only the descriptors of primitive types should be 1 character long, also avoid class lookup
2351     // for primitive classes that aren't backed by dex files.
2352     return FindPrimitiveClass(descriptor[0]);
2353   }
2354   const size_t hash = ComputeModifiedUtf8Hash(descriptor);
2355   // Find the class in the loaded classes table.
2356   mirror::Class* klass = LookupClass(self, descriptor, hash, class_loader.Get());
2357   if (klass != nullptr) {
2358     return EnsureResolved(self, descriptor, klass);
2359   }
2360   // Class is not yet loaded.
2361   if (descriptor[0] == '[') {
2362     return CreateArrayClass(self, descriptor, hash, class_loader);
2363   } else if (class_loader.Get() == nullptr) {
2364     // The boot class loader, search the boot class path.
2365     ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2366     if (pair.second != nullptr) {
2367       return DefineClass(self,
2368                          descriptor,
2369                          hash,
2370                          ScopedNullHandle<mirror::ClassLoader>(),
2371                          *pair.first,
2372                          *pair.second);
2373     } else {
2374       // The boot class loader is searched ahead of the application class loader, failures are
2375       // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to
2376       // trigger the chaining with a proper stack trace.
2377       mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2378       self->SetException(pre_allocated);
2379       return nullptr;
2380     }
2381   } else {
2382     ScopedObjectAccessUnchecked soa(self);
2383     mirror::Class* cp_klass;
2384     if (FindClassInPathClassLoader(soa, self, descriptor, hash, class_loader, &cp_klass)) {
2385       // The chain was understood. So the value in cp_klass is either the class we were looking
2386       // for, or not found.
2387       if (cp_klass != nullptr) {
2388         return cp_klass;
2389       }
2390       // TODO: We handle the boot classpath loader in FindClassInPathClassLoader. Try to unify this
2391       //       and the branch above. TODO: throw the right exception here.
2392 
2393       // We'll let the Java-side rediscover all this and throw the exception with the right stack
2394       // trace.
2395     }
2396 
2397     if (Runtime::Current()->IsAotCompiler()) {
2398       // Oops, compile-time, can't run actual class-loader code.
2399       mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2400       self->SetException(pre_allocated);
2401       return nullptr;
2402     }
2403 
2404     ScopedLocalRef<jobject> class_loader_object(soa.Env(),
2405                                                 soa.AddLocalReference<jobject>(class_loader.Get()));
2406     std::string class_name_string(DescriptorToDot(descriptor));
2407     ScopedLocalRef<jobject> result(soa.Env(), nullptr);
2408     {
2409       ScopedThreadStateChange tsc(self, kNative);
2410       ScopedLocalRef<jobject> class_name_object(soa.Env(),
2411                                                 soa.Env()->NewStringUTF(class_name_string.c_str()));
2412       if (class_name_object.get() == nullptr) {
2413         DCHECK(self->IsExceptionPending());  // OOME.
2414         return nullptr;
2415       }
2416       CHECK(class_loader_object.get() != nullptr);
2417       result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(),
2418                                                WellKnownClasses::java_lang_ClassLoader_loadClass,
2419                                                class_name_object.get()));
2420     }
2421     if (self->IsExceptionPending()) {
2422       // If the ClassLoader threw, pass that exception up.
2423       return nullptr;
2424     } else if (result.get() == nullptr) {
2425       // broken loader - throw NPE to be compatible with Dalvik
2426       ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s",
2427                                              class_name_string.c_str()).c_str());
2428       return nullptr;
2429     } else {
2430       // success, return mirror::Class*
2431       return soa.Decode<mirror::Class*>(result.get());
2432     }
2433   }
2434   UNREACHABLE();
2435 }
2436 
DefineClass(Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def)2437 mirror::Class* ClassLinker::DefineClass(Thread* self,
2438                                         const char* descriptor,
2439                                         size_t hash,
2440                                         Handle<mirror::ClassLoader> class_loader,
2441                                         const DexFile& dex_file,
2442                                         const DexFile::ClassDef& dex_class_def) {
2443   StackHandleScope<3> hs(self);
2444   auto klass = hs.NewHandle<mirror::Class>(nullptr);
2445 
2446   // Load the class from the dex file.
2447   if (UNLIKELY(!init_done_)) {
2448     // finish up init of hand crafted class_roots_
2449     if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
2450       klass.Assign(GetClassRoot(kJavaLangObject));
2451     } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
2452       klass.Assign(GetClassRoot(kJavaLangClass));
2453     } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2454       klass.Assign(GetClassRoot(kJavaLangString));
2455     } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) {
2456       klass.Assign(GetClassRoot(kJavaLangRefReference));
2457     } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
2458       klass.Assign(GetClassRoot(kJavaLangDexCache));
2459     }
2460   }
2461 
2462   if (klass.Get() == nullptr) {
2463     // Allocate a class with the status of not ready.
2464     // Interface object should get the right size here. Regular class will
2465     // figure out the right size later and be replaced with one of the right
2466     // size when the class becomes resolved.
2467     klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def)));
2468   }
2469   if (UNLIKELY(klass.Get() == nullptr)) {
2470     self->AssertPendingOOMException();
2471     return nullptr;
2472   }
2473   mirror::DexCache* dex_cache = RegisterDexFile(dex_file, class_loader.Get());
2474   if (dex_cache == nullptr) {
2475     self->AssertPendingOOMException();
2476     return nullptr;
2477   }
2478   klass->SetDexCache(dex_cache);
2479   SetupClass(dex_file, dex_class_def, klass, class_loader.Get());
2480 
2481   // Mark the string class by setting its access flag.
2482   if (UNLIKELY(!init_done_)) {
2483     if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2484       klass->SetStringClass();
2485     }
2486   }
2487 
2488   ObjectLock<mirror::Class> lock(self, klass);
2489   klass->SetClinitThreadId(self->GetTid());
2490 
2491   // Add the newly loaded class to the loaded classes table.
2492   mirror::Class* existing = InsertClass(descriptor, klass.Get(), hash);
2493   if (existing != nullptr) {
2494     // We failed to insert because we raced with another thread. Calling EnsureResolved may cause
2495     // this thread to block.
2496     return EnsureResolved(self, descriptor, existing);
2497   }
2498 
2499   // Load the fields and other things after we are inserted in the table. This is so that we don't
2500   // end up allocating unfree-able linear alloc resources and then lose the race condition. The
2501   // other reason is that the field roots are only visited from the class table. So we need to be
2502   // inserted before we allocate / fill in these fields.
2503   LoadClass(self, dex_file, dex_class_def, klass);
2504   if (self->IsExceptionPending()) {
2505     VLOG(class_linker) << self->GetException()->Dump();
2506     // An exception occured during load, set status to erroneous while holding klass' lock in case
2507     // notification is necessary.
2508     if (!klass->IsErroneous()) {
2509       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2510     }
2511     return nullptr;
2512   }
2513 
2514   // Finish loading (if necessary) by finding parents
2515   CHECK(!klass->IsLoaded());
2516   if (!LoadSuperAndInterfaces(klass, dex_file)) {
2517     // Loading failed.
2518     if (!klass->IsErroneous()) {
2519       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2520     }
2521     return nullptr;
2522   }
2523   CHECK(klass->IsLoaded());
2524   // Link the class (if necessary)
2525   CHECK(!klass->IsResolved());
2526   // TODO: Use fast jobjects?
2527   auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
2528 
2529   MutableHandle<mirror::Class> h_new_class = hs.NewHandle<mirror::Class>(nullptr);
2530   if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) {
2531     // Linking failed.
2532     if (!klass->IsErroneous()) {
2533       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2534     }
2535     return nullptr;
2536   }
2537   self->AssertNoPendingException();
2538   CHECK(h_new_class.Get() != nullptr) << descriptor;
2539   CHECK(h_new_class->IsResolved()) << descriptor;
2540 
2541   // Instrumentation may have updated entrypoints for all methods of all
2542   // classes. However it could not update methods of this class while we
2543   // were loading it. Now the class is resolved, we can update entrypoints
2544   // as required by instrumentation.
2545   if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) {
2546     // We must be in the kRunnable state to prevent instrumentation from
2547     // suspending all threads to update entrypoints while we are doing it
2548     // for this class.
2549     DCHECK_EQ(self->GetState(), kRunnable);
2550     Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get());
2551   }
2552 
2553   /*
2554    * We send CLASS_PREPARE events to the debugger from here.  The
2555    * definition of "preparation" is creating the static fields for a
2556    * class and initializing them to the standard default values, but not
2557    * executing any code (that comes later, during "initialization").
2558    *
2559    * We did the static preparation in LinkClass.
2560    *
2561    * The class has been prepared and resolved but possibly not yet verified
2562    * at this point.
2563    */
2564   Dbg::PostClassPrepare(h_new_class.Get());
2565 
2566   // Notify native debugger of the new class and its layout.
2567   jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get());
2568 
2569   return h_new_class.Get();
2570 }
2571 
SizeOfClassWithoutEmbeddedTables(const DexFile & dex_file,const DexFile::ClassDef & dex_class_def)2572 uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file,
2573                                                        const DexFile::ClassDef& dex_class_def) {
2574   const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
2575   size_t num_ref = 0;
2576   size_t num_8 = 0;
2577   size_t num_16 = 0;
2578   size_t num_32 = 0;
2579   size_t num_64 = 0;
2580   if (class_data != nullptr) {
2581     // We allow duplicate definitions of the same field in a class_data_item
2582     // but ignore the repeated indexes here, b/21868015.
2583     uint32_t last_field_idx = DexFile::kDexNoIndex;
2584     for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) {
2585       uint32_t field_idx = it.GetMemberIndex();
2586       // Ordering enforced by DexFileVerifier.
2587       DCHECK(last_field_idx == DexFile::kDexNoIndex || last_field_idx <= field_idx);
2588       if (UNLIKELY(field_idx == last_field_idx)) {
2589         continue;
2590       }
2591       last_field_idx = field_idx;
2592       const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
2593       const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
2594       char c = descriptor[0];
2595       switch (c) {
2596         case 'L':
2597         case '[':
2598           num_ref++;
2599           break;
2600         case 'J':
2601         case 'D':
2602           num_64++;
2603           break;
2604         case 'I':
2605         case 'F':
2606           num_32++;
2607           break;
2608         case 'S':
2609         case 'C':
2610           num_16++;
2611           break;
2612         case 'B':
2613         case 'Z':
2614           num_8++;
2615           break;
2616         default:
2617           LOG(FATAL) << "Unknown descriptor: " << c;
2618           UNREACHABLE();
2619       }
2620     }
2621   }
2622   return mirror::Class::ComputeClassSize(false,
2623                                          0,
2624                                          num_8,
2625                                          num_16,
2626                                          num_32,
2627                                          num_64,
2628                                          num_ref,
2629                                          image_pointer_size_);
2630 }
2631 
FindOatClass(const DexFile & dex_file,uint16_t class_def_idx,bool * found)2632 OatFile::OatClass ClassLinker::FindOatClass(const DexFile& dex_file,
2633                                             uint16_t class_def_idx,
2634                                             bool* found) {
2635   DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16);
2636   const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
2637   if (oat_dex_file == nullptr) {
2638     *found = false;
2639     return OatFile::OatClass::Invalid();
2640   }
2641   *found = true;
2642   return oat_dex_file->GetOatClass(class_def_idx);
2643 }
2644 
GetOatMethodIndexFromMethodIndex(const DexFile & dex_file,uint16_t class_def_idx,uint32_t method_idx)2645 static uint32_t GetOatMethodIndexFromMethodIndex(const DexFile& dex_file,
2646                                                  uint16_t class_def_idx,
2647                                                  uint32_t method_idx) {
2648   const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_idx);
2649   const uint8_t* class_data = dex_file.GetClassData(class_def);
2650   CHECK(class_data != nullptr);
2651   ClassDataItemIterator it(dex_file, class_data);
2652   // Skip fields
2653   while (it.HasNextStaticField()) {
2654     it.Next();
2655   }
2656   while (it.HasNextInstanceField()) {
2657     it.Next();
2658   }
2659   // Process methods
2660   size_t class_def_method_index = 0;
2661   while (it.HasNextDirectMethod()) {
2662     if (it.GetMemberIndex() == method_idx) {
2663       return class_def_method_index;
2664     }
2665     class_def_method_index++;
2666     it.Next();
2667   }
2668   while (it.HasNextVirtualMethod()) {
2669     if (it.GetMemberIndex() == method_idx) {
2670       return class_def_method_index;
2671     }
2672     class_def_method_index++;
2673     it.Next();
2674   }
2675   DCHECK(!it.HasNext());
2676   LOG(FATAL) << "Failed to find method index " << method_idx << " in " << dex_file.GetLocation();
2677   UNREACHABLE();
2678 }
2679 
FindOatMethodFor(ArtMethod * method,bool * found)2680 const OatFile::OatMethod ClassLinker::FindOatMethodFor(ArtMethod* method, bool* found) {
2681   // Although we overwrite the trampoline of non-static methods, we may get here via the resolution
2682   // method for direct methods (or virtual methods made direct).
2683   mirror::Class* declaring_class = method->GetDeclaringClass();
2684   size_t oat_method_index;
2685   if (method->IsStatic() || method->IsDirect()) {
2686     // Simple case where the oat method index was stashed at load time.
2687     oat_method_index = method->GetMethodIndex();
2688   } else {
2689     // We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index
2690     // by search for its position in the declared virtual methods.
2691     oat_method_index = declaring_class->NumDirectMethods();
2692     bool found_virtual = false;
2693     for (ArtMethod& art_method : declaring_class->GetVirtualMethods(image_pointer_size_)) {
2694       // Check method index instead of identity in case of duplicate method definitions.
2695       if (method->GetDexMethodIndex() == art_method.GetDexMethodIndex()) {
2696         found_virtual = true;
2697         break;
2698       }
2699       oat_method_index++;
2700     }
2701     CHECK(found_virtual) << "Didn't find oat method index for virtual method: "
2702                          << PrettyMethod(method);
2703   }
2704   DCHECK_EQ(oat_method_index,
2705             GetOatMethodIndexFromMethodIndex(*declaring_class->GetDexCache()->GetDexFile(),
2706                                              method->GetDeclaringClass()->GetDexClassDefIndex(),
2707                                              method->GetDexMethodIndex()));
2708   OatFile::OatClass oat_class = FindOatClass(*declaring_class->GetDexCache()->GetDexFile(),
2709                                              declaring_class->GetDexClassDefIndex(),
2710                                              found);
2711   if (!(*found)) {
2712     return OatFile::OatMethod::Invalid();
2713   }
2714   return oat_class.GetOatMethod(oat_method_index);
2715 }
2716 
2717 // Special case to get oat code without overwriting a trampoline.
GetQuickOatCodeFor(ArtMethod * method)2718 const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) {
2719   CHECK(method->IsInvokable()) << PrettyMethod(method);
2720   if (method->IsProxyMethod()) {
2721     return GetQuickProxyInvokeHandler();
2722   }
2723   bool found;
2724   OatFile::OatMethod oat_method = FindOatMethodFor(method, &found);
2725   if (found) {
2726     auto* code = oat_method.GetQuickCode();
2727     if (code != nullptr) {
2728       return code;
2729     }
2730   }
2731   if (method->IsNative()) {
2732     // No code and native? Use generic trampoline.
2733     return GetQuickGenericJniStub();
2734   }
2735   return GetQuickToInterpreterBridge();
2736 }
2737 
GetOatMethodQuickCodeFor(ArtMethod * method)2738 const void* ClassLinker::GetOatMethodQuickCodeFor(ArtMethod* method) {
2739   if (method->IsNative() || !method->IsInvokable() || method->IsProxyMethod()) {
2740     return nullptr;
2741   }
2742   bool found;
2743   OatFile::OatMethod oat_method = FindOatMethodFor(method, &found);
2744   if (found) {
2745     return oat_method.GetQuickCode();
2746   }
2747   return nullptr;
2748 }
2749 
ShouldUseInterpreterEntrypoint(ArtMethod * method,const void * quick_code)2750 bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) {
2751   if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) {
2752     return false;
2753   }
2754 
2755   if (quick_code == nullptr) {
2756     return true;
2757   }
2758 
2759   Runtime* runtime = Runtime::Current();
2760   instrumentation::Instrumentation* instr = runtime->GetInstrumentation();
2761   if (instr->InterpretOnly()) {
2762     return true;
2763   }
2764 
2765   if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) {
2766     // Doing this check avoids doing compiled/interpreter transitions.
2767     return true;
2768   }
2769 
2770   if (Dbg::IsForcedInterpreterNeededForCalling(Thread::Current(), method)) {
2771     // Force the use of interpreter when it is required by the debugger.
2772     return true;
2773   }
2774 
2775   if (runtime->IsNativeDebuggable()) {
2776     DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse());
2777     // If we are doing native debugging, ignore application's AOT code,
2778     // since we want to JIT it with extra stackmaps for native debugging.
2779     // On the other hand, keep all AOT code from the boot image, since the
2780     // blocking JIT would results in non-negligible performance impact.
2781     return !runtime->GetHeap()->IsInBootImageOatFile(quick_code);
2782   }
2783 
2784   if (Dbg::IsDebuggerActive()) {
2785     // Boot image classes may be AOT-compiled as non-debuggable.
2786     // This is not suitable for the Java debugger, so ignore the AOT code.
2787     return runtime->GetHeap()->IsInBootImageOatFile(quick_code);
2788   }
2789 
2790   return false;
2791 }
2792 
FixupStaticTrampolines(mirror::Class * klass)2793 void ClassLinker::FixupStaticTrampolines(mirror::Class* klass) {
2794   DCHECK(klass->IsInitialized()) << PrettyDescriptor(klass);
2795   if (klass->NumDirectMethods() == 0) {
2796     return;  // No direct methods => no static methods.
2797   }
2798   Runtime* runtime = Runtime::Current();
2799   if (!runtime->IsStarted()) {
2800     if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) {
2801       return;  // OAT file unavailable.
2802     }
2803   }
2804 
2805   const DexFile& dex_file = klass->GetDexFile();
2806   const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
2807   CHECK(dex_class_def != nullptr);
2808   const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
2809   // There should always be class data if there were direct methods.
2810   CHECK(class_data != nullptr) << PrettyDescriptor(klass);
2811   ClassDataItemIterator it(dex_file, class_data);
2812   // Skip fields
2813   while (it.HasNextStaticField()) {
2814     it.Next();
2815   }
2816   while (it.HasNextInstanceField()) {
2817     it.Next();
2818   }
2819   bool has_oat_class;
2820   OatFile::OatClass oat_class = FindOatClass(dex_file,
2821                                              klass->GetDexClassDefIndex(),
2822                                              &has_oat_class);
2823   // Link the code of methods skipped by LinkCode.
2824   for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) {
2825     ArtMethod* method = klass->GetDirectMethod(method_index, image_pointer_size_);
2826     if (!method->IsStatic()) {
2827       // Only update static methods.
2828       continue;
2829     }
2830     const void* quick_code = nullptr;
2831     if (has_oat_class) {
2832       OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index);
2833       quick_code = oat_method.GetQuickCode();
2834     }
2835     // Check whether the method is native, in which case it's generic JNI.
2836     if (quick_code == nullptr && method->IsNative()) {
2837       quick_code = GetQuickGenericJniStub();
2838     } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) {
2839       // Use interpreter entry point.
2840       quick_code = GetQuickToInterpreterBridge();
2841     }
2842     runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code);
2843   }
2844   // Ignore virtual methods on the iterator.
2845 }
2846 
EnsureThrowsInvocationError(ArtMethod * method)2847 void ClassLinker::EnsureThrowsInvocationError(ArtMethod* method) {
2848   DCHECK(method != nullptr);
2849   DCHECK(!method->IsInvokable());
2850   method->SetEntryPointFromQuickCompiledCodePtrSize(quick_to_interpreter_bridge_trampoline_,
2851                                                     image_pointer_size_);
2852 }
2853 
LinkCode(ArtMethod * method,const OatFile::OatClass * oat_class,uint32_t class_def_method_index)2854 void ClassLinker::LinkCode(ArtMethod* method, const OatFile::OatClass* oat_class,
2855                            uint32_t class_def_method_index) {
2856   Runtime* const runtime = Runtime::Current();
2857   if (runtime->IsAotCompiler()) {
2858     // The following code only applies to a non-compiler runtime.
2859     return;
2860   }
2861   // Method shouldn't have already been linked.
2862   DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
2863   if (oat_class != nullptr) {
2864     // Every kind of method should at least get an invoke stub from the oat_method.
2865     // non-abstract methods also get their code pointers.
2866     const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index);
2867     oat_method.LinkMethod(method);
2868   }
2869 
2870   // Install entry point from interpreter.
2871   const void* quick_code = method->GetEntryPointFromQuickCompiledCode();
2872   bool enter_interpreter = ShouldUseInterpreterEntrypoint(method, quick_code);
2873 
2874   if (!method->IsInvokable()) {
2875     EnsureThrowsInvocationError(method);
2876     return;
2877   }
2878 
2879   if (method->IsStatic() && !method->IsConstructor()) {
2880     // For static methods excluding the class initializer, install the trampoline.
2881     // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
2882     // after initializing class (see ClassLinker::InitializeClass method).
2883     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2884   } else if (quick_code == nullptr && method->IsNative()) {
2885     method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub());
2886   } else if (enter_interpreter) {
2887     // Set entry point from compiled code if there's no code or in interpreter only mode.
2888     method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
2889   }
2890 
2891   if (method->IsNative()) {
2892     // Unregistering restores the dlsym lookup stub.
2893     method->UnregisterNative();
2894 
2895     if (enter_interpreter || quick_code == nullptr) {
2896       // We have a native method here without code. Then it should have either the generic JNI
2897       // trampoline as entrypoint (non-static), or the resolution trampoline (static).
2898       // TODO: this doesn't handle all the cases where trampolines may be installed.
2899       const void* entry_point = method->GetEntryPointFromQuickCompiledCode();
2900       DCHECK(IsQuickGenericJniStub(entry_point) || IsQuickResolutionStub(entry_point));
2901     }
2902   }
2903 }
2904 
SetupClass(const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,Handle<mirror::Class> klass,mirror::ClassLoader * class_loader)2905 void ClassLinker::SetupClass(const DexFile& dex_file,
2906                              const DexFile::ClassDef& dex_class_def,
2907                              Handle<mirror::Class> klass,
2908                              mirror::ClassLoader* class_loader) {
2909   CHECK(klass.Get() != nullptr);
2910   CHECK(klass->GetDexCache() != nullptr);
2911   CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus());
2912   const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
2913   CHECK(descriptor != nullptr);
2914 
2915   klass->SetClass(GetClassRoot(kJavaLangClass));
2916   uint32_t access_flags = dex_class_def.GetJavaAccessFlags();
2917   CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
2918   klass->SetAccessFlags(access_flags);
2919   klass->SetClassLoader(class_loader);
2920   DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
2921   mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, nullptr);
2922 
2923   klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def));
2924   klass->SetDexTypeIndex(dex_class_def.class_idx_);
2925   CHECK(klass->GetDexCacheStrings() != nullptr);
2926 }
2927 
LoadClass(Thread * self,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,Handle<mirror::Class> klass)2928 void ClassLinker::LoadClass(Thread* self,
2929                             const DexFile& dex_file,
2930                             const DexFile::ClassDef& dex_class_def,
2931                             Handle<mirror::Class> klass) {
2932   const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
2933   if (class_data == nullptr) {
2934     return;  // no fields or methods - for example a marker interface
2935   }
2936   bool has_oat_class = false;
2937   if (Runtime::Current()->IsStarted() && !Runtime::Current()->IsAotCompiler()) {
2938     OatFile::OatClass oat_class = FindOatClass(dex_file, klass->GetDexClassDefIndex(),
2939                                                &has_oat_class);
2940     if (has_oat_class) {
2941       LoadClassMembers(self, dex_file, class_data, klass, &oat_class);
2942     }
2943   }
2944   if (!has_oat_class) {
2945     LoadClassMembers(self, dex_file, class_data, klass, nullptr);
2946   }
2947 }
2948 
AllocArtFieldArray(Thread * self,LinearAlloc * allocator,size_t length)2949 LengthPrefixedArray<ArtField>* ClassLinker::AllocArtFieldArray(Thread* self,
2950                                                                LinearAlloc* allocator,
2951                                                                size_t length) {
2952   if (length == 0) {
2953     return nullptr;
2954   }
2955   // If the ArtField alignment changes, review all uses of LengthPrefixedArray<ArtField>.
2956   static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4.");
2957   size_t storage_size = LengthPrefixedArray<ArtField>::ComputeSize(length);
2958   void* array_storage = allocator->Alloc(self, storage_size);
2959   auto* ret = new(array_storage) LengthPrefixedArray<ArtField>(length);
2960   CHECK(ret != nullptr);
2961   std::uninitialized_fill_n(&ret->At(0), length, ArtField());
2962   return ret;
2963 }
2964 
AllocArtMethodArray(Thread * self,LinearAlloc * allocator,size_t length)2965 LengthPrefixedArray<ArtMethod>* ClassLinker::AllocArtMethodArray(Thread* self,
2966                                                                  LinearAlloc* allocator,
2967                                                                  size_t length) {
2968   if (length == 0) {
2969     return nullptr;
2970   }
2971   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
2972   const size_t method_size = ArtMethod::Size(image_pointer_size_);
2973   const size_t storage_size =
2974       LengthPrefixedArray<ArtMethod>::ComputeSize(length, method_size, method_alignment);
2975   void* array_storage = allocator->Alloc(self, storage_size);
2976   auto* ret = new (array_storage) LengthPrefixedArray<ArtMethod>(length);
2977   CHECK(ret != nullptr);
2978   for (size_t i = 0; i < length; ++i) {
2979     new(reinterpret_cast<void*>(&ret->At(i, method_size, method_alignment))) ArtMethod;
2980   }
2981   return ret;
2982 }
2983 
GetAllocatorForClassLoader(mirror::ClassLoader * class_loader)2984 LinearAlloc* ClassLinker::GetAllocatorForClassLoader(mirror::ClassLoader* class_loader) {
2985   if (class_loader == nullptr) {
2986     return Runtime::Current()->GetLinearAlloc();
2987   }
2988   LinearAlloc* allocator = class_loader->GetAllocator();
2989   DCHECK(allocator != nullptr);
2990   return allocator;
2991 }
2992 
GetOrCreateAllocatorForClassLoader(mirror::ClassLoader * class_loader)2993 LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(mirror::ClassLoader* class_loader) {
2994   if (class_loader == nullptr) {
2995     return Runtime::Current()->GetLinearAlloc();
2996   }
2997   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
2998   LinearAlloc* allocator = class_loader->GetAllocator();
2999   if (allocator == nullptr) {
3000     RegisterClassLoader(class_loader);
3001     allocator = class_loader->GetAllocator();
3002     CHECK(allocator != nullptr);
3003   }
3004   return allocator;
3005 }
3006 
LoadClassMembers(Thread * self,const DexFile & dex_file,const uint8_t * class_data,Handle<mirror::Class> klass,const OatFile::OatClass * oat_class)3007 void ClassLinker::LoadClassMembers(Thread* self,
3008                                    const DexFile& dex_file,
3009                                    const uint8_t* class_data,
3010                                    Handle<mirror::Class> klass,
3011                                    const OatFile::OatClass* oat_class) {
3012   {
3013     // Note: We cannot have thread suspension until the field and method arrays are setup or else
3014     // Class::VisitFieldRoots may miss some fields or methods.
3015     ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
3016     // Load static fields.
3017     // We allow duplicate definitions of the same field in a class_data_item
3018     // but ignore the repeated indexes here, b/21868015.
3019     LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
3020     ClassDataItemIterator it(dex_file, class_data);
3021     LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self,
3022                                                                 allocator,
3023                                                                 it.NumStaticFields());
3024     size_t num_sfields = 0;
3025     uint32_t last_field_idx = 0u;
3026     for (; it.HasNextStaticField(); it.Next()) {
3027       uint32_t field_idx = it.GetMemberIndex();
3028       DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
3029       if (num_sfields == 0 || LIKELY(field_idx > last_field_idx)) {
3030         DCHECK_LT(num_sfields, it.NumStaticFields());
3031         LoadField(it, klass, &sfields->At(num_sfields));
3032         ++num_sfields;
3033         last_field_idx = field_idx;
3034       }
3035     }
3036     // Load instance fields.
3037     LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self,
3038                                                                 allocator,
3039                                                                 it.NumInstanceFields());
3040     size_t num_ifields = 0u;
3041     last_field_idx = 0u;
3042     for (; it.HasNextInstanceField(); it.Next()) {
3043       uint32_t field_idx = it.GetMemberIndex();
3044       DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
3045       if (num_ifields == 0 || LIKELY(field_idx > last_field_idx)) {
3046         DCHECK_LT(num_ifields, it.NumInstanceFields());
3047         LoadField(it, klass, &ifields->At(num_ifields));
3048         ++num_ifields;
3049         last_field_idx = field_idx;
3050       }
3051     }
3052     if (UNLIKELY(num_sfields != it.NumStaticFields()) ||
3053         UNLIKELY(num_ifields != it.NumInstanceFields())) {
3054       LOG(WARNING) << "Duplicate fields in class " << PrettyDescriptor(klass.Get())
3055           << " (unique static fields: " << num_sfields << "/" << it.NumStaticFields()
3056           << ", unique instance fields: " << num_ifields << "/" << it.NumInstanceFields() << ")";
3057       // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size.
3058       if (sfields != nullptr) {
3059         sfields->SetSize(num_sfields);
3060       }
3061       if (ifields != nullptr) {
3062         ifields->SetSize(num_ifields);
3063       }
3064     }
3065     // Set the field arrays.
3066     klass->SetSFieldsPtr(sfields);
3067     DCHECK_EQ(klass->NumStaticFields(), num_sfields);
3068     klass->SetIFieldsPtr(ifields);
3069     DCHECK_EQ(klass->NumInstanceFields(), num_ifields);
3070     // Load methods.
3071     klass->SetMethodsPtr(
3072         AllocArtMethodArray(self, allocator, it.NumDirectMethods() + it.NumVirtualMethods()),
3073         it.NumDirectMethods(),
3074         it.NumVirtualMethods());
3075     size_t class_def_method_index = 0;
3076     uint32_t last_dex_method_index = DexFile::kDexNoIndex;
3077     size_t last_class_def_method_index = 0;
3078     // TODO These should really use the iterators.
3079     for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
3080       ArtMethod* method = klass->GetDirectMethodUnchecked(i, image_pointer_size_);
3081       LoadMethod(self, dex_file, it, klass, method);
3082       LinkCode(method, oat_class, class_def_method_index);
3083       uint32_t it_method_index = it.GetMemberIndex();
3084       if (last_dex_method_index == it_method_index) {
3085         // duplicate case
3086         method->SetMethodIndex(last_class_def_method_index);
3087       } else {
3088         method->SetMethodIndex(class_def_method_index);
3089         last_dex_method_index = it_method_index;
3090         last_class_def_method_index = class_def_method_index;
3091       }
3092       class_def_method_index++;
3093     }
3094     for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) {
3095       ArtMethod* method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
3096       LoadMethod(self, dex_file, it, klass, method);
3097       DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i);
3098       LinkCode(method, oat_class, class_def_method_index);
3099       class_def_method_index++;
3100     }
3101     DCHECK(!it.HasNext());
3102   }
3103   // Ensure that the card is marked so that remembered sets pick up native roots.
3104   Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass.Get());
3105   self->AllowThreadSuspension();
3106 }
3107 
LoadField(const ClassDataItemIterator & it,Handle<mirror::Class> klass,ArtField * dst)3108 void ClassLinker::LoadField(const ClassDataItemIterator& it,
3109                             Handle<mirror::Class> klass,
3110                             ArtField* dst) {
3111   const uint32_t field_idx = it.GetMemberIndex();
3112   dst->SetDexFieldIndex(field_idx);
3113   dst->SetDeclaringClass(klass.Get());
3114   dst->SetAccessFlags(it.GetFieldAccessFlags());
3115 }
3116 
LoadMethod(Thread * self,const DexFile & dex_file,const ClassDataItemIterator & it,Handle<mirror::Class> klass,ArtMethod * dst)3117 void ClassLinker::LoadMethod(Thread* self,
3118                              const DexFile& dex_file,
3119                              const ClassDataItemIterator& it,
3120                              Handle<mirror::Class> klass,
3121                              ArtMethod* dst) {
3122   uint32_t dex_method_idx = it.GetMemberIndex();
3123   const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
3124   const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_);
3125 
3126   ScopedAssertNoThreadSuspension ants(self, "LoadMethod");
3127   dst->SetDexMethodIndex(dex_method_idx);
3128   dst->SetDeclaringClass(klass.Get());
3129   dst->SetCodeItemOffset(it.GetMethodCodeItemOffset());
3130 
3131   dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods(), image_pointer_size_);
3132   dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes(), image_pointer_size_);
3133 
3134   uint32_t access_flags = it.GetMethodAccessFlags();
3135 
3136   if (UNLIKELY(strcmp("finalize", method_name) == 0)) {
3137     // Set finalizable flag on declaring class.
3138     if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) {
3139       // Void return type.
3140       if (klass->GetClassLoader() != nullptr) {  // All non-boot finalizer methods are flagged.
3141         klass->SetFinalizable();
3142       } else {
3143         std::string temp;
3144         const char* klass_descriptor = klass->GetDescriptor(&temp);
3145         // The Enum class declares a "final" finalize() method to prevent subclasses from
3146         // introducing a finalizer. We don't want to set the finalizable flag for Enum or its
3147         // subclasses, so we exclude it here.
3148         // We also want to avoid setting the flag on Object, where we know that finalize() is
3149         // empty.
3150         if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 &&
3151             strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) {
3152           klass->SetFinalizable();
3153         }
3154       }
3155     }
3156   } else if (method_name[0] == '<') {
3157     // Fix broken access flags for initializers. Bug 11157540.
3158     bool is_init = (strcmp("<init>", method_name) == 0);
3159     bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0);
3160     if (UNLIKELY(!is_init && !is_clinit)) {
3161       LOG(WARNING) << "Unexpected '<' at start of method name " << method_name;
3162     } else {
3163       if (UNLIKELY((access_flags & kAccConstructor) == 0)) {
3164         LOG(WARNING) << method_name << " didn't have expected constructor access flag in class "
3165             << PrettyDescriptor(klass.Get()) << " in dex file " << dex_file.GetLocation();
3166         access_flags |= kAccConstructor;
3167       }
3168     }
3169   }
3170   dst->SetAccessFlags(access_flags);
3171 }
3172 
AppendToBootClassPath(Thread * self,const DexFile & dex_file)3173 void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile& dex_file) {
3174   StackHandleScope<1> hs(self);
3175   Handle<mirror::DexCache> dex_cache(hs.NewHandle(AllocDexCache(
3176       self,
3177       dex_file,
3178       Runtime::Current()->GetLinearAlloc())));
3179   CHECK(dex_cache.Get() != nullptr) << "Failed to allocate dex cache for "
3180                                     << dex_file.GetLocation();
3181   AppendToBootClassPath(dex_file, dex_cache);
3182 }
3183 
AppendToBootClassPath(const DexFile & dex_file,Handle<mirror::DexCache> dex_cache)3184 void ClassLinker::AppendToBootClassPath(const DexFile& dex_file,
3185                                         Handle<mirror::DexCache> dex_cache) {
3186   CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation();
3187   boot_class_path_.push_back(&dex_file);
3188   RegisterDexFile(dex_file, dex_cache);
3189 }
3190 
RegisterDexFileLocked(const DexFile & dex_file,Handle<mirror::DexCache> dex_cache)3191 void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file,
3192                                         Handle<mirror::DexCache> dex_cache) {
3193   Thread* const self = Thread::Current();
3194   dex_lock_.AssertExclusiveHeld(self);
3195   CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation();
3196   // For app images, the dex cache location may be a suffix of the dex file location since the
3197   // dex file location is an absolute path.
3198   const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8();
3199   const size_t dex_cache_length = dex_cache_location.length();
3200   CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation();
3201   std::string dex_file_location = dex_file.GetLocation();
3202   CHECK_GE(dex_file_location.length(), dex_cache_length)
3203       << dex_cache_location << " " << dex_file.GetLocation();
3204   // Take suffix.
3205   const std::string dex_file_suffix = dex_file_location.substr(
3206       dex_file_location.length() - dex_cache_length,
3207       dex_cache_length);
3208   // Example dex_cache location is SettingsProvider.apk and
3209   // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk
3210   CHECK_EQ(dex_cache_location, dex_file_suffix);
3211   // Clean up pass to remove null dex caches.
3212   // Null dex caches can occur due to class unloading and we are lazily removing null entries.
3213   JavaVMExt* const vm = self->GetJniEnv()->vm;
3214   for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) {
3215     DexCacheData data = *it;
3216     if (self->IsJWeakCleared(data.weak_root)) {
3217       vm->DeleteWeakGlobalRef(self, data.weak_root);
3218       it = dex_caches_.erase(it);
3219     } else {
3220       ++it;
3221     }
3222   }
3223   jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache.Get());
3224   dex_cache->SetDexFile(&dex_file);
3225   DexCacheData data;
3226   data.weak_root = dex_cache_jweak;
3227   data.dex_file = dex_cache->GetDexFile();
3228   data.resolved_types = dex_cache->GetResolvedTypes();
3229   dex_caches_.push_back(data);
3230 }
3231 
RegisterDexFile(const DexFile & dex_file,mirror::ClassLoader * class_loader)3232 mirror::DexCache* ClassLinker::RegisterDexFile(const DexFile& dex_file,
3233                                                mirror::ClassLoader* class_loader) {
3234   Thread* self = Thread::Current();
3235   {
3236     ReaderMutexLock mu(self, dex_lock_);
3237     mirror::DexCache* dex_cache = FindDexCacheLocked(self, dex_file, true);
3238     if (dex_cache != nullptr) {
3239       return dex_cache;
3240     }
3241   }
3242   LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader);
3243   DCHECK(linear_alloc != nullptr);
3244   ClassTable* table;
3245   {
3246     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3247     table = InsertClassTableForClassLoader(class_loader);
3248   }
3249   // Don't alloc while holding the lock, since allocation may need to
3250   // suspend all threads and another thread may need the dex_lock_ to
3251   // get to a suspend point.
3252   StackHandleScope<1> hs(self);
3253   Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(AllocDexCache(self, dex_file, linear_alloc)));
3254   {
3255     WriterMutexLock mu(self, dex_lock_);
3256     mirror::DexCache* dex_cache = FindDexCacheLocked(self, dex_file, true);
3257     if (dex_cache != nullptr) {
3258       return dex_cache;
3259     }
3260     if (h_dex_cache.Get() == nullptr) {
3261       self->AssertPendingOOMException();
3262       return nullptr;
3263     }
3264     RegisterDexFileLocked(dex_file, h_dex_cache);
3265   }
3266   table->InsertStrongRoot(h_dex_cache.Get());
3267   return h_dex_cache.Get();
3268 }
3269 
RegisterDexFile(const DexFile & dex_file,Handle<mirror::DexCache> dex_cache)3270 void ClassLinker::RegisterDexFile(const DexFile& dex_file,
3271                                   Handle<mirror::DexCache> dex_cache) {
3272   WriterMutexLock mu(Thread::Current(), dex_lock_);
3273   RegisterDexFileLocked(dex_file, dex_cache);
3274 }
3275 
FindDexCache(Thread * self,const DexFile & dex_file,bool allow_failure)3276 mirror::DexCache* ClassLinker::FindDexCache(Thread* self,
3277                                             const DexFile& dex_file,
3278                                             bool allow_failure) {
3279   ReaderMutexLock mu(self, dex_lock_);
3280   return FindDexCacheLocked(self, dex_file, allow_failure);
3281 }
3282 
FindDexCacheLocked(Thread * self,const DexFile & dex_file,bool allow_failure)3283 mirror::DexCache* ClassLinker::FindDexCacheLocked(Thread* self,
3284                                                   const DexFile& dex_file,
3285                                                   bool allow_failure) {
3286   // Search assuming unique-ness of dex file.
3287   for (const DexCacheData& data : dex_caches_) {
3288     // Avoid decoding (and read barriers) other unrelated dex caches.
3289     if (data.dex_file == &dex_file) {
3290       mirror::DexCache* dex_cache =
3291           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
3292       if (dex_cache != nullptr) {
3293         return dex_cache;
3294       } else {
3295         break;
3296       }
3297     }
3298   }
3299   if (allow_failure) {
3300     return nullptr;
3301   }
3302   std::string location(dex_file.GetLocation());
3303   // Failure, dump diagnostic and abort.
3304   for (const DexCacheData& data : dex_caches_) {
3305     mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
3306     if (dex_cache != nullptr) {
3307       LOG(ERROR) << "Registered dex file " << dex_cache->GetDexFile()->GetLocation();
3308     }
3309   }
3310   LOG(FATAL) << "Failed to find DexCache for DexFile " << location;
3311   UNREACHABLE();
3312 }
3313 
FixupDexCaches(ArtMethod * resolution_method)3314 void ClassLinker::FixupDexCaches(ArtMethod* resolution_method) {
3315   Thread* const self = Thread::Current();
3316   ReaderMutexLock mu(self, dex_lock_);
3317   for (const DexCacheData& data : dex_caches_) {
3318     if (!self->IsJWeakCleared(data.weak_root)) {
3319       mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(
3320           self->DecodeJObject(data.weak_root));
3321       if (dex_cache != nullptr) {
3322         dex_cache->Fixup(resolution_method, image_pointer_size_);
3323       }
3324     }
3325   }
3326 }
3327 
CreatePrimitiveClass(Thread * self,Primitive::Type type)3328 mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) {
3329   mirror::Class* klass = AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_));
3330   if (UNLIKELY(klass == nullptr)) {
3331     self->AssertPendingOOMException();
3332     return nullptr;
3333   }
3334   return InitializePrimitiveClass(klass, type);
3335 }
3336 
InitializePrimitiveClass(mirror::Class * primitive_class,Primitive::Type type)3337 mirror::Class* ClassLinker::InitializePrimitiveClass(mirror::Class* primitive_class,
3338                                                      Primitive::Type type) {
3339   CHECK(primitive_class != nullptr);
3340   // Must hold lock on object when initializing.
3341   Thread* self = Thread::Current();
3342   StackHandleScope<1> hs(self);
3343   Handle<mirror::Class> h_class(hs.NewHandle(primitive_class));
3344   ObjectLock<mirror::Class> lock(self, h_class);
3345   h_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
3346   h_class->SetPrimitiveType(type);
3347   mirror::Class::SetStatus(h_class, mirror::Class::kStatusInitialized, self);
3348   const char* descriptor = Primitive::Descriptor(type);
3349   mirror::Class* existing = InsertClass(descriptor, h_class.Get(),
3350                                         ComputeModifiedUtf8Hash(descriptor));
3351   CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed";
3352   return h_class.Get();
3353 }
3354 
3355 // Create an array class (i.e. the class object for the array, not the
3356 // array itself).  "descriptor" looks like "[C" or "[[[[B" or
3357 // "[Ljava/lang/String;".
3358 //
3359 // If "descriptor" refers to an array of primitives, look up the
3360 // primitive type's internally-generated class object.
3361 //
3362 // "class_loader" is the class loader of the class that's referring to
3363 // us.  It's used to ensure that we're looking for the element type in
3364 // the right context.  It does NOT become the class loader for the
3365 // array class; that always comes from the base element class.
3366 //
3367 // Returns null with an exception raised on failure.
CreateArrayClass(Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader)3368 mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash,
3369                                              Handle<mirror::ClassLoader> class_loader) {
3370   // Identify the underlying component type
3371   CHECK_EQ('[', descriptor[0]);
3372   StackHandleScope<2> hs(self);
3373   MutableHandle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1,
3374                                                                      class_loader)));
3375   if (component_type.Get() == nullptr) {
3376     DCHECK(self->IsExceptionPending());
3377     // We need to accept erroneous classes as component types.
3378     const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1);
3379     component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get()));
3380     if (component_type.Get() == nullptr) {
3381       DCHECK(self->IsExceptionPending());
3382       return nullptr;
3383     } else {
3384       self->ClearException();
3385     }
3386   }
3387   if (UNLIKELY(component_type->IsPrimitiveVoid())) {
3388     ThrowNoClassDefFoundError("Attempt to create array of void primitive type");
3389     return nullptr;
3390   }
3391   // See if the component type is already loaded.  Array classes are
3392   // always associated with the class loader of their underlying
3393   // element type -- an array of Strings goes with the loader for
3394   // java/lang/String -- so we need to look for it there.  (The
3395   // caller should have checked for the existence of the class
3396   // before calling here, but they did so with *their* class loader,
3397   // not the component type's loader.)
3398   //
3399   // If we find it, the caller adds "loader" to the class' initiating
3400   // loader list, which should prevent us from going through this again.
3401   //
3402   // This call is unnecessary if "loader" and "component_type->GetClassLoader()"
3403   // are the same, because our caller (FindClass) just did the
3404   // lookup.  (Even if we get this wrong we still have correct behavior,
3405   // because we effectively do this lookup again when we add the new
3406   // class to the hash table --- necessary because of possible races with
3407   // other threads.)
3408   if (class_loader.Get() != component_type->GetClassLoader()) {
3409     mirror::Class* new_class = LookupClass(self, descriptor, hash, component_type->GetClassLoader());
3410     if (new_class != nullptr) {
3411       return new_class;
3412     }
3413   }
3414 
3415   // Fill out the fields in the Class.
3416   //
3417   // It is possible to execute some methods against arrays, because
3418   // all arrays are subclasses of java_lang_Object_, so we need to set
3419   // up a vtable.  We can just point at the one in java_lang_Object_.
3420   //
3421   // Array classes are simple enough that we don't need to do a full
3422   // link step.
3423   auto new_class = hs.NewHandle<mirror::Class>(nullptr);
3424   if (UNLIKELY(!init_done_)) {
3425     // Classes that were hand created, ie not by FindSystemClass
3426     if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) {
3427       new_class.Assign(GetClassRoot(kClassArrayClass));
3428     } else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) {
3429       new_class.Assign(GetClassRoot(kObjectArrayClass));
3430     } else if (strcmp(descriptor, GetClassRootDescriptor(kJavaLangStringArrayClass)) == 0) {
3431       new_class.Assign(GetClassRoot(kJavaLangStringArrayClass));
3432     } else if (strcmp(descriptor, "[C") == 0) {
3433       new_class.Assign(GetClassRoot(kCharArrayClass));
3434     } else if (strcmp(descriptor, "[I") == 0) {
3435       new_class.Assign(GetClassRoot(kIntArrayClass));
3436     } else if (strcmp(descriptor, "[J") == 0) {
3437       new_class.Assign(GetClassRoot(kLongArrayClass));
3438     }
3439   }
3440   if (new_class.Get() == nullptr) {
3441     new_class.Assign(AllocClass(self, mirror::Array::ClassSize(image_pointer_size_)));
3442     if (new_class.Get() == nullptr) {
3443       self->AssertPendingOOMException();
3444       return nullptr;
3445     }
3446     new_class->SetComponentType(component_type.Get());
3447   }
3448   ObjectLock<mirror::Class> lock(self, new_class);  // Must hold lock on object when initializing.
3449   DCHECK(new_class->GetComponentType() != nullptr);
3450   mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject);
3451   new_class->SetSuperClass(java_lang_Object);
3452   new_class->SetVTable(java_lang_Object->GetVTable());
3453   new_class->SetPrimitiveType(Primitive::kPrimNot);
3454   new_class->SetClassLoader(component_type->GetClassLoader());
3455   if (component_type->IsPrimitive()) {
3456     new_class->SetClassFlags(mirror::kClassFlagNoReferenceFields);
3457   } else {
3458     new_class->SetClassFlags(mirror::kClassFlagObjectArray);
3459   }
3460   mirror::Class::SetStatus(new_class, mirror::Class::kStatusLoaded, self);
3461   new_class->PopulateEmbeddedVTable(image_pointer_size_);
3462   ImTable* object_imt = java_lang_Object->GetImt(image_pointer_size_);
3463   new_class->SetImt(object_imt, image_pointer_size_);
3464   mirror::Class::SetStatus(new_class, mirror::Class::kStatusInitialized, self);
3465   // don't need to set new_class->SetObjectSize(..)
3466   // because Object::SizeOf delegates to Array::SizeOf
3467 
3468   // All arrays have java/lang/Cloneable and java/io/Serializable as
3469   // interfaces.  We need to set that up here, so that stuff like
3470   // "instanceof" works right.
3471   //
3472   // Note: The GC could run during the call to FindSystemClass,
3473   // so we need to make sure the class object is GC-valid while we're in
3474   // there.  Do this by clearing the interface list so the GC will just
3475   // think that the entries are null.
3476 
3477 
3478   // Use the single, global copies of "interfaces" and "iftable"
3479   // (remember not to free them for arrays).
3480   {
3481     mirror::IfTable* array_iftable = array_iftable_.Read();
3482     CHECK(array_iftable != nullptr);
3483     new_class->SetIfTable(array_iftable);
3484   }
3485 
3486   // Inherit access flags from the component type.
3487   int access_flags = new_class->GetComponentType()->GetAccessFlags();
3488   // Lose any implementation detail flags; in particular, arrays aren't finalizable.
3489   access_flags &= kAccJavaFlagsMask;
3490   // Arrays can't be used as a superclass or interface, so we want to add "abstract final"
3491   // and remove "interface".
3492   access_flags |= kAccAbstract | kAccFinal;
3493   access_flags &= ~kAccInterface;
3494 
3495   new_class->SetAccessFlags(access_flags);
3496 
3497   mirror::Class* existing = InsertClass(descriptor, new_class.Get(), hash);
3498   if (existing == nullptr) {
3499     jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get());
3500     return new_class.Get();
3501   }
3502   // Another thread must have loaded the class after we
3503   // started but before we finished.  Abandon what we've
3504   // done.
3505   //
3506   // (Yes, this happens.)
3507 
3508   return existing;
3509 }
3510 
FindPrimitiveClass(char type)3511 mirror::Class* ClassLinker::FindPrimitiveClass(char type) {
3512   switch (type) {
3513     case 'B':
3514       return GetClassRoot(kPrimitiveByte);
3515     case 'C':
3516       return GetClassRoot(kPrimitiveChar);
3517     case 'D':
3518       return GetClassRoot(kPrimitiveDouble);
3519     case 'F':
3520       return GetClassRoot(kPrimitiveFloat);
3521     case 'I':
3522       return GetClassRoot(kPrimitiveInt);
3523     case 'J':
3524       return GetClassRoot(kPrimitiveLong);
3525     case 'S':
3526       return GetClassRoot(kPrimitiveShort);
3527     case 'Z':
3528       return GetClassRoot(kPrimitiveBoolean);
3529     case 'V':
3530       return GetClassRoot(kPrimitiveVoid);
3531     default:
3532       break;
3533   }
3534   std::string printable_type(PrintableChar(type));
3535   ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
3536   return nullptr;
3537 }
3538 
InsertClass(const char * descriptor,mirror::Class * klass,size_t hash)3539 mirror::Class* ClassLinker::InsertClass(const char* descriptor, mirror::Class* klass, size_t hash) {
3540   if (VLOG_IS_ON(class_linker)) {
3541     mirror::DexCache* dex_cache = klass->GetDexCache();
3542     std::string source;
3543     if (dex_cache != nullptr) {
3544       source += " from ";
3545       source += dex_cache->GetLocation()->ToModifiedUtf8();
3546     }
3547     LOG(INFO) << "Loaded class " << descriptor << source;
3548   }
3549   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3550   mirror::ClassLoader* const class_loader = klass->GetClassLoader();
3551   ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
3552   mirror::Class* existing = class_table->Lookup(descriptor, hash);
3553   if (existing != nullptr) {
3554     return existing;
3555   }
3556   if (kIsDebugBuild &&
3557       !klass->IsTemp() &&
3558       class_loader == nullptr &&
3559       dex_cache_boot_image_class_lookup_required_) {
3560     // Check a class loaded with the system class loader matches one in the image if the class
3561     // is in the image.
3562     existing = LookupClassFromBootImage(descriptor);
3563     if (existing != nullptr) {
3564       CHECK_EQ(klass, existing);
3565     }
3566   }
3567   VerifyObject(klass);
3568   class_table->InsertWithHash(klass, hash);
3569   if (class_loader != nullptr) {
3570     // This is necessary because we need to have the card dirtied for remembered sets.
3571     Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
3572   }
3573   if (log_new_class_table_roots_) {
3574     new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
3575   }
3576   return nullptr;
3577 }
3578 
3579 // TODO This should really be in mirror::Class.
UpdateClassMethods(mirror::Class * klass,LengthPrefixedArray<ArtMethod> * new_methods)3580 void ClassLinker::UpdateClassMethods(mirror::Class* klass,
3581                                      LengthPrefixedArray<ArtMethod>* new_methods) {
3582   klass->SetMethodsPtrUnchecked(new_methods,
3583                                 klass->NumDirectMethods(),
3584                                 klass->NumDeclaredVirtualMethods());
3585   // Need to mark the card so that the remembered sets and mod union tables get updated.
3586   Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass);
3587 }
3588 
RemoveClass(const char * descriptor,mirror::ClassLoader * class_loader)3589 bool ClassLinker::RemoveClass(const char* descriptor, mirror::ClassLoader* class_loader) {
3590   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3591   ClassTable* const class_table = ClassTableForClassLoader(class_loader);
3592   return class_table != nullptr && class_table->Remove(descriptor);
3593 }
3594 
LookupClass(Thread * self,const char * descriptor,size_t hash,mirror::ClassLoader * class_loader)3595 mirror::Class* ClassLinker::LookupClass(Thread* self,
3596                                         const char* descriptor,
3597                                         size_t hash,
3598                                         mirror::ClassLoader* class_loader) {
3599   {
3600     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3601     ClassTable* const class_table = ClassTableForClassLoader(class_loader);
3602     if (class_table != nullptr) {
3603       mirror::Class* result = class_table->Lookup(descriptor, hash);
3604       if (result != nullptr) {
3605         return result;
3606       }
3607     }
3608   }
3609   if (class_loader != nullptr || !dex_cache_boot_image_class_lookup_required_) {
3610     return nullptr;
3611   }
3612   // Lookup failed but need to search dex_caches_.
3613   mirror::Class* result = LookupClassFromBootImage(descriptor);
3614   if (result != nullptr) {
3615     result = InsertClass(descriptor, result, hash);
3616   } else {
3617     // Searching the image dex files/caches failed, we don't want to get into this situation
3618     // often as map searches are faster, so after kMaxFailedDexCacheLookups move all image
3619     // classes into the class table.
3620     constexpr uint32_t kMaxFailedDexCacheLookups = 1000;
3621     if (++failed_dex_cache_class_lookups_ > kMaxFailedDexCacheLookups) {
3622       AddBootImageClassesToClassTable();
3623     }
3624   }
3625   return result;
3626 }
3627 
GetImageDexCaches(std::vector<gc::space::ImageSpace * > image_spaces)3628 static std::vector<mirror::ObjectArray<mirror::DexCache>*> GetImageDexCaches(
3629     std::vector<gc::space::ImageSpace*> image_spaces) SHARED_REQUIRES(Locks::mutator_lock_) {
3630   CHECK(!image_spaces.empty());
3631   std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector;
3632   for (gc::space::ImageSpace* image_space : image_spaces) {
3633     mirror::Object* root = image_space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches);
3634     DCHECK(root != nullptr);
3635     dex_caches_vector.push_back(root->AsObjectArray<mirror::DexCache>());
3636   }
3637   return dex_caches_vector;
3638 }
3639 
AddBootImageClassesToClassTable()3640 void ClassLinker::AddBootImageClassesToClassTable() {
3641   if (dex_cache_boot_image_class_lookup_required_) {
3642     AddImageClassesToClassTable(Runtime::Current()->GetHeap()->GetBootImageSpaces(),
3643                                 /*class_loader*/nullptr);
3644     dex_cache_boot_image_class_lookup_required_ = false;
3645   }
3646 }
3647 
AddImageClassesToClassTable(std::vector<gc::space::ImageSpace * > image_spaces,mirror::ClassLoader * class_loader)3648 void ClassLinker::AddImageClassesToClassTable(std::vector<gc::space::ImageSpace*> image_spaces,
3649                                               mirror::ClassLoader* class_loader) {
3650   Thread* self = Thread::Current();
3651   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3652   ScopedAssertNoThreadSuspension ants(self, "Moving image classes to class table");
3653 
3654   ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
3655 
3656   std::string temp;
3657   std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector =
3658       GetImageDexCaches(image_spaces);
3659   for (mirror::ObjectArray<mirror::DexCache>* dex_caches : dex_caches_vector) {
3660     for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
3661       mirror::DexCache* dex_cache = dex_caches->Get(i);
3662       GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
3663       for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) {
3664         mirror::Class* klass = types[j].Read();
3665         if (klass != nullptr) {
3666           DCHECK_EQ(klass->GetClassLoader(), class_loader);
3667           const char* descriptor = klass->GetDescriptor(&temp);
3668           size_t hash = ComputeModifiedUtf8Hash(descriptor);
3669           mirror::Class* existing = class_table->Lookup(descriptor, hash);
3670           if (existing != nullptr) {
3671             CHECK_EQ(existing, klass) << PrettyClassAndClassLoader(existing) << " != "
3672                 << PrettyClassAndClassLoader(klass);
3673           } else {
3674             class_table->Insert(klass);
3675             if (log_new_class_table_roots_) {
3676               new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
3677             }
3678           }
3679         }
3680       }
3681     }
3682   }
3683 }
3684 
3685 class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor {
3686  public:
MoveClassTableToPreZygoteVisitor()3687   explicit MoveClassTableToPreZygoteVisitor() {}
3688 
Visit(mirror::ClassLoader * class_loader)3689   void Visit(mirror::ClassLoader* class_loader)
3690       REQUIRES(Locks::classlinker_classes_lock_)
3691       SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE {
3692     ClassTable* const class_table = class_loader->GetClassTable();
3693     if (class_table != nullptr) {
3694       class_table->FreezeSnapshot();
3695     }
3696   }
3697 };
3698 
MoveClassTableToPreZygote()3699 void ClassLinker::MoveClassTableToPreZygote() {
3700   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3701   boot_class_table_.FreezeSnapshot();
3702   MoveClassTableToPreZygoteVisitor visitor;
3703   VisitClassLoaders(&visitor);
3704 }
3705 
LookupClassFromBootImage(const char * descriptor)3706 mirror::Class* ClassLinker::LookupClassFromBootImage(const char* descriptor) {
3707   ScopedAssertNoThreadSuspension ants(Thread::Current(), "Image class lookup");
3708   std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector =
3709       GetImageDexCaches(Runtime::Current()->GetHeap()->GetBootImageSpaces());
3710   for (mirror::ObjectArray<mirror::DexCache>* dex_caches : dex_caches_vector) {
3711     for (int32_t i = 0; i < dex_caches->GetLength(); ++i) {
3712       mirror::DexCache* dex_cache = dex_caches->Get(i);
3713       const DexFile* dex_file = dex_cache->GetDexFile();
3714       // Try binary searching the type index by descriptor.
3715       const DexFile::TypeId* type_id = dex_file->FindTypeId(descriptor);
3716       if (type_id != nullptr) {
3717         uint16_t type_idx = dex_file->GetIndexForTypeId(*type_id);
3718         mirror::Class* klass = dex_cache->GetResolvedType(type_idx);
3719         if (klass != nullptr) {
3720           return klass;
3721         }
3722       }
3723     }
3724   }
3725   return nullptr;
3726 }
3727 
3728 // Look up classes by hash and descriptor and put all matching ones in the result array.
3729 class LookupClassesVisitor : public ClassLoaderVisitor {
3730  public:
LookupClassesVisitor(const char * descriptor,size_t hash,std::vector<mirror::Class * > * result)3731   LookupClassesVisitor(const char* descriptor, size_t hash, std::vector<mirror::Class*>* result)
3732      : descriptor_(descriptor),
3733        hash_(hash),
3734        result_(result) {}
3735 
Visit(mirror::ClassLoader * class_loader)3736   void Visit(mirror::ClassLoader* class_loader)
3737       SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
3738     ClassTable* const class_table = class_loader->GetClassTable();
3739     mirror::Class* klass = class_table->Lookup(descriptor_, hash_);
3740     if (klass != nullptr) {
3741       result_->push_back(klass);
3742     }
3743   }
3744 
3745  private:
3746   const char* const descriptor_;
3747   const size_t hash_;
3748   std::vector<mirror::Class*>* const result_;
3749 };
3750 
LookupClasses(const char * descriptor,std::vector<mirror::Class * > & result)3751 void ClassLinker::LookupClasses(const char* descriptor, std::vector<mirror::Class*>& result) {
3752   result.clear();
3753   if (dex_cache_boot_image_class_lookup_required_) {
3754     AddBootImageClassesToClassTable();
3755   }
3756   Thread* const self = Thread::Current();
3757   ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3758   const size_t hash = ComputeModifiedUtf8Hash(descriptor);
3759   mirror::Class* klass = boot_class_table_.Lookup(descriptor, hash);
3760   if (klass != nullptr) {
3761     result.push_back(klass);
3762   }
3763   LookupClassesVisitor visitor(descriptor, hash, &result);
3764   VisitClassLoaders(&visitor);
3765 }
3766 
AttemptSupertypeVerification(Thread * self,Handle<mirror::Class> klass,Handle<mirror::Class> supertype)3767 bool ClassLinker::AttemptSupertypeVerification(Thread* self,
3768                                                Handle<mirror::Class> klass,
3769                                                Handle<mirror::Class> supertype) {
3770   DCHECK(self != nullptr);
3771   DCHECK(klass.Get() != nullptr);
3772   DCHECK(supertype.Get() != nullptr);
3773 
3774   if (!supertype->IsVerified() && !supertype->IsErroneous()) {
3775     VerifyClass(self, supertype);
3776   }
3777   if (supertype->IsCompileTimeVerified()) {
3778     // Either we are verified or we soft failed and need to retry at runtime.
3779     return true;
3780   }
3781   // If we got this far then we have a hard failure.
3782   std::string error_msg =
3783       StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s",
3784                    PrettyDescriptor(klass.Get()).c_str(),
3785                    PrettyDescriptor(supertype.Get()).c_str());
3786   LOG(WARNING) << error_msg  << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
3787   StackHandleScope<1> hs(self);
3788   Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
3789   if (cause.Get() != nullptr) {
3790     // Set during VerifyClass call (if at all).
3791     self->ClearException();
3792   }
3793   // Change into a verify error.
3794   ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
3795   if (cause.Get() != nullptr) {
3796     self->GetException()->SetCause(cause.Get());
3797   }
3798   ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex());
3799   if (Runtime::Current()->IsAotCompiler()) {
3800     Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
3801   }
3802   // Need to grab the lock to change status.
3803   ObjectLock<mirror::Class> super_lock(self, klass);
3804   mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
3805   return false;
3806 }
3807 
VerifyClass(Thread * self,Handle<mirror::Class> klass,LogSeverity log_level)3808 void ClassLinker::VerifyClass(Thread* self, Handle<mirror::Class> klass, LogSeverity log_level) {
3809   {
3810     // TODO: assert that the monitor on the Class is held
3811     ObjectLock<mirror::Class> lock(self, klass);
3812 
3813     // Is somebody verifying this now?
3814     mirror::Class::Status old_status = klass->GetStatus();
3815     while (old_status == mirror::Class::kStatusVerifying ||
3816         old_status == mirror::Class::kStatusVerifyingAtRuntime) {
3817       lock.WaitIgnoringInterrupts();
3818       CHECK(klass->IsErroneous() || (klass->GetStatus() > old_status))
3819           << "Class '" << PrettyClass(klass.Get()) << "' performed an illegal verification state "
3820           << "transition from " << old_status << " to " << klass->GetStatus();
3821       old_status = klass->GetStatus();
3822     }
3823 
3824     // The class might already be erroneous, for example at compile time if we attempted to verify
3825     // this class as a parent to another.
3826     if (klass->IsErroneous()) {
3827       ThrowEarlierClassFailure(klass.Get());
3828       return;
3829     }
3830 
3831     // Don't attempt to re-verify if already sufficiently verified.
3832     if (klass->IsVerified()) {
3833       EnsureSkipAccessChecksMethods(klass);
3834       return;
3835     }
3836     if (klass->IsCompileTimeVerified() && Runtime::Current()->IsAotCompiler()) {
3837       return;
3838     }
3839 
3840     if (klass->GetStatus() == mirror::Class::kStatusResolved) {
3841       mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifying, self);
3842     } else {
3843       CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime)
3844             << PrettyClass(klass.Get());
3845       CHECK(!Runtime::Current()->IsAotCompiler());
3846       mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifyingAtRuntime, self);
3847     }
3848 
3849     // Skip verification if disabled.
3850     if (!Runtime::Current()->IsVerificationEnabled()) {
3851       mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3852       EnsureSkipAccessChecksMethods(klass);
3853       return;
3854     }
3855   }
3856 
3857   // Verify super class.
3858   StackHandleScope<2> hs(self);
3859   MutableHandle<mirror::Class> supertype(hs.NewHandle(klass->GetSuperClass()));
3860   // If we have a superclass and we get a hard verification failure we can return immediately.
3861   if (supertype.Get() != nullptr && !AttemptSupertypeVerification(self, klass, supertype)) {
3862     CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
3863     return;
3864   }
3865 
3866   // Verify all default super-interfaces.
3867   //
3868   // (1) Don't bother if the superclass has already had a soft verification failure.
3869   //
3870   // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause
3871   //     recursive initialization by themselves. This is because when an interface is initialized
3872   //     directly it must not initialize its superinterfaces. We are allowed to verify regardless
3873   //     but choose not to for an optimization. If the interfaces is being verified due to a class
3874   //     initialization (which would need all the default interfaces to be verified) the class code
3875   //     will trigger the recursive verification anyway.
3876   if ((supertype.Get() == nullptr || supertype->IsVerified())  // See (1)
3877       && !klass->IsInterface()) {                              // See (2)
3878     int32_t iftable_count = klass->GetIfTableCount();
3879     MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
3880     // Loop through all interfaces this class has defined. It doesn't matter the order.
3881     for (int32_t i = 0; i < iftable_count; i++) {
3882       iface.Assign(klass->GetIfTable()->GetInterface(i));
3883       DCHECK(iface.Get() != nullptr);
3884       // We only care if we have default interfaces and can skip if we are already verified...
3885       if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) {
3886         continue;
3887       } else if (UNLIKELY(!AttemptSupertypeVerification(self, klass, iface))) {
3888         // We had a hard failure while verifying this interface. Just return immediately.
3889         CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
3890         return;
3891       } else if (UNLIKELY(!iface->IsVerified())) {
3892         // We softly failed to verify the iface. Stop checking and clean up.
3893         // Put the iface into the supertype handle so we know what caused us to fail.
3894         supertype.Assign(iface.Get());
3895         break;
3896       }
3897     }
3898   }
3899 
3900   // At this point if verification failed, then supertype is the "first" supertype that failed
3901   // verification (without a specific order). If verification succeeded, then supertype is either
3902   // null or the original superclass of klass and is verified.
3903   DCHECK(supertype.Get() == nullptr ||
3904          supertype.Get() == klass->GetSuperClass() ||
3905          !supertype->IsVerified());
3906 
3907   // Try to use verification information from the oat file, otherwise do runtime verification.
3908   const DexFile& dex_file = *klass->GetDexCache()->GetDexFile();
3909   mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady);
3910   bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status);
3911   // If the oat file says the class had an error, re-run the verifier. That way we will get a
3912   // precise error message. To ensure a rerun, test:
3913   //     oat_file_class_status == mirror::Class::kStatusError => !preverified
3914   DCHECK(!(oat_file_class_status == mirror::Class::kStatusError) || !preverified);
3915 
3916   verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure;
3917   std::string error_msg;
3918   if (!preverified) {
3919     Runtime* runtime = Runtime::Current();
3920     verifier_failure = verifier::MethodVerifier::VerifyClass(self,
3921                                                              klass.Get(),
3922                                                              runtime->GetCompilerCallbacks(),
3923                                                              runtime->IsAotCompiler(),
3924                                                              log_level,
3925                                                              &error_msg);
3926   }
3927 
3928   // Verification is done, grab the lock again.
3929   ObjectLock<mirror::Class> lock(self, klass);
3930 
3931   if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) {
3932     if (!preverified && verifier_failure != verifier::MethodVerifier::kNoFailure) {
3933       VLOG(class_linker) << "Soft verification failure in class " << PrettyDescriptor(klass.Get())
3934           << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
3935           << " because: " << error_msg;
3936     }
3937     self->AssertNoPendingException();
3938     // Make sure all classes referenced by catch blocks are resolved.
3939     ResolveClassExceptionHandlerTypes(klass);
3940     if (verifier_failure == verifier::MethodVerifier::kNoFailure) {
3941       // Even though there were no verifier failures we need to respect whether the super-class and
3942       // super-default-interfaces were verified or requiring runtime reverification.
3943       if (supertype.Get() == nullptr || supertype->IsVerified()) {
3944         mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3945       } else {
3946         CHECK_EQ(supertype->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
3947         mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
3948         // Pretend a soft failure occurred so that we don't consider the class verified below.
3949         verifier_failure = verifier::MethodVerifier::kSoftFailure;
3950       }
3951     } else {
3952       CHECK_EQ(verifier_failure, verifier::MethodVerifier::kSoftFailure);
3953       // Soft failures at compile time should be retried at runtime. Soft
3954       // failures at runtime will be handled by slow paths in the generated
3955       // code. Set status accordingly.
3956       if (Runtime::Current()->IsAotCompiler()) {
3957         mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
3958       } else {
3959         mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3960         // As this is a fake verified status, make sure the methods are _not_ marked
3961         // kAccSkipAccessChecks later.
3962         klass->SetVerificationAttempted();
3963       }
3964     }
3965   } else {
3966     VLOG(verifier) << "Verification failed on class " << PrettyDescriptor(klass.Get())
3967                   << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
3968                   << " because: " << error_msg;
3969     self->AssertNoPendingException();
3970     ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
3971     mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
3972   }
3973   if (preverified || verifier_failure == verifier::MethodVerifier::kNoFailure) {
3974     // Class is verified so we don't need to do any access check on its methods.
3975     // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each
3976     // method.
3977     // Note: we're going here during compilation and at runtime. When we set the
3978     // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded
3979     // in the image and is set when loading the image.
3980 
3981     if (UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) {
3982       // Never skip access checks if the verification soft fail is forced.
3983       // Mark the class as having a verification attempt to avoid re-running the verifier.
3984       klass->SetVerificationAttempted();
3985     } else {
3986       EnsureSkipAccessChecksMethods(klass);
3987     }
3988   }
3989 }
3990 
EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass)3991 void ClassLinker::EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass) {
3992   if (!klass->WasVerificationAttempted()) {
3993     klass->SetSkipAccessChecksFlagOnAllMethods(image_pointer_size_);
3994     klass->SetVerificationAttempted();
3995   }
3996 }
3997 
VerifyClassUsingOatFile(const DexFile & dex_file,mirror::Class * klass,mirror::Class::Status & oat_file_class_status)3998 bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file,
3999                                           mirror::Class* klass,
4000                                           mirror::Class::Status& oat_file_class_status) {
4001   // If we're compiling, we can only verify the class using the oat file if
4002   // we are not compiling the image or if the class we're verifying is not part of
4003   // the app.  In other words, we will only check for preverification of bootclasspath
4004   // classes.
4005   if (Runtime::Current()->IsAotCompiler()) {
4006     // Are we compiling the bootclasspath?
4007     if (Runtime::Current()->GetCompilerCallbacks()->IsBootImage()) {
4008       return false;
4009     }
4010     // We are compiling an app (not the image).
4011 
4012     // Is this an app class? (I.e. not a bootclasspath class)
4013     if (klass->GetClassLoader() != nullptr) {
4014       return false;
4015     }
4016   }
4017 
4018   const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
4019   // In case we run without an image there won't be a backing oat file.
4020   if (oat_dex_file == nullptr) {
4021     return false;
4022   }
4023 
4024   // We may be running with a preopted oat file but without image. In this case,
4025   // we don't skip verification of skip_access_checks classes to ensure we initialize
4026   // dex caches with all types resolved during verification.
4027   // We need to trust image classes, as these might be coming out of a pre-opted, quickened boot
4028   // image (that we just failed loading), and the verifier can't be run on quickened opcodes when
4029   // the runtime isn't started. On the other hand, app classes can be re-verified even if they are
4030   // already pre-opted, as then the runtime is started.
4031   if (!Runtime::Current()->IsAotCompiler() &&
4032       !Runtime::Current()->GetHeap()->HasBootImageSpace() &&
4033       klass->GetClassLoader() != nullptr) {
4034     return false;
4035   }
4036 
4037   uint16_t class_def_index = klass->GetDexClassDefIndex();
4038   oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
4039   if (oat_file_class_status == mirror::Class::kStatusVerified ||
4040       oat_file_class_status == mirror::Class::kStatusInitialized) {
4041     return true;
4042   }
4043   // If we only verified a subset of the classes at compile time, we can end up with classes that
4044   // were resolved by the verifier.
4045   if (oat_file_class_status == mirror::Class::kStatusResolved) {
4046     return false;
4047   }
4048   if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) {
4049     // Compile time verification failed with a soft error. Compile time verification can fail
4050     // because we have incomplete type information. Consider the following:
4051     // class ... {
4052     //   Foo x;
4053     //   .... () {
4054     //     if (...) {
4055     //       v1 gets assigned a type of resolved class Foo
4056     //     } else {
4057     //       v1 gets assigned a type of unresolved class Bar
4058     //     }
4059     //     iput x = v1
4060     // } }
4061     // when we merge v1 following the if-the-else it results in Conflict
4062     // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be
4063     // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as
4064     // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk
4065     // at compile time).
4066     return false;
4067   }
4068   if (oat_file_class_status == mirror::Class::kStatusError) {
4069     // Compile time verification failed with a hard error. This is caused by invalid instructions
4070     // in the class. These errors are unrecoverable.
4071     return false;
4072   }
4073   if (oat_file_class_status == mirror::Class::kStatusNotReady) {
4074     // Status is uninitialized if we couldn't determine the status at compile time, for example,
4075     // not loading the class.
4076     // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
4077     // isn't a problem and this case shouldn't occur
4078     return false;
4079   }
4080   std::string temp;
4081   LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
4082              << " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " "
4083              << klass->GetDescriptor(&temp);
4084   UNREACHABLE();
4085 }
4086 
ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass)4087 void ClassLinker::ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass) {
4088   for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) {
4089     ResolveMethodExceptionHandlerTypes(&method);
4090   }
4091 }
4092 
ResolveMethodExceptionHandlerTypes(ArtMethod * method)4093 void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) {
4094   // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
4095   const DexFile::CodeItem* code_item =
4096       method->GetDexFile()->GetCodeItem(method->GetCodeItemOffset());
4097   if (code_item == nullptr) {
4098     return;  // native or abstract method
4099   }
4100   if (code_item->tries_size_ == 0) {
4101     return;  // nothing to process
4102   }
4103   const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
4104   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
4105   for (uint32_t idx = 0; idx < handlers_size; idx++) {
4106     CatchHandlerIterator iterator(handlers_ptr);
4107     for (; iterator.HasNext(); iterator.Next()) {
4108       // Ensure exception types are resolved so that they don't need resolution to be delivered,
4109       // unresolved exception types will be ignored by exception delivery
4110       if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
4111         mirror::Class* exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method);
4112         if (exception_type == nullptr) {
4113           DCHECK(Thread::Current()->IsExceptionPending());
4114           Thread::Current()->ClearException();
4115         }
4116       }
4117     }
4118     handlers_ptr = iterator.EndDataPointer();
4119   }
4120 }
4121 
CreateProxyClass(ScopedObjectAccessAlreadyRunnable & soa,jstring name,jobjectArray interfaces,jobject loader,jobjectArray methods,jobjectArray throws)4122 mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa,
4123                                              jstring name,
4124                                              jobjectArray interfaces,
4125                                              jobject loader,
4126                                              jobjectArray methods,
4127                                              jobjectArray throws) {
4128   Thread* self = soa.Self();
4129   StackHandleScope<10> hs(self);
4130   MutableHandle<mirror::Class> klass(hs.NewHandle(
4131       AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class))));
4132   if (klass.Get() == nullptr) {
4133     CHECK(self->IsExceptionPending());  // OOME.
4134     return nullptr;
4135   }
4136   DCHECK(klass->GetClass() != nullptr);
4137   klass->SetObjectSize(sizeof(mirror::Proxy));
4138   // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on
4139   // the methods.
4140   klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted);
4141   klass->SetClassLoader(soa.Decode<mirror::ClassLoader*>(loader));
4142   DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
4143   klass->SetName(soa.Decode<mirror::String*>(name));
4144   klass->SetDexCache(GetClassRoot(kJavaLangReflectProxy)->GetDexCache());
4145   mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, self);
4146   std::string descriptor(GetDescriptorForProxy(klass.Get()));
4147   const size_t hash = ComputeModifiedUtf8Hash(descriptor.c_str());
4148 
4149   // Needs to be before we insert the class so that the allocator field is set.
4150   LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(klass->GetClassLoader());
4151 
4152   // Insert the class before loading the fields as the field roots
4153   // (ArtField::declaring_class_) are only visited from the class
4154   // table. There can't be any suspend points between inserting the
4155   // class and setting the field arrays below.
4156   mirror::Class* existing = InsertClass(descriptor.c_str(), klass.Get(), hash);
4157   CHECK(existing == nullptr);
4158 
4159   // Instance fields are inherited, but we add a couple of static fields...
4160   const size_t num_fields = 2;
4161   LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, num_fields);
4162   klass->SetSFieldsPtr(sfields);
4163 
4164   // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
4165   // our proxy, so Class.getInterfaces doesn't return the flattened set.
4166   ArtField& interfaces_sfield = sfields->At(0);
4167   interfaces_sfield.SetDexFieldIndex(0);
4168   interfaces_sfield.SetDeclaringClass(klass.Get());
4169   interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4170 
4171   // 2. Create a static field 'throws' that holds exceptions thrown by our methods.
4172   ArtField& throws_sfield = sfields->At(1);
4173   throws_sfield.SetDexFieldIndex(1);
4174   throws_sfield.SetDeclaringClass(klass.Get());
4175   throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4176 
4177   // Proxies have 1 direct method, the constructor
4178   const size_t num_direct_methods = 1;
4179 
4180   // They have as many virtual methods as the array
4181   auto h_methods = hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Method>*>(methods));
4182   DCHECK_EQ(h_methods->GetClass(), mirror::Method::ArrayClass())
4183       << PrettyClass(h_methods->GetClass());
4184   const size_t num_virtual_methods = h_methods->GetLength();
4185 
4186   // Create the methods array.
4187   LengthPrefixedArray<ArtMethod>* proxy_class_methods = AllocArtMethodArray(
4188         self, allocator, num_direct_methods + num_virtual_methods);
4189   // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we
4190   // want to throw OOM in the future.
4191   if (UNLIKELY(proxy_class_methods == nullptr)) {
4192     self->AssertPendingOOMException();
4193     return nullptr;
4194   }
4195   klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods);
4196 
4197   // Create the single direct method.
4198   CreateProxyConstructor(klass, klass->GetDirectMethodUnchecked(0, image_pointer_size_));
4199 
4200   // Create virtual method using specified prototypes.
4201   // TODO These should really use the iterators.
4202   for (size_t i = 0; i < num_virtual_methods; ++i) {
4203     auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4204     auto* prototype = h_methods->Get(i)->GetArtMethod();
4205     CreateProxyMethod(klass, prototype, virtual_method);
4206     DCHECK(virtual_method->GetDeclaringClass() != nullptr);
4207     DCHECK(prototype->GetDeclaringClass() != nullptr);
4208   }
4209 
4210   // The super class is java.lang.reflect.Proxy
4211   klass->SetSuperClass(GetClassRoot(kJavaLangReflectProxy));
4212   // Now effectively in the loaded state.
4213   mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, self);
4214   self->AssertNoPendingException();
4215 
4216   MutableHandle<mirror::Class> new_class = hs.NewHandle<mirror::Class>(nullptr);
4217   {
4218     // Must hold lock on object when resolved.
4219     ObjectLock<mirror::Class> resolution_lock(self, klass);
4220     // Link the fields and virtual methods, creating vtable and iftables.
4221     // The new class will replace the old one in the class table.
4222     Handle<mirror::ObjectArray<mirror::Class>> h_interfaces(
4223         hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces)));
4224     if (!LinkClass(self, descriptor.c_str(), klass, h_interfaces, &new_class)) {
4225       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4226       return nullptr;
4227     }
4228   }
4229   CHECK(klass->IsRetired());
4230   CHECK_NE(klass.Get(), new_class.Get());
4231   klass.Assign(new_class.Get());
4232 
4233   CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get());
4234   interfaces_sfield.SetObject<false>(klass.Get(),
4235                                      soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
4236   CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get());
4237   throws_sfield.SetObject<false>(
4238       klass.Get(), soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class> >*>(throws));
4239 
4240   {
4241     // Lock on klass is released. Lock new class object.
4242     ObjectLock<mirror::Class> initialization_lock(self, klass);
4243     mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4244   }
4245 
4246   // sanity checks
4247   if (kIsDebugBuild) {
4248     CHECK(klass->GetIFieldsPtr() == nullptr);
4249     CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_));
4250 
4251     for (size_t i = 0; i < num_virtual_methods; ++i) {
4252       auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4253       auto* prototype = h_methods->Get(i++)->GetArtMethod();
4254       CheckProxyMethod(virtual_method, prototype);
4255     }
4256 
4257     StackHandleScope<1> hs2(self);
4258     Handle<mirror::String> decoded_name = hs2.NewHandle(soa.Decode<mirror::String*>(name));
4259     std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
4260                                                    decoded_name->ToModifiedUtf8().c_str()));
4261     CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name);
4262 
4263     std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
4264                                                decoded_name->ToModifiedUtf8().c_str()));
4265     CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name);
4266 
4267     CHECK_EQ(klass.Get()->GetInterfaces(),
4268              soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
4269     CHECK_EQ(klass.Get()->GetThrows(),
4270              soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>*>(throws));
4271   }
4272   return klass.Get();
4273 }
4274 
GetDescriptorForProxy(mirror::Class * proxy_class)4275 std::string ClassLinker::GetDescriptorForProxy(mirror::Class* proxy_class) {
4276   DCHECK(proxy_class->IsProxyClass());
4277   mirror::String* name = proxy_class->GetName();
4278   DCHECK(name != nullptr);
4279   return DotToDescriptor(name->ToModifiedUtf8().c_str());
4280 }
4281 
FindMethodForProxy(mirror::Class * proxy_class,ArtMethod * proxy_method)4282 ArtMethod* ClassLinker::FindMethodForProxy(mirror::Class* proxy_class, ArtMethod* proxy_method) {
4283   DCHECK(proxy_class->IsProxyClass());
4284   DCHECK(proxy_method->IsProxyMethod());
4285   {
4286     Thread* const self = Thread::Current();
4287     ReaderMutexLock mu(self, dex_lock_);
4288     // Locate the dex cache of the original interface/Object
4289     for (const DexCacheData& data : dex_caches_) {
4290       if (!self->IsJWeakCleared(data.weak_root) &&
4291           proxy_method->HasSameDexCacheResolvedTypes(data.resolved_types,
4292                                                      image_pointer_size_)) {
4293         mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(
4294             self->DecodeJObject(data.weak_root));
4295         if (dex_cache != nullptr) {
4296           ArtMethod* resolved_method = dex_cache->GetResolvedMethod(
4297               proxy_method->GetDexMethodIndex(), image_pointer_size_);
4298           CHECK(resolved_method != nullptr);
4299           return resolved_method;
4300         }
4301       }
4302     }
4303   }
4304   LOG(FATAL) << "Didn't find dex cache for " << PrettyClass(proxy_class) << " "
4305       << PrettyMethod(proxy_method);
4306   UNREACHABLE();
4307 }
4308 
CreateProxyConstructor(Handle<mirror::Class> klass,ArtMethod * out)4309 void ClassLinker::CreateProxyConstructor(Handle<mirror::Class> klass, ArtMethod* out) {
4310   // Create constructor for Proxy that must initialize the method.
4311   CHECK_EQ(GetClassRoot(kJavaLangReflectProxy)->NumDirectMethods(), 18u);
4312   ArtMethod* proxy_constructor = GetClassRoot(kJavaLangReflectProxy)->GetDirectMethodUnchecked(
4313       2, image_pointer_size_);
4314   DCHECK_EQ(std::string(proxy_constructor->GetName()), "<init>");
4315   // Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden
4316   // constructor method.
4317   GetClassRoot(kJavaLangReflectProxy)->GetDexCache()->SetResolvedMethod(
4318       proxy_constructor->GetDexMethodIndex(), proxy_constructor, image_pointer_size_);
4319   // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
4320   // code_ too)
4321   DCHECK(out != nullptr);
4322   out->CopyFrom(proxy_constructor, image_pointer_size_);
4323   // Make this constructor public and fix the class to be our Proxy version
4324   out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic);
4325   out->SetDeclaringClass(klass.Get());
4326 }
4327 
CheckProxyConstructor(ArtMethod * constructor) const4328 void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const {
4329   CHECK(constructor->IsConstructor());
4330   auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_);
4331   CHECK_STREQ(np->GetName(), "<init>");
4332   CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V");
4333   DCHECK(constructor->IsPublic());
4334 }
4335 
CreateProxyMethod(Handle<mirror::Class> klass,ArtMethod * prototype,ArtMethod * out)4336 void ClassLinker::CreateProxyMethod(Handle<mirror::Class> klass, ArtMethod* prototype,
4337                                     ArtMethod* out) {
4338   // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden
4339   // prototype method
4340   auto* dex_cache = prototype->GetDeclaringClass()->GetDexCache();
4341   // Avoid dirtying the dex cache unless we need to.
4342   if (dex_cache->GetResolvedMethod(prototype->GetDexMethodIndex(), image_pointer_size_) !=
4343       prototype) {
4344     dex_cache->SetResolvedMethod(
4345         prototype->GetDexMethodIndex(), prototype, image_pointer_size_);
4346   }
4347   // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
4348   // as necessary
4349   DCHECK(out != nullptr);
4350   out->CopyFrom(prototype, image_pointer_size_);
4351 
4352   // Set class to be the concrete proxy class.
4353   out->SetDeclaringClass(klass.Get());
4354   // Clear the abstract, default and conflict flags to ensure that defaults aren't picked in
4355   // preference to the invocation handler.
4356   const uint32_t kRemoveFlags = kAccAbstract | kAccDefault | kAccDefaultConflict;
4357   // Make the method final.
4358   const uint32_t kAddFlags = kAccFinal;
4359   out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags);
4360 
4361   // Clear the dex_code_item_offset_. It needs to be 0 since proxy methods have no CodeItems but the
4362   // method they copy might (if it's a default method).
4363   out->SetCodeItemOffset(0);
4364 
4365   // At runtime the method looks like a reference and argument saving method, clone the code
4366   // related parameters from this method.
4367   out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler());
4368 }
4369 
CheckProxyMethod(ArtMethod * method,ArtMethod * prototype) const4370 void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const {
4371   // Basic sanity
4372   CHECK(!prototype->IsFinal());
4373   CHECK(method->IsFinal());
4374   CHECK(method->IsInvokable());
4375 
4376   // The proxy method doesn't have its own dex cache or dex file and so it steals those of its
4377   // interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
4378   CHECK(prototype->HasSameDexCacheResolvedMethods(method, image_pointer_size_));
4379   CHECK(prototype->HasSameDexCacheResolvedTypes(method, image_pointer_size_));
4380   auto* np = method->GetInterfaceMethodIfProxy(image_pointer_size_);
4381   CHECK_EQ(prototype->GetDeclaringClass()->GetDexCache(), np->GetDexCache());
4382   CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
4383 
4384   CHECK_STREQ(np->GetName(), prototype->GetName());
4385   CHECK_STREQ(np->GetShorty(), prototype->GetShorty());
4386   // More complex sanity - via dex cache
4387   CHECK_EQ(np->GetReturnType(true /* resolve */, image_pointer_size_),
4388            prototype->GetReturnType(true /* resolve */, image_pointer_size_));
4389 }
4390 
CanWeInitializeClass(mirror::Class * klass,bool can_init_statics,bool can_init_parents)4391 bool ClassLinker::CanWeInitializeClass(mirror::Class* klass, bool can_init_statics,
4392                                        bool can_init_parents) {
4393   if (can_init_statics && can_init_parents) {
4394     return true;
4395   }
4396   if (!can_init_statics) {
4397     // Check if there's a class initializer.
4398     ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4399     if (clinit != nullptr) {
4400       return false;
4401     }
4402     // Check if there are encoded static values needing initialization.
4403     if (klass->NumStaticFields() != 0) {
4404       const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4405       DCHECK(dex_class_def != nullptr);
4406       if (dex_class_def->static_values_off_ != 0) {
4407         return false;
4408       }
4409     }
4410     // If we are a class we need to initialize all interfaces with default methods when we are
4411     // initialized. Check all of them.
4412     if (!klass->IsInterface()) {
4413       size_t num_interfaces = klass->GetIfTableCount();
4414       for (size_t i = 0; i < num_interfaces; i++) {
4415         mirror::Class* iface = klass->GetIfTable()->GetInterface(i);
4416         if (iface->HasDefaultMethods() &&
4417             !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) {
4418           return false;
4419         }
4420       }
4421     }
4422   }
4423   if (klass->IsInterface() || !klass->HasSuperClass()) {
4424     return true;
4425   }
4426   mirror::Class* super_class = klass->GetSuperClass();
4427   if (!can_init_parents && !super_class->IsInitialized()) {
4428     return false;
4429   }
4430   return CanWeInitializeClass(super_class, can_init_statics, can_init_parents);
4431 }
4432 
InitializeClass(Thread * self,Handle<mirror::Class> klass,bool can_init_statics,bool can_init_parents)4433 bool ClassLinker::InitializeClass(Thread* self, Handle<mirror::Class> klass,
4434                                   bool can_init_statics, bool can_init_parents) {
4435   // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
4436 
4437   // Are we already initialized and therefore done?
4438   // Note: we differ from the JLS here as we don't do this under the lock, this is benign as
4439   // an initialized class will never change its state.
4440   if (klass->IsInitialized()) {
4441     return true;
4442   }
4443 
4444   // Fast fail if initialization requires a full runtime. Not part of the JLS.
4445   if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) {
4446     return false;
4447   }
4448 
4449   self->AllowThreadSuspension();
4450   uint64_t t0;
4451   {
4452     ObjectLock<mirror::Class> lock(self, klass);
4453 
4454     // Re-check under the lock in case another thread initialized ahead of us.
4455     if (klass->IsInitialized()) {
4456       return true;
4457     }
4458 
4459     // Was the class already found to be erroneous? Done under the lock to match the JLS.
4460     if (klass->IsErroneous()) {
4461       ThrowEarlierClassFailure(klass.Get(), true);
4462       VlogClassInitializationFailure(klass);
4463       return false;
4464     }
4465 
4466     CHECK(klass->IsResolved()) << PrettyClass(klass.Get()) << ": state=" << klass->GetStatus();
4467 
4468     if (!klass->IsVerified()) {
4469       VerifyClass(self, klass);
4470       if (!klass->IsVerified()) {
4471         // We failed to verify, expect either the klass to be erroneous or verification failed at
4472         // compile time.
4473         if (klass->IsErroneous()) {
4474           // The class is erroneous. This may be a verifier error, or another thread attempted
4475           // verification and/or initialization and failed. We can distinguish those cases by
4476           // whether an exception is already pending.
4477           if (self->IsExceptionPending()) {
4478             // Check that it's a VerifyError.
4479             DCHECK_EQ("java.lang.Class<java.lang.VerifyError>",
4480                       PrettyClass(self->GetException()->GetClass()));
4481           } else {
4482             // Check that another thread attempted initialization.
4483             DCHECK_NE(0, klass->GetClinitThreadId());
4484             DCHECK_NE(self->GetTid(), klass->GetClinitThreadId());
4485             // Need to rethrow the previous failure now.
4486             ThrowEarlierClassFailure(klass.Get(), true);
4487           }
4488           VlogClassInitializationFailure(klass);
4489         } else {
4490           CHECK(Runtime::Current()->IsAotCompiler());
4491           CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
4492         }
4493         return false;
4494       } else {
4495         self->AssertNoPendingException();
4496       }
4497 
4498       // A separate thread could have moved us all the way to initialized. A "simple" example
4499       // involves a subclass of the current class being initialized at the same time (which
4500       // will implicitly initialize the superclass, if scheduled that way). b/28254258
4501       DCHECK_NE(mirror::Class::kStatusError, klass->GetStatus());
4502       if (klass->IsInitialized()) {
4503         return true;
4504       }
4505     }
4506 
4507     // If the class is kStatusInitializing, either this thread is
4508     // initializing higher up the stack or another thread has beat us
4509     // to initializing and we need to wait. Either way, this
4510     // invocation of InitializeClass will not be responsible for
4511     // running <clinit> and will return.
4512     if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4513       // Could have got an exception during verification.
4514       if (self->IsExceptionPending()) {
4515         VlogClassInitializationFailure(klass);
4516         return false;
4517       }
4518       // We caught somebody else in the act; was it us?
4519       if (klass->GetClinitThreadId() == self->GetTid()) {
4520         // Yes. That's fine. Return so we can continue initializing.
4521         return true;
4522       }
4523       // No. That's fine. Wait for another thread to finish initializing.
4524       return WaitForInitializeClass(klass, self, lock);
4525     }
4526 
4527     if (!ValidateSuperClassDescriptors(klass)) {
4528       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4529       return false;
4530     }
4531     self->AllowThreadSuspension();
4532 
4533     CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << PrettyClass(klass.Get())
4534         << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId();
4535 
4536     // From here out other threads may observe that we're initializing and so changes of state
4537     // require the a notification.
4538     klass->SetClinitThreadId(self->GetTid());
4539     mirror::Class::SetStatus(klass, mirror::Class::kStatusInitializing, self);
4540 
4541     t0 = NanoTime();
4542   }
4543 
4544   // Initialize super classes, must be done while initializing for the JLS.
4545   if (!klass->IsInterface() && klass->HasSuperClass()) {
4546     mirror::Class* super_class = klass->GetSuperClass();
4547     if (!super_class->IsInitialized()) {
4548       CHECK(!super_class->IsInterface());
4549       CHECK(can_init_parents);
4550       StackHandleScope<1> hs(self);
4551       Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
4552       bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true);
4553       if (!super_initialized) {
4554         // The super class was verified ahead of entering initializing, we should only be here if
4555         // the super class became erroneous due to initialization.
4556         CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending())
4557             << "Super class initialization failed for "
4558             << PrettyDescriptor(handle_scope_super.Get())
4559             << " that has unexpected status " << handle_scope_super->GetStatus()
4560             << "\nPending exception:\n"
4561             << (self->GetException() != nullptr ? self->GetException()->Dump() : "");
4562         ObjectLock<mirror::Class> lock(self, klass);
4563         // Initialization failed because the super-class is erroneous.
4564         mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4565         return false;
4566       }
4567     }
4568   }
4569 
4570   if (!klass->IsInterface()) {
4571     // Initialize interfaces with default methods for the JLS.
4572     size_t num_direct_interfaces = klass->NumDirectInterfaces();
4573     // Only setup the (expensive) handle scope if we actually need to.
4574     if (UNLIKELY(num_direct_interfaces > 0)) {
4575       StackHandleScope<1> hs_iface(self);
4576       MutableHandle<mirror::Class> handle_scope_iface(hs_iface.NewHandle<mirror::Class>(nullptr));
4577       for (size_t i = 0; i < num_direct_interfaces; i++) {
4578         handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass, i));
4579         CHECK(handle_scope_iface.Get() != nullptr);
4580         CHECK(handle_scope_iface->IsInterface());
4581         if (handle_scope_iface->HasBeenRecursivelyInitialized()) {
4582           // We have already done this for this interface. Skip it.
4583           continue;
4584         }
4585         // We cannot just call initialize class directly because we need to ensure that ALL
4586         // interfaces with default methods are initialized. Non-default interface initialization
4587         // will not affect other non-default super-interfaces.
4588         bool iface_initialized = InitializeDefaultInterfaceRecursive(self,
4589                                                                      handle_scope_iface,
4590                                                                      can_init_statics,
4591                                                                      can_init_parents);
4592         if (!iface_initialized) {
4593           ObjectLock<mirror::Class> lock(self, klass);
4594           // Initialization failed because one of our interfaces with default methods is erroneous.
4595           mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4596           return false;
4597         }
4598       }
4599     }
4600   }
4601 
4602   const size_t num_static_fields = klass->NumStaticFields();
4603   if (num_static_fields > 0) {
4604     const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4605     CHECK(dex_class_def != nullptr);
4606     const DexFile& dex_file = klass->GetDexFile();
4607     StackHandleScope<3> hs(self);
4608     Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
4609     Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
4610 
4611     // Eagerly fill in static fields so that the we don't have to do as many expensive
4612     // Class::FindStaticField in ResolveField.
4613     for (size_t i = 0; i < num_static_fields; ++i) {
4614       ArtField* field = klass->GetStaticField(i);
4615       const uint32_t field_idx = field->GetDexFieldIndex();
4616       ArtField* resolved_field = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
4617       if (resolved_field == nullptr) {
4618         dex_cache->SetResolvedField(field_idx, field, image_pointer_size_);
4619       } else {
4620         DCHECK_EQ(field, resolved_field);
4621       }
4622     }
4623 
4624     EncodedStaticFieldValueIterator value_it(dex_file, &dex_cache, &class_loader,
4625                                              this, *dex_class_def);
4626     const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
4627     ClassDataItemIterator field_it(dex_file, class_data);
4628     if (value_it.HasNext()) {
4629       DCHECK(field_it.HasNextStaticField());
4630       CHECK(can_init_statics);
4631       for ( ; value_it.HasNext(); value_it.Next(), field_it.Next()) {
4632         ArtField* field = ResolveField(
4633             dex_file, field_it.GetMemberIndex(), dex_cache, class_loader, true);
4634         if (Runtime::Current()->IsActiveTransaction()) {
4635           value_it.ReadValueToField<true>(field);
4636         } else {
4637           value_it.ReadValueToField<false>(field);
4638         }
4639         if (self->IsExceptionPending()) {
4640           break;
4641         }
4642         DCHECK(!value_it.HasNext() || field_it.HasNextStaticField());
4643       }
4644     }
4645   }
4646 
4647 
4648   if (!self->IsExceptionPending()) {
4649     ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4650     if (clinit != nullptr) {
4651       CHECK(can_init_statics);
4652       JValue result;
4653       clinit->Invoke(self, nullptr, 0, &result, "V");
4654     }
4655   }
4656   self->AllowThreadSuspension();
4657   uint64_t t1 = NanoTime();
4658 
4659   bool success = true;
4660   {
4661     ObjectLock<mirror::Class> lock(self, klass);
4662 
4663     if (self->IsExceptionPending()) {
4664       WrapExceptionInInitializer(klass);
4665       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4666       success = false;
4667     } else if (Runtime::Current()->IsTransactionAborted()) {
4668       // The exception thrown when the transaction aborted has been caught and cleared
4669       // so we need to throw it again now.
4670       VLOG(compiler) << "Return from class initializer of " << PrettyDescriptor(klass.Get())
4671                      << " without exception while transaction was aborted: re-throw it now.";
4672       Runtime::Current()->ThrowTransactionAbortError(self);
4673       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4674       success = false;
4675     } else {
4676       RuntimeStats* global_stats = Runtime::Current()->GetStats();
4677       RuntimeStats* thread_stats = self->GetStats();
4678       ++global_stats->class_init_count;
4679       ++thread_stats->class_init_count;
4680       global_stats->class_init_time_ns += (t1 - t0);
4681       thread_stats->class_init_time_ns += (t1 - t0);
4682       // Set the class as initialized except if failed to initialize static fields.
4683       mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4684       if (VLOG_IS_ON(class_linker)) {
4685         std::string temp;
4686         LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " <<
4687             klass->GetLocation();
4688       }
4689       // Opportunistically set static method trampolines to their destination.
4690       FixupStaticTrampolines(klass.Get());
4691     }
4692   }
4693   return success;
4694 }
4695 
4696 // We recursively run down the tree of interfaces. We need to do this in the order they are declared
4697 // and perform the initialization only on those interfaces that contain default methods.
InitializeDefaultInterfaceRecursive(Thread * self,Handle<mirror::Class> iface,bool can_init_statics,bool can_init_parents)4698 bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self,
4699                                                       Handle<mirror::Class> iface,
4700                                                       bool can_init_statics,
4701                                                       bool can_init_parents) {
4702   CHECK(iface->IsInterface());
4703   size_t num_direct_ifaces = iface->NumDirectInterfaces();
4704   // Only create the (expensive) handle scope if we need it.
4705   if (UNLIKELY(num_direct_ifaces > 0)) {
4706     StackHandleScope<1> hs(self);
4707     MutableHandle<mirror::Class> handle_super_iface(hs.NewHandle<mirror::Class>(nullptr));
4708     // First we initialize all of iface's super-interfaces recursively.
4709     for (size_t i = 0; i < num_direct_ifaces; i++) {
4710       mirror::Class* super_iface = mirror::Class::GetDirectInterface(self, iface, i);
4711       if (!super_iface->HasBeenRecursivelyInitialized()) {
4712         // Recursive step
4713         handle_super_iface.Assign(super_iface);
4714         if (!InitializeDefaultInterfaceRecursive(self,
4715                                                  handle_super_iface,
4716                                                  can_init_statics,
4717                                                  can_init_parents)) {
4718           return false;
4719         }
4720       }
4721     }
4722   }
4723 
4724   bool result = true;
4725   // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not)
4726   // initialize if we don't have default methods.
4727   if (iface->HasDefaultMethods()) {
4728     result = EnsureInitialized(self, iface, can_init_statics, can_init_parents);
4729   }
4730 
4731   // Mark that this interface has undergone recursive default interface initialization so we know we
4732   // can skip it on any later class initializations. We do this even if we are not a default
4733   // interface since we can still avoid the traversal. This is purely a performance optimization.
4734   if (result) {
4735     // TODO This should be done in a better way
4736     ObjectLock<mirror::Class> lock(self, iface);
4737     iface->SetRecursivelyInitialized();
4738   }
4739   return result;
4740 }
4741 
WaitForInitializeClass(Handle<mirror::Class> klass,Thread * self,ObjectLock<mirror::Class> & lock)4742 bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass,
4743                                          Thread* self,
4744                                          ObjectLock<mirror::Class>& lock)
4745     SHARED_REQUIRES(Locks::mutator_lock_) {
4746   while (true) {
4747     self->AssertNoPendingException();
4748     CHECK(!klass->IsInitialized());
4749     lock.WaitIgnoringInterrupts();
4750 
4751     // When we wake up, repeat the test for init-in-progress.  If
4752     // there's an exception pending (only possible if
4753     // we were not using WaitIgnoringInterrupts), bail out.
4754     if (self->IsExceptionPending()) {
4755       WrapExceptionInInitializer(klass);
4756       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4757       return false;
4758     }
4759     // Spurious wakeup? Go back to waiting.
4760     if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4761       continue;
4762     }
4763     if (klass->GetStatus() == mirror::Class::kStatusVerified &&
4764         Runtime::Current()->IsAotCompiler()) {
4765       // Compile time initialization failed.
4766       return false;
4767     }
4768     if (klass->IsErroneous()) {
4769       // The caller wants an exception, but it was thrown in a
4770       // different thread.  Synthesize one here.
4771       ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
4772                                 PrettyDescriptor(klass.Get()).c_str());
4773       VlogClassInitializationFailure(klass);
4774       return false;
4775     }
4776     if (klass->IsInitialized()) {
4777       return true;
4778     }
4779     LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass.Get()) << " is "
4780         << klass->GetStatus();
4781   }
4782   UNREACHABLE();
4783 }
4784 
ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,ArtMethod * m)4785 static void ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,
4786                                                           Handle<mirror::Class> super_klass,
4787                                                           ArtMethod* method,
4788                                                           ArtMethod* m)
4789     SHARED_REQUIRES(Locks::mutator_lock_) {
4790   DCHECK(Thread::Current()->IsExceptionPending());
4791   DCHECK(!m->IsProxyMethod());
4792   const DexFile* dex_file = m->GetDexFile();
4793   const DexFile::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex());
4794   const DexFile::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id);
4795   uint16_t return_type_idx = proto_id.return_type_idx_;
4796   std::string return_type = PrettyType(return_type_idx, *dex_file);
4797   std::string class_loader = PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4798   ThrowWrappedLinkageError(klass.Get(),
4799                            "While checking class %s method %s signature against %s %s: "
4800                            "Failed to resolve return type %s with %s",
4801                            PrettyDescriptor(klass.Get()).c_str(),
4802                            PrettyMethod(method).c_str(),
4803                            super_klass->IsInterface() ? "interface" : "superclass",
4804                            PrettyDescriptor(super_klass.Get()).c_str(),
4805                            return_type.c_str(), class_loader.c_str());
4806 }
4807 
ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,ArtMethod * m,uint32_t index,uint32_t arg_type_idx)4808 static void ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,
4809                                                    Handle<mirror::Class> super_klass,
4810                                                    ArtMethod* method,
4811                                                    ArtMethod* m,
4812                                                    uint32_t index,
4813                                                    uint32_t arg_type_idx)
4814     SHARED_REQUIRES(Locks::mutator_lock_) {
4815   DCHECK(Thread::Current()->IsExceptionPending());
4816   DCHECK(!m->IsProxyMethod());
4817   const DexFile* dex_file = m->GetDexFile();
4818   std::string arg_type = PrettyType(arg_type_idx, *dex_file);
4819   std::string class_loader = PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4820   ThrowWrappedLinkageError(klass.Get(),
4821                            "While checking class %s method %s signature against %s %s: "
4822                            "Failed to resolve arg %u type %s with %s",
4823                            PrettyDescriptor(klass.Get()).c_str(),
4824                            PrettyMethod(method).c_str(),
4825                            super_klass->IsInterface() ? "interface" : "superclass",
4826                            PrettyDescriptor(super_klass.Get()).c_str(),
4827                            index, arg_type.c_str(), class_loader.c_str());
4828 }
4829 
ThrowSignatureMismatch(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,const std::string & error_msg)4830 static void ThrowSignatureMismatch(Handle<mirror::Class> klass,
4831                                    Handle<mirror::Class> super_klass,
4832                                    ArtMethod* method,
4833                                    const std::string& error_msg)
4834     SHARED_REQUIRES(Locks::mutator_lock_) {
4835   ThrowLinkageError(klass.Get(),
4836                     "Class %s method %s resolves differently in %s %s: %s",
4837                     PrettyDescriptor(klass.Get()).c_str(),
4838                     PrettyMethod(method).c_str(),
4839                     super_klass->IsInterface() ? "interface" : "superclass",
4840                     PrettyDescriptor(super_klass.Get()).c_str(),
4841                     error_msg.c_str());
4842 }
4843 
HasSameSignatureWithDifferentClassLoaders(Thread * self,size_t pointer_size,Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method1,ArtMethod * method2)4844 static bool HasSameSignatureWithDifferentClassLoaders(Thread* self,
4845                                                       size_t pointer_size,
4846                                                       Handle<mirror::Class> klass,
4847                                                       Handle<mirror::Class> super_klass,
4848                                                       ArtMethod* method1,
4849                                                       ArtMethod* method2)
4850     SHARED_REQUIRES(Locks::mutator_lock_) {
4851   {
4852     StackHandleScope<1> hs(self);
4853     Handle<mirror::Class> return_type(hs.NewHandle(method1->GetReturnType(true /* resolve */,
4854                                                                           pointer_size)));
4855     if (UNLIKELY(return_type.Get() == nullptr)) {
4856       ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1);
4857       return false;
4858     }
4859     mirror::Class* other_return_type = method2->GetReturnType(true /* resolve */,
4860                                                               pointer_size);
4861     if (UNLIKELY(other_return_type == nullptr)) {
4862       ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2);
4863       return false;
4864     }
4865     if (UNLIKELY(other_return_type != return_type.Get())) {
4866       ThrowSignatureMismatch(klass, super_klass, method1,
4867                              StringPrintf("Return types mismatch: %s(%p) vs %s(%p)",
4868                                           PrettyClassAndClassLoader(return_type.Get()).c_str(),
4869                                           return_type.Get(),
4870                                           PrettyClassAndClassLoader(other_return_type).c_str(),
4871                                           other_return_type));
4872       return false;
4873     }
4874   }
4875   const DexFile::TypeList* types1 = method1->GetParameterTypeList();
4876   const DexFile::TypeList* types2 = method2->GetParameterTypeList();
4877   if (types1 == nullptr) {
4878     if (types2 != nullptr && types2->Size() != 0) {
4879       ThrowSignatureMismatch(klass, super_klass, method1,
4880                              StringPrintf("Type list mismatch with %s",
4881                                           PrettyMethod(method2, true).c_str()));
4882       return false;
4883     }
4884     return true;
4885   } else if (UNLIKELY(types2 == nullptr)) {
4886     if (types1->Size() != 0) {
4887       ThrowSignatureMismatch(klass, super_klass, method1,
4888                              StringPrintf("Type list mismatch with %s",
4889                                           PrettyMethod(method2, true).c_str()));
4890       return false;
4891     }
4892     return true;
4893   }
4894   uint32_t num_types = types1->Size();
4895   if (UNLIKELY(num_types != types2->Size())) {
4896     ThrowSignatureMismatch(klass, super_klass, method1,
4897                            StringPrintf("Type list mismatch with %s",
4898                                         PrettyMethod(method2, true).c_str()));
4899     return false;
4900   }
4901   for (uint32_t i = 0; i < num_types; ++i) {
4902     StackHandleScope<1> hs(self);
4903     uint32_t param_type_idx = types1->GetTypeItem(i).type_idx_;
4904     Handle<mirror::Class> param_type(hs.NewHandle(
4905         method1->GetClassFromTypeIndex(param_type_idx, true /* resolve */, pointer_size)));
4906     if (UNLIKELY(param_type.Get() == nullptr)) {
4907       ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
4908                                              method1, i, param_type_idx);
4909       return false;
4910     }
4911     uint32_t other_param_type_idx = types2->GetTypeItem(i).type_idx_;
4912     mirror::Class* other_param_type =
4913         method2->GetClassFromTypeIndex(other_param_type_idx, true /* resolve */, pointer_size);
4914     if (UNLIKELY(other_param_type == nullptr)) {
4915       ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
4916                                              method2, i, other_param_type_idx);
4917       return false;
4918     }
4919     if (UNLIKELY(param_type.Get() != other_param_type)) {
4920       ThrowSignatureMismatch(klass, super_klass, method1,
4921                              StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)",
4922                                           i,
4923                                           PrettyClassAndClassLoader(param_type.Get()).c_str(),
4924                                           param_type.Get(),
4925                                           PrettyClassAndClassLoader(other_param_type).c_str(),
4926                                           other_param_type));
4927       return false;
4928     }
4929   }
4930   return true;
4931 }
4932 
4933 
ValidateSuperClassDescriptors(Handle<mirror::Class> klass)4934 bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) {
4935   if (klass->IsInterface()) {
4936     return true;
4937   }
4938   // Begin with the methods local to the superclass.
4939   Thread* self = Thread::Current();
4940   StackHandleScope<1> hs(self);
4941   MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(nullptr));
4942   if (klass->HasSuperClass() &&
4943       klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
4944     super_klass.Assign(klass->GetSuperClass());
4945     for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) {
4946       auto* m = klass->GetVTableEntry(i, image_pointer_size_);
4947       auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_);
4948       if (m != super_m) {
4949         if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, image_pointer_size_,
4950                                                                 klass, super_klass,
4951                                                                 m, super_m))) {
4952           self->AssertPendingException();
4953           return false;
4954         }
4955       }
4956     }
4957   }
4958   for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
4959     super_klass.Assign(klass->GetIfTable()->GetInterface(i));
4960     if (klass->GetClassLoader() != super_klass->GetClassLoader()) {
4961       uint32_t num_methods = super_klass->NumVirtualMethods();
4962       for (uint32_t j = 0; j < num_methods; ++j) {
4963         auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>(
4964             j, image_pointer_size_);
4965         auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_);
4966         if (m != super_m) {
4967           if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, image_pointer_size_,
4968                                                                   klass, super_klass,
4969                                                                   m, super_m))) {
4970             self->AssertPendingException();
4971             return false;
4972           }
4973         }
4974       }
4975     }
4976   }
4977   return true;
4978 }
4979 
EnsureInitialized(Thread * self,Handle<mirror::Class> c,bool can_init_fields,bool can_init_parents)4980 bool ClassLinker::EnsureInitialized(Thread* self, Handle<mirror::Class> c, bool can_init_fields,
4981                                     bool can_init_parents) {
4982   DCHECK(c.Get() != nullptr);
4983   if (c->IsInitialized()) {
4984     EnsureSkipAccessChecksMethods(c);
4985     return true;
4986   }
4987   const bool success = InitializeClass(self, c, can_init_fields, can_init_parents);
4988   if (!success) {
4989     if (can_init_fields && can_init_parents) {
4990       CHECK(self->IsExceptionPending()) << PrettyClass(c.Get());
4991     }
4992   } else {
4993     self->AssertNoPendingException();
4994   }
4995   return success;
4996 }
4997 
FixupTemporaryDeclaringClass(mirror::Class * temp_class,mirror::Class * new_class)4998 void ClassLinker::FixupTemporaryDeclaringClass(mirror::Class* temp_class,
4999                                                mirror::Class* new_class) {
5000   DCHECK_EQ(temp_class->NumInstanceFields(), 0u);
5001   for (ArtField& field : new_class->GetIFields()) {
5002     if (field.GetDeclaringClass() == temp_class) {
5003       field.SetDeclaringClass(new_class);
5004     }
5005   }
5006 
5007   DCHECK_EQ(temp_class->NumStaticFields(), 0u);
5008   for (ArtField& field : new_class->GetSFields()) {
5009     if (field.GetDeclaringClass() == temp_class) {
5010       field.SetDeclaringClass(new_class);
5011     }
5012   }
5013 
5014   DCHECK_EQ(temp_class->NumDirectMethods(), 0u);
5015   DCHECK_EQ(temp_class->NumVirtualMethods(), 0u);
5016   for (auto& method : new_class->GetMethods(image_pointer_size_)) {
5017     if (method.GetDeclaringClass() == temp_class) {
5018       method.SetDeclaringClass(new_class);
5019     }
5020   }
5021 
5022   // Make sure the remembered set and mod-union tables know that we updated some of the native
5023   // roots.
5024   Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(new_class);
5025 }
5026 
RegisterClassLoader(mirror::ClassLoader * class_loader)5027 void ClassLinker::RegisterClassLoader(mirror::ClassLoader* class_loader) {
5028   CHECK(class_loader->GetAllocator() == nullptr);
5029   CHECK(class_loader->GetClassTable() == nullptr);
5030   Thread* const self = Thread::Current();
5031   ClassLoaderData data;
5032   data.weak_root = self->GetJniEnv()->vm->AddWeakGlobalRef(self, class_loader);
5033   // Create and set the class table.
5034   data.class_table = new ClassTable;
5035   class_loader->SetClassTable(data.class_table);
5036   // Create and set the linear allocator.
5037   data.allocator = Runtime::Current()->CreateLinearAlloc();
5038   class_loader->SetAllocator(data.allocator);
5039   // Add to the list so that we know to free the data later.
5040   class_loaders_.push_back(data);
5041 }
5042 
InsertClassTableForClassLoader(mirror::ClassLoader * class_loader)5043 ClassTable* ClassLinker::InsertClassTableForClassLoader(mirror::ClassLoader* class_loader) {
5044   if (class_loader == nullptr) {
5045     return &boot_class_table_;
5046   }
5047   ClassTable* class_table = class_loader->GetClassTable();
5048   if (class_table == nullptr) {
5049     RegisterClassLoader(class_loader);
5050     class_table = class_loader->GetClassTable();
5051     DCHECK(class_table != nullptr);
5052   }
5053   return class_table;
5054 }
5055 
ClassTableForClassLoader(mirror::ClassLoader * class_loader)5056 ClassTable* ClassLinker::ClassTableForClassLoader(mirror::ClassLoader* class_loader) {
5057   return class_loader == nullptr ? &boot_class_table_ : class_loader->GetClassTable();
5058 }
5059 
FindSuperImt(mirror::Class * klass,size_t pointer_size)5060 static ImTable* FindSuperImt(mirror::Class* klass, size_t pointer_size)
5061     SHARED_REQUIRES(Locks::mutator_lock_) {
5062   while (klass->HasSuperClass()) {
5063     klass = klass->GetSuperClass();
5064     if (klass->ShouldHaveImt()) {
5065       return klass->GetImt(pointer_size);
5066     }
5067   }
5068   return nullptr;
5069 }
5070 
LinkClass(Thread * self,const char * descriptor,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces,MutableHandle<mirror::Class> * h_new_class_out)5071 bool ClassLinker::LinkClass(Thread* self,
5072                             const char* descriptor,
5073                             Handle<mirror::Class> klass,
5074                             Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5075                             MutableHandle<mirror::Class>* h_new_class_out) {
5076   CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5077 
5078   if (!LinkSuperClass(klass)) {
5079     return false;
5080   }
5081   ArtMethod* imt_data[ImTable::kSize];
5082   // If there are any new conflicts compared to super class.
5083   bool new_conflict = false;
5084   std::fill_n(imt_data, arraysize(imt_data), Runtime::Current()->GetImtUnimplementedMethod());
5085   if (!LinkMethods(self, klass, interfaces, &new_conflict, imt_data)) {
5086     return false;
5087   }
5088   if (!LinkInstanceFields(self, klass)) {
5089     return false;
5090   }
5091   size_t class_size;
5092   if (!LinkStaticFields(self, klass, &class_size)) {
5093     return false;
5094   }
5095   CreateReferenceInstanceOffsets(klass);
5096   CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5097 
5098   ImTable* imt = nullptr;
5099   if (klass->ShouldHaveImt()) {
5100     // If there are any new conflicts compared to the super class we can not make a copy. There
5101     // can be cases where both will have a conflict method at the same slot without having the same
5102     // set of conflicts. In this case, we can not share the IMT since the conflict table slow path
5103     // will possibly create a table that is incorrect for either of the classes.
5104     // Same IMT with new_conflict does not happen very often.
5105     if (!new_conflict) {
5106       ImTable* super_imt = FindSuperImt(klass.Get(), image_pointer_size_);
5107       if (super_imt != nullptr) {
5108         bool imt_equals = true;
5109         for (size_t i = 0; i < ImTable::kSize && imt_equals; ++i) {
5110           imt_equals = imt_equals && (super_imt->Get(i, image_pointer_size_) == imt_data[i]);
5111         }
5112         if (imt_equals) {
5113           imt = super_imt;
5114         }
5115       }
5116     }
5117     if (imt == nullptr) {
5118       LinearAlloc* allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
5119       imt = reinterpret_cast<ImTable*>(
5120           allocator->Alloc(self, ImTable::SizeInBytes(image_pointer_size_)));
5121       if (imt == nullptr) {
5122         return false;
5123       }
5124       imt->Populate(imt_data, image_pointer_size_);
5125     }
5126   }
5127 
5128   if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) {
5129     // We don't need to retire this class as it has no embedded tables or it was created the
5130     // correct size during class linker initialization.
5131     CHECK_EQ(klass->GetClassSize(), class_size) << PrettyDescriptor(klass.Get());
5132 
5133     if (klass->ShouldHaveEmbeddedVTable()) {
5134       klass->PopulateEmbeddedVTable(image_pointer_size_);
5135     }
5136     if (klass->ShouldHaveImt()) {
5137       klass->SetImt(imt, image_pointer_size_);
5138     }
5139     // This will notify waiters on klass that saw the not yet resolved
5140     // class in the class_table_ during EnsureResolved.
5141     mirror::Class::SetStatus(klass, mirror::Class::kStatusResolved, self);
5142     h_new_class_out->Assign(klass.Get());
5143   } else {
5144     CHECK(!klass->IsResolved());
5145     // Retire the temporary class and create the correctly sized resolved class.
5146     StackHandleScope<1> hs(self);
5147     auto h_new_class = hs.NewHandle(klass->CopyOf(self, class_size, imt, image_pointer_size_));
5148     // Set arrays to null since we don't want to have multiple classes with the same ArtField or
5149     // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC
5150     // may not see any references to the target space and clean the card for a class if another
5151     // class had the same array pointer.
5152     klass->SetMethodsPtrUnchecked(nullptr, 0, 0);
5153     klass->SetSFieldsPtrUnchecked(nullptr);
5154     klass->SetIFieldsPtrUnchecked(nullptr);
5155     if (UNLIKELY(h_new_class.Get() == nullptr)) {
5156       self->AssertPendingOOMException();
5157       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
5158       return false;
5159     }
5160 
5161     CHECK_EQ(h_new_class->GetClassSize(), class_size);
5162     ObjectLock<mirror::Class> lock(self, h_new_class);
5163     FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get());
5164 
5165     {
5166       WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
5167       mirror::ClassLoader* const class_loader = h_new_class.Get()->GetClassLoader();
5168       ClassTable* const table = InsertClassTableForClassLoader(class_loader);
5169       mirror::Class* existing = table->UpdateClass(descriptor, h_new_class.Get(),
5170                                                    ComputeModifiedUtf8Hash(descriptor));
5171       if (class_loader != nullptr) {
5172         // We updated the class in the class table, perform the write barrier so that the GC knows
5173         // about the change.
5174         Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
5175       }
5176       CHECK_EQ(existing, klass.Get());
5177       if (kIsDebugBuild && class_loader == nullptr && dex_cache_boot_image_class_lookup_required_) {
5178         // Check a class loaded with the system class loader matches one in the image if the class
5179         // is in the image.
5180         mirror::Class* const image_class = LookupClassFromBootImage(descriptor);
5181         if (image_class != nullptr) {
5182           CHECK_EQ(klass.Get(), existing) << descriptor;
5183         }
5184       }
5185       if (log_new_class_table_roots_) {
5186         new_class_roots_.push_back(GcRoot<mirror::Class>(h_new_class.Get()));
5187       }
5188     }
5189 
5190     // This will notify waiters on temp class that saw the not yet resolved class in the
5191     // class_table_ during EnsureResolved.
5192     mirror::Class::SetStatus(klass, mirror::Class::kStatusRetired, self);
5193 
5194     CHECK_EQ(h_new_class->GetStatus(), mirror::Class::kStatusResolving);
5195     // This will notify waiters on new_class that saw the not yet resolved
5196     // class in the class_table_ during EnsureResolved.
5197     mirror::Class::SetStatus(h_new_class, mirror::Class::kStatusResolved, self);
5198     // Return the new class.
5199     h_new_class_out->Assign(h_new_class.Get());
5200   }
5201   return true;
5202 }
5203 
CountMethodsAndFields(ClassDataItemIterator & dex_data,size_t * virtual_methods,size_t * direct_methods,size_t * static_fields,size_t * instance_fields)5204 static void CountMethodsAndFields(ClassDataItemIterator& dex_data,
5205                                   size_t* virtual_methods,
5206                                   size_t* direct_methods,
5207                                   size_t* static_fields,
5208                                   size_t* instance_fields) {
5209   *virtual_methods = *direct_methods = *static_fields = *instance_fields = 0;
5210 
5211   while (dex_data.HasNextStaticField()) {
5212     dex_data.Next();
5213     (*static_fields)++;
5214   }
5215   while (dex_data.HasNextInstanceField()) {
5216     dex_data.Next();
5217     (*instance_fields)++;
5218   }
5219   while (dex_data.HasNextDirectMethod()) {
5220     (*direct_methods)++;
5221     dex_data.Next();
5222   }
5223   while (dex_data.HasNextVirtualMethod()) {
5224     (*virtual_methods)++;
5225     dex_data.Next();
5226   }
5227   DCHECK(!dex_data.HasNext());
5228 }
5229 
DumpClass(std::ostream & os,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,const char * suffix)5230 static void DumpClass(std::ostream& os,
5231                       const DexFile& dex_file, const DexFile::ClassDef& dex_class_def,
5232                       const char* suffix) {
5233   ClassDataItemIterator dex_data(dex_file, dex_file.GetClassData(dex_class_def));
5234   os << dex_file.GetClassDescriptor(dex_class_def) << suffix << ":\n";
5235   os << " Static fields:\n";
5236   while (dex_data.HasNextStaticField()) {
5237     const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5238     os << "  " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5239     dex_data.Next();
5240   }
5241   os << " Instance fields:\n";
5242   while (dex_data.HasNextInstanceField()) {
5243     const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5244     os << "  " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5245     dex_data.Next();
5246   }
5247   os << " Direct methods:\n";
5248   while (dex_data.HasNextDirectMethod()) {
5249     const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5250     os << "  " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5251     dex_data.Next();
5252   }
5253   os << " Virtual methods:\n";
5254   while (dex_data.HasNextVirtualMethod()) {
5255     const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5256     os << "  " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5257     dex_data.Next();
5258   }
5259 }
5260 
DumpClasses(const DexFile & dex_file1,const DexFile::ClassDef & dex_class_def1,const DexFile & dex_file2,const DexFile::ClassDef & dex_class_def2)5261 static std::string DumpClasses(const DexFile& dex_file1,
5262                                const DexFile::ClassDef& dex_class_def1,
5263                                const DexFile& dex_file2,
5264                                const DexFile::ClassDef& dex_class_def2) {
5265   std::ostringstream os;
5266   DumpClass(os, dex_file1, dex_class_def1, " (Compile time)");
5267   DumpClass(os, dex_file2, dex_class_def2, " (Runtime)");
5268   return os.str();
5269 }
5270 
5271 
5272 // Very simple structural check on whether the classes match. Only compares the number of
5273 // methods and fields.
SimpleStructuralCheck(const DexFile & dex_file1,const DexFile::ClassDef & dex_class_def1,const DexFile & dex_file2,const DexFile::ClassDef & dex_class_def2,std::string * error_msg)5274 static bool SimpleStructuralCheck(const DexFile& dex_file1,
5275                                   const DexFile::ClassDef& dex_class_def1,
5276                                   const DexFile& dex_file2,
5277                                   const DexFile::ClassDef& dex_class_def2,
5278                                   std::string* error_msg) {
5279   ClassDataItemIterator dex_data1(dex_file1, dex_file1.GetClassData(dex_class_def1));
5280   ClassDataItemIterator dex_data2(dex_file2, dex_file2.GetClassData(dex_class_def2));
5281 
5282   // Counters for current dex file.
5283   size_t dex_virtual_methods1, dex_direct_methods1, dex_static_fields1, dex_instance_fields1;
5284   CountMethodsAndFields(dex_data1,
5285                         &dex_virtual_methods1,
5286                         &dex_direct_methods1,
5287                         &dex_static_fields1,
5288                         &dex_instance_fields1);
5289   // Counters for compile-time dex file.
5290   size_t dex_virtual_methods2, dex_direct_methods2, dex_static_fields2, dex_instance_fields2;
5291   CountMethodsAndFields(dex_data2,
5292                         &dex_virtual_methods2,
5293                         &dex_direct_methods2,
5294                         &dex_static_fields2,
5295                         &dex_instance_fields2);
5296 
5297   if (dex_virtual_methods1 != dex_virtual_methods2) {
5298     std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5299     *error_msg = StringPrintf("Virtual method count off: %zu vs %zu\n%s",
5300                               dex_virtual_methods1,
5301                               dex_virtual_methods2,
5302                               class_dump.c_str());
5303     return false;
5304   }
5305   if (dex_direct_methods1 != dex_direct_methods2) {
5306     std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5307     *error_msg = StringPrintf("Direct method count off: %zu vs %zu\n%s",
5308                               dex_direct_methods1,
5309                               dex_direct_methods2,
5310                               class_dump.c_str());
5311     return false;
5312   }
5313   if (dex_static_fields1 != dex_static_fields2) {
5314     std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5315     *error_msg = StringPrintf("Static field count off: %zu vs %zu\n%s",
5316                               dex_static_fields1,
5317                               dex_static_fields2,
5318                               class_dump.c_str());
5319     return false;
5320   }
5321   if (dex_instance_fields1 != dex_instance_fields2) {
5322     std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5323     *error_msg = StringPrintf("Instance field count off: %zu vs %zu\n%s",
5324                               dex_instance_fields1,
5325                               dex_instance_fields2,
5326                               class_dump.c_str());
5327     return false;
5328   }
5329 
5330   return true;
5331 }
5332 
5333 // Checks whether a the super-class changed from what we had at compile-time. This would
5334 // invalidate quickening.
CheckSuperClassChange(Handle<mirror::Class> klass,const DexFile & dex_file,const DexFile::ClassDef & class_def,mirror::Class * super_class)5335 static bool CheckSuperClassChange(Handle<mirror::Class> klass,
5336                                   const DexFile& dex_file,
5337                                   const DexFile::ClassDef& class_def,
5338                                   mirror::Class* super_class)
5339     SHARED_REQUIRES(Locks::mutator_lock_) {
5340   // Check for unexpected changes in the superclass.
5341   // Quick check 1) is the super_class class-loader the boot class loader? This always has
5342   // precedence.
5343   if (super_class->GetClassLoader() != nullptr &&
5344       // Quick check 2) different dex cache? Breaks can only occur for different dex files,
5345       // which is implied by different dex cache.
5346       klass->GetDexCache() != super_class->GetDexCache()) {
5347     // Now comes the expensive part: things can be broken if (a) the klass' dex file has a
5348     // definition for the super-class, and (b) the files are in separate oat files. The oat files
5349     // are referenced from the dex file, so do (b) first. Only relevant if we have oat files.
5350     const OatDexFile* class_oat_dex_file = dex_file.GetOatDexFile();
5351     const OatFile* class_oat_file = nullptr;
5352     if (class_oat_dex_file != nullptr) {
5353       class_oat_file = class_oat_dex_file->GetOatFile();
5354     }
5355 
5356     if (class_oat_file != nullptr) {
5357       const OatDexFile* loaded_super_oat_dex_file = super_class->GetDexFile().GetOatDexFile();
5358       const OatFile* loaded_super_oat_file = nullptr;
5359       if (loaded_super_oat_dex_file != nullptr) {
5360         loaded_super_oat_file = loaded_super_oat_dex_file->GetOatFile();
5361       }
5362 
5363       if (loaded_super_oat_file != nullptr && class_oat_file != loaded_super_oat_file) {
5364         // Now check (a).
5365         const DexFile::ClassDef* super_class_def = dex_file.FindClassDef(class_def.superclass_idx_);
5366         if (super_class_def != nullptr) {
5367           // Uh-oh, we found something. Do our check.
5368           std::string error_msg;
5369           if (!SimpleStructuralCheck(dex_file, *super_class_def,
5370                                      super_class->GetDexFile(), *super_class->GetClassDef(),
5371                                      &error_msg)) {
5372             // Print a warning to the log. This exception might be caught, e.g., as common in test
5373             // drivers. When the class is later tried to be used, we re-throw a new instance, as we
5374             // only save the type of the exception.
5375             LOG(WARNING) << "Incompatible structural change detected: " <<
5376                 StringPrintf(
5377                     "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5378                     PrettyType(super_class_def->class_idx_, dex_file).c_str(),
5379                     class_oat_file->GetLocation().c_str(),
5380                     loaded_super_oat_file->GetLocation().c_str(),
5381                     error_msg.c_str());
5382             ThrowIncompatibleClassChangeError(klass.Get(),
5383                 "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5384                 PrettyType(super_class_def->class_idx_, dex_file).c_str(),
5385                 class_oat_file->GetLocation().c_str(),
5386                 loaded_super_oat_file->GetLocation().c_str(),
5387                 error_msg.c_str());
5388             return false;
5389           }
5390         }
5391       }
5392     }
5393   }
5394   return true;
5395 }
5396 
LoadSuperAndInterfaces(Handle<mirror::Class> klass,const DexFile & dex_file)5397 bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) {
5398   CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus());
5399   const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex());
5400   uint16_t super_class_idx = class_def.superclass_idx_;
5401   if (super_class_idx != DexFile::kDexNoIndex16) {
5402     // Check that a class does not inherit from itself directly.
5403     //
5404     // TODO: This is a cheap check to detect the straightforward case
5405     // of a class extending itself (b/28685551), but we should do a
5406     // proper cycle detection on loaded classes, to detect all cases
5407     // of class circularity errors (b/28830038).
5408     if (super_class_idx == class_def.class_idx_) {
5409       ThrowClassCircularityError(klass.Get(),
5410                                  "Class %s extends itself",
5411                                  PrettyDescriptor(klass.Get()).c_str());
5412       return false;
5413     }
5414 
5415     mirror::Class* super_class = ResolveType(dex_file, super_class_idx, klass.Get());
5416     if (super_class == nullptr) {
5417       DCHECK(Thread::Current()->IsExceptionPending());
5418       return false;
5419     }
5420     // Verify
5421     if (!klass->CanAccess(super_class)) {
5422       ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible",
5423                               PrettyDescriptor(super_class).c_str(),
5424                               PrettyDescriptor(klass.Get()).c_str());
5425       return false;
5426     }
5427     CHECK(super_class->IsResolved());
5428     klass->SetSuperClass(super_class);
5429 
5430     if (!CheckSuperClassChange(klass, dex_file, class_def, super_class)) {
5431       DCHECK(Thread::Current()->IsExceptionPending());
5432       return false;
5433     }
5434   }
5435   const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def);
5436   if (interfaces != nullptr) {
5437     for (size_t i = 0; i < interfaces->Size(); i++) {
5438       uint16_t idx = interfaces->GetTypeItem(i).type_idx_;
5439       mirror::Class* interface = ResolveType(dex_file, idx, klass.Get());
5440       if (interface == nullptr) {
5441         DCHECK(Thread::Current()->IsExceptionPending());
5442         return false;
5443       }
5444       // Verify
5445       if (!klass->CanAccess(interface)) {
5446         // TODO: the RI seemed to ignore this in my testing.
5447         ThrowIllegalAccessError(klass.Get(),
5448                                 "Interface %s implemented by class %s is inaccessible",
5449                                 PrettyDescriptor(interface).c_str(),
5450                                 PrettyDescriptor(klass.Get()).c_str());
5451         return false;
5452       }
5453     }
5454   }
5455   // Mark the class as loaded.
5456   mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, nullptr);
5457   return true;
5458 }
5459 
LinkSuperClass(Handle<mirror::Class> klass)5460 bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) {
5461   CHECK(!klass->IsPrimitive());
5462   mirror::Class* super = klass->GetSuperClass();
5463   if (klass.Get() == GetClassRoot(kJavaLangObject)) {
5464     if (super != nullptr) {
5465       ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass");
5466       return false;
5467     }
5468     return true;
5469   }
5470   if (super == nullptr) {
5471     ThrowLinkageError(klass.Get(), "No superclass defined for class %s",
5472                       PrettyDescriptor(klass.Get()).c_str());
5473     return false;
5474   }
5475   // Verify
5476   if (super->IsFinal() || super->IsInterface()) {
5477     ThrowIncompatibleClassChangeError(klass.Get(),
5478                                       "Superclass %s of %s is %s",
5479                                       PrettyDescriptor(super).c_str(),
5480                                       PrettyDescriptor(klass.Get()).c_str(),
5481                                       super->IsFinal() ? "declared final" : "an interface");
5482     return false;
5483   }
5484   if (!klass->CanAccess(super)) {
5485     ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s",
5486                             PrettyDescriptor(super).c_str(),
5487                             PrettyDescriptor(klass.Get()).c_str());
5488     return false;
5489   }
5490 
5491   // Inherit kAccClassIsFinalizable from the superclass in case this
5492   // class doesn't override finalize.
5493   if (super->IsFinalizable()) {
5494     klass->SetFinalizable();
5495   }
5496 
5497   // Inherit class loader flag form super class.
5498   if (super->IsClassLoaderClass()) {
5499     klass->SetClassLoaderClass();
5500   }
5501 
5502   // Inherit reference flags (if any) from the superclass.
5503   uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference);
5504   if (reference_flags != 0) {
5505     CHECK_EQ(klass->GetClassFlags(), 0u);
5506     klass->SetClassFlags(klass->GetClassFlags() | reference_flags);
5507   }
5508   // Disallow custom direct subclasses of java.lang.ref.Reference.
5509   if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) {
5510     ThrowLinkageError(klass.Get(),
5511                       "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
5512                       PrettyDescriptor(klass.Get()).c_str());
5513     return false;
5514   }
5515 
5516   if (kIsDebugBuild) {
5517     // Ensure super classes are fully resolved prior to resolving fields..
5518     while (super != nullptr) {
5519       CHECK(super->IsResolved());
5520       super = super->GetSuperClass();
5521     }
5522   }
5523   return true;
5524 }
5525 
5526 // Populate the class vtable and itable. Compute return type indices.
LinkMethods(Thread * self,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces,bool * out_new_conflict,ArtMethod ** out_imt)5527 bool ClassLinker::LinkMethods(Thread* self,
5528                               Handle<mirror::Class> klass,
5529                               Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5530                               bool* out_new_conflict,
5531                               ArtMethod** out_imt) {
5532   self->AllowThreadSuspension();
5533   // A map from vtable indexes to the method they need to be updated to point to. Used because we
5534   // need to have default methods be in the virtuals array of each class but we don't set that up
5535   // until LinkInterfaceMethods.
5536   std::unordered_map<size_t, ClassLinker::MethodTranslation> default_translations;
5537   // Link virtual methods then interface methods.
5538   // We set up the interface lookup table first because we need it to determine if we need to update
5539   // any vtable entries with new default method implementations.
5540   return SetupInterfaceLookupTable(self, klass, interfaces)
5541           && LinkVirtualMethods(self, klass, /*out*/ &default_translations)
5542           && LinkInterfaceMethods(self, klass, default_translations, out_new_conflict, out_imt);
5543 }
5544 
5545 // Comparator for name and signature of a method, used in finding overriding methods. Implementation
5546 // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex
5547 // caches in the implementation below.
5548 class MethodNameAndSignatureComparator FINAL : public ValueObject {
5549  public:
5550   explicit MethodNameAndSignatureComparator(ArtMethod* method)
SHARED_REQUIRES(Locks::mutator_lock_)5551       SHARED_REQUIRES(Locks::mutator_lock_) :
5552       dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())),
5553       name_(nullptr), name_len_(0) {
5554     DCHECK(!method->IsProxyMethod()) << PrettyMethod(method);
5555   }
5556 
GetName()5557   const char* GetName() {
5558     if (name_ == nullptr) {
5559       name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_);
5560     }
5561     return name_;
5562   }
5563 
HasSameNameAndSignature(ArtMethod * other)5564   bool HasSameNameAndSignature(ArtMethod* other)
5565       SHARED_REQUIRES(Locks::mutator_lock_) {
5566     DCHECK(!other->IsProxyMethod()) << PrettyMethod(other);
5567     const DexFile* other_dex_file = other->GetDexFile();
5568     const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex());
5569     if (dex_file_ == other_dex_file) {
5570       return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_;
5571     }
5572     GetName();  // Only used to make sure its calculated.
5573     uint32_t other_name_len;
5574     const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_,
5575                                                                            &other_name_len);
5576     if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) {
5577       return false;
5578     }
5579     return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid);
5580   }
5581 
5582  private:
5583   // Dex file for the method to compare against.
5584   const DexFile* const dex_file_;
5585   // MethodId for the method to compare against.
5586   const DexFile::MethodId* const mid_;
5587   // Lazily computed name from the dex file's strings.
5588   const char* name_;
5589   // Lazily computed name length.
5590   uint32_t name_len_;
5591 };
5592 
5593 class LinkVirtualHashTable {
5594  public:
LinkVirtualHashTable(Handle<mirror::Class> klass,size_t hash_size,uint32_t * hash_table,size_t image_pointer_size)5595   LinkVirtualHashTable(Handle<mirror::Class> klass,
5596                        size_t hash_size,
5597                        uint32_t* hash_table,
5598                        size_t image_pointer_size)
5599      : klass_(klass),
5600        hash_size_(hash_size),
5601        hash_table_(hash_table),
5602        image_pointer_size_(image_pointer_size) {
5603     std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_);
5604   }
5605 
Add(uint32_t virtual_method_index)5606   void Add(uint32_t virtual_method_index) SHARED_REQUIRES(Locks::mutator_lock_) {
5607     ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking(
5608         virtual_method_index, image_pointer_size_);
5609     const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName();
5610     uint32_t hash = ComputeModifiedUtf8Hash(name);
5611     uint32_t index = hash % hash_size_;
5612     // Linear probe until we have an empty slot.
5613     while (hash_table_[index] != invalid_index_) {
5614       if (++index == hash_size_) {
5615         index = 0;
5616       }
5617     }
5618     hash_table_[index] = virtual_method_index;
5619   }
5620 
FindAndRemove(MethodNameAndSignatureComparator * comparator)5621   uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator)
5622       SHARED_REQUIRES(Locks::mutator_lock_) {
5623     const char* name = comparator->GetName();
5624     uint32_t hash = ComputeModifiedUtf8Hash(name);
5625     size_t index = hash % hash_size_;
5626     while (true) {
5627       const uint32_t value = hash_table_[index];
5628       // Since linear probe makes continuous blocks, hitting an invalid index means we are done
5629       // the block and can safely assume not found.
5630       if (value == invalid_index_) {
5631         break;
5632       }
5633       if (value != removed_index_) {  // This signifies not already overriden.
5634         ArtMethod* virtual_method =
5635             klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_);
5636         if (comparator->HasSameNameAndSignature(
5637             virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
5638           hash_table_[index] = removed_index_;
5639           return value;
5640         }
5641       }
5642       if (++index == hash_size_) {
5643         index = 0;
5644       }
5645     }
5646     return GetNotFoundIndex();
5647   }
5648 
GetNotFoundIndex()5649   static uint32_t GetNotFoundIndex() {
5650     return invalid_index_;
5651   }
5652 
5653  private:
5654   static const uint32_t invalid_index_;
5655   static const uint32_t removed_index_;
5656 
5657   Handle<mirror::Class> klass_;
5658   const size_t hash_size_;
5659   uint32_t* const hash_table_;
5660   const size_t image_pointer_size_;
5661 };
5662 
5663 const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max();
5664 const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1;
5665 
LinkVirtualMethods(Thread * self,Handle<mirror::Class> klass,std::unordered_map<size_t,ClassLinker::MethodTranslation> * default_translations)5666 bool ClassLinker::LinkVirtualMethods(
5667     Thread* self,
5668     Handle<mirror::Class> klass,
5669     /*out*/std::unordered_map<size_t, ClassLinker::MethodTranslation>* default_translations) {
5670   const size_t num_virtual_methods = klass->NumVirtualMethods();
5671   if (klass->IsInterface()) {
5672     // No vtable.
5673     if (!IsUint<16>(num_virtual_methods)) {
5674       ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods);
5675       return false;
5676     }
5677     bool has_defaults = false;
5678     // Assign each method an IMT index and set the default flag.
5679     for (size_t i = 0; i < num_virtual_methods; ++i) {
5680       ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5681       m->SetMethodIndex(i);
5682       if (!m->IsAbstract()) {
5683         m->SetAccessFlags(m->GetAccessFlags() | kAccDefault);
5684         has_defaults = true;
5685       }
5686     }
5687     // Mark that we have default methods so that we won't need to scan the virtual_methods_ array
5688     // during initialization. This is a performance optimization. We could simply traverse the
5689     // virtual_methods_ array again during initialization.
5690     if (has_defaults) {
5691       klass->SetHasDefaultMethods();
5692     }
5693     return true;
5694   } else if (klass->HasSuperClass()) {
5695     const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength();
5696     const size_t max_count = num_virtual_methods + super_vtable_length;
5697     StackHandleScope<2> hs(self);
5698     Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass()));
5699     MutableHandle<mirror::PointerArray> vtable;
5700     if (super_class->ShouldHaveEmbeddedVTable()) {
5701       vtable = hs.NewHandle(AllocPointerArray(self, max_count));
5702       if (UNLIKELY(vtable.Get() == nullptr)) {
5703         self->AssertPendingOOMException();
5704         return false;
5705       }
5706       for (size_t i = 0; i < super_vtable_length; i++) {
5707         vtable->SetElementPtrSize(
5708             i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_);
5709       }
5710       // We might need to change vtable if we have new virtual methods or new interfaces (since that
5711       // might give us new default methods). If no new interfaces then we can skip the rest since
5712       // the class cannot override any of the super-class's methods. This is required for
5713       // correctness since without it we might not update overridden default method vtable entries
5714       // correctly.
5715       if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5716         klass->SetVTable(vtable.Get());
5717         return true;
5718       }
5719     } else {
5720       DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass());
5721       auto* super_vtable = super_class->GetVTable();
5722       CHECK(super_vtable != nullptr) << PrettyClass(super_class.Get());
5723       // We might need to change vtable if we have new virtual methods or new interfaces (since that
5724       // might give us new default methods). See comment above.
5725       if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5726         klass->SetVTable(super_vtable);
5727         return true;
5728       }
5729       vtable = hs.NewHandle(down_cast<mirror::PointerArray*>(
5730           super_vtable->CopyOf(self, max_count)));
5731       if (UNLIKELY(vtable.Get() == nullptr)) {
5732         self->AssertPendingOOMException();
5733         return false;
5734       }
5735     }
5736     // How the algorithm works:
5737     // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash
5738     // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual
5739     // method which has not been matched to a vtable method, and j if the virtual method at the
5740     // index overrode the super virtual method at index j.
5741     // 2. Loop through super virtual methods, if they overwrite, update hash table to j
5742     // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing
5743     // the need for the initial vtable which we later shrink back down).
5744     // 3. Add non overridden methods to the end of the vtable.
5745     static constexpr size_t kMaxStackHash = 250;
5746     // + 1 so that even if we only have new default methods we will still be able to use this hash
5747     // table (i.e. it will never have 0 size).
5748     const size_t hash_table_size = num_virtual_methods * 3 + 1;
5749     uint32_t* hash_table_ptr;
5750     std::unique_ptr<uint32_t[]> hash_heap_storage;
5751     if (hash_table_size <= kMaxStackHash) {
5752       hash_table_ptr = reinterpret_cast<uint32_t*>(
5753           alloca(hash_table_size * sizeof(*hash_table_ptr)));
5754     } else {
5755       hash_heap_storage.reset(new uint32_t[hash_table_size]);
5756       hash_table_ptr = hash_heap_storage.get();
5757     }
5758     LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_);
5759     // Add virtual methods to the hash table.
5760     for (size_t i = 0; i < num_virtual_methods; ++i) {
5761       DCHECK(klass->GetVirtualMethodDuringLinking(
5762           i, image_pointer_size_)->GetDeclaringClass() != nullptr);
5763       hash_table.Add(i);
5764     }
5765     // Loop through each super vtable method and see if they are overridden by a method we added to
5766     // the hash table.
5767     for (size_t j = 0; j < super_vtable_length; ++j) {
5768       // Search the hash table to see if we are overridden by any method.
5769       ArtMethod* super_method = vtable->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
5770       MethodNameAndSignatureComparator super_method_name_comparator(
5771           super_method->GetInterfaceMethodIfProxy(image_pointer_size_));
5772       uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator);
5773       if (hash_index != hash_table.GetNotFoundIndex()) {
5774         ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(
5775             hash_index, image_pointer_size_);
5776         if (klass->CanAccessMember(super_method->GetDeclaringClass(),
5777                                    super_method->GetAccessFlags())) {
5778           if (super_method->IsFinal()) {
5779             ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s",
5780                               PrettyMethod(virtual_method).c_str(),
5781                               super_method->GetDeclaringClassDescriptor());
5782             return false;
5783           }
5784           vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_);
5785           virtual_method->SetMethodIndex(j);
5786         } else {
5787           LOG(WARNING) << "Before Android 4.1, method " << PrettyMethod(virtual_method)
5788                        << " would have incorrectly overridden the package-private method in "
5789                        << PrettyDescriptor(super_method->GetDeclaringClassDescriptor());
5790         }
5791       } else if (super_method->IsOverridableByDefaultMethod()) {
5792         // We didn't directly override this method but we might through default methods...
5793         // Check for default method update.
5794         ArtMethod* default_method = nullptr;
5795         switch (FindDefaultMethodImplementation(self,
5796                                                 super_method,
5797                                                 klass,
5798                                                 /*out*/&default_method)) {
5799           case DefaultMethodSearchResult::kDefaultConflict: {
5800             // A conflict was found looking for default methods. Note this (assuming it wasn't
5801             // pre-existing) in the translations map.
5802             if (UNLIKELY(!super_method->IsDefaultConflicting())) {
5803               // Don't generate another conflict method to reduce memory use as an optimization.
5804               default_translations->insert(
5805                   {j, ClassLinker::MethodTranslation::CreateConflictingMethod()});
5806             }
5807             break;
5808           }
5809           case DefaultMethodSearchResult::kAbstractFound: {
5810             // No conflict but method is abstract.
5811             // We note that this vtable entry must be made abstract.
5812             if (UNLIKELY(!super_method->IsAbstract())) {
5813               default_translations->insert(
5814                   {j, ClassLinker::MethodTranslation::CreateAbstractMethod()});
5815             }
5816             break;
5817           }
5818           case DefaultMethodSearchResult::kDefaultFound: {
5819             if (UNLIKELY(super_method->IsDefaultConflicting() ||
5820                         default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) {
5821               // Found a default method implementation that is new.
5822               // TODO Refactor this add default methods to virtuals here and not in
5823               //      LinkInterfaceMethods maybe.
5824               //      The problem is default methods might override previously present
5825               //      default-method or miranda-method vtable entries from the superclass.
5826               //      Unfortunately we need these to be entries in this class's virtuals. We do not
5827               //      give these entries there until LinkInterfaceMethods so we pass this map around
5828               //      to let it know which vtable entries need to be updated.
5829               // Make a note that vtable entry j must be updated, store what it needs to be updated
5830               // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up
5831               // then.
5832               default_translations->insert(
5833                   {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)});
5834               VLOG(class_linker) << "Method " << PrettyMethod(super_method)
5835                                  << " overridden by default " << PrettyMethod(default_method)
5836                                  << " in " << PrettyClass(klass.Get());
5837             }
5838             break;
5839           }
5840         }
5841       }
5842     }
5843     size_t actual_count = super_vtable_length;
5844     // Add the non-overridden methods at the end.
5845     for (size_t i = 0; i < num_virtual_methods; ++i) {
5846       ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5847       size_t method_idx = local_method->GetMethodIndexDuringLinking();
5848       if (method_idx < super_vtable_length &&
5849           local_method == vtable->GetElementPtrSize<ArtMethod*>(method_idx, image_pointer_size_)) {
5850         continue;
5851       }
5852       vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_);
5853       local_method->SetMethodIndex(actual_count);
5854       ++actual_count;
5855     }
5856     if (!IsUint<16>(actual_count)) {
5857       ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count);
5858       return false;
5859     }
5860     // Shrink vtable if possible
5861     CHECK_LE(actual_count, max_count);
5862     if (actual_count < max_count) {
5863       vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, actual_count)));
5864       if (UNLIKELY(vtable.Get() == nullptr)) {
5865         self->AssertPendingOOMException();
5866         return false;
5867       }
5868     }
5869     klass->SetVTable(vtable.Get());
5870   } else {
5871     CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject));
5872     if (!IsUint<16>(num_virtual_methods)) {
5873       ThrowClassFormatError(klass.Get(), "Too many methods: %d",
5874                             static_cast<int>(num_virtual_methods));
5875       return false;
5876     }
5877     auto* vtable = AllocPointerArray(self, num_virtual_methods);
5878     if (UNLIKELY(vtable == nullptr)) {
5879       self->AssertPendingOOMException();
5880       return false;
5881     }
5882     for (size_t i = 0; i < num_virtual_methods; ++i) {
5883       ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5884       vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_);
5885       virtual_method->SetMethodIndex(i & 0xFFFF);
5886     }
5887     klass->SetVTable(vtable);
5888   }
5889   return true;
5890 }
5891 
5892 // Determine if the given iface has any subinterface in the given list that declares the method
5893 // specified by 'target'.
5894 //
5895 // Arguments
5896 // - self:    The thread we are running on
5897 // - target:  A comparator that will match any method that overrides the method we are checking for
5898 // - iftable: The iftable we are searching for an overriding method on.
5899 // - ifstart: The index of the interface we are checking to see if anything overrides
5900 // - iface:   The interface we are checking to see if anything overrides.
5901 // - image_pointer_size:
5902 //            The image pointer size.
5903 //
5904 // Returns
5905 // - True:  There is some method that matches the target comparator defined in an interface that
5906 //          is a subtype of iface.
5907 // - False: There is no method that matches the target comparator in any interface that is a subtype
5908 //          of iface.
ContainsOverridingMethodOf(Thread * self,MethodNameAndSignatureComparator & target,Handle<mirror::IfTable> iftable,size_t ifstart,Handle<mirror::Class> iface,size_t image_pointer_size)5909 static bool ContainsOverridingMethodOf(Thread* self,
5910                                        MethodNameAndSignatureComparator& target,
5911                                        Handle<mirror::IfTable> iftable,
5912                                        size_t ifstart,
5913                                        Handle<mirror::Class> iface,
5914                                        size_t image_pointer_size)
5915     SHARED_REQUIRES(Locks::mutator_lock_) {
5916   DCHECK(self != nullptr);
5917   DCHECK(iface.Get() != nullptr);
5918   DCHECK(iftable.Get() != nullptr);
5919   DCHECK_GE(ifstart, 0u);
5920   DCHECK_LT(ifstart, iftable->Count());
5921   DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart));
5922   DCHECK(iface->IsInterface());
5923 
5924   size_t iftable_count = iftable->Count();
5925   StackHandleScope<1> hs(self);
5926   MutableHandle<mirror::Class> current_iface(hs.NewHandle<mirror::Class>(nullptr));
5927   for (size_t k = ifstart + 1; k < iftable_count; k++) {
5928     // Skip ifstart since our current interface obviously cannot override itself.
5929     current_iface.Assign(iftable->GetInterface(k));
5930     // Iterate through every method on this interface. The order does not matter.
5931     for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) {
5932       if (UNLIKELY(target.HasSameNameAndSignature(
5933                       current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) {
5934         // Check if the i'th interface is a subtype of this one.
5935         if (iface->IsAssignableFrom(current_iface.Get())) {
5936           return true;
5937         }
5938         break;
5939       }
5940     }
5941   }
5942   return false;
5943 }
5944 
5945 // Find the default method implementation for 'interface_method' in 'klass'. Stores it into
5946 // out_default_method and returns kDefaultFound on success. If no default method was found return
5947 // kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a
5948 // default_method conflict) it will return kDefaultConflict.
FindDefaultMethodImplementation(Thread * self,ArtMethod * target_method,Handle<mirror::Class> klass,ArtMethod ** out_default_method) const5949 ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation(
5950     Thread* self,
5951     ArtMethod* target_method,
5952     Handle<mirror::Class> klass,
5953     /*out*/ArtMethod** out_default_method) const {
5954   DCHECK(self != nullptr);
5955   DCHECK(target_method != nullptr);
5956   DCHECK(out_default_method != nullptr);
5957 
5958   *out_default_method = nullptr;
5959 
5960   // We organize the interface table so that, for interface I any subinterfaces J follow it in the
5961   // table. This lets us walk the table backwards when searching for default methods.  The first one
5962   // we encounter is the best candidate since it is the most specific. Once we have found it we keep
5963   // track of it and then continue checking all other interfaces, since we need to throw an error if
5964   // we encounter conflicting default method implementations (one is not a subtype of the other).
5965   //
5966   // The order of unrelated interfaces does not matter and is not defined.
5967   size_t iftable_count = klass->GetIfTableCount();
5968   if (iftable_count == 0) {
5969     // No interfaces. We have already reset out to null so just return kAbstractFound.
5970     return DefaultMethodSearchResult::kAbstractFound;
5971   }
5972 
5973   StackHandleScope<3> hs(self);
5974   MutableHandle<mirror::Class> chosen_iface(hs.NewHandle<mirror::Class>(nullptr));
5975   MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
5976   MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
5977   MethodNameAndSignatureComparator target_name_comparator(
5978       target_method->GetInterfaceMethodIfProxy(image_pointer_size_));
5979   // Iterates over the klass's iftable in reverse
5980   for (size_t k = iftable_count; k != 0; ) {
5981     --k;
5982 
5983     DCHECK_LT(k, iftable->Count());
5984 
5985     iface.Assign(iftable->GetInterface(k));
5986     // Iterate through every declared method on this interface. The order does not matter.
5987     for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) {
5988       ArtMethod* current_method = &method_iter;
5989       // Skip abstract methods and methods with different names.
5990       if (current_method->IsAbstract() ||
5991           !target_name_comparator.HasSameNameAndSignature(
5992               current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
5993         continue;
5994       } else if (!current_method->IsPublic()) {
5995         // The verifier should have caught the non-public method for dex version 37. Just warn and
5996         // skip it since this is from before default-methods so we don't really need to care that it
5997         // has code.
5998         LOG(WARNING) << "Interface method " << PrettyMethod(current_method) << " is not public! "
5999                      << "This will be a fatal error in subsequent versions of android. "
6000                      << "Continuing anyway.";
6001       }
6002       if (UNLIKELY(chosen_iface.Get() != nullptr)) {
6003         // We have multiple default impls of the same method. This is a potential default conflict.
6004         // We need to check if this possibly conflicting method is either a superclass of the chosen
6005         // default implementation or is overridden by a non-default interface method. In either case
6006         // there is no conflict.
6007         if (!iface->IsAssignableFrom(chosen_iface.Get()) &&
6008             !ContainsOverridingMethodOf(self,
6009                                         target_name_comparator,
6010                                         iftable,
6011                                         k,
6012                                         iface,
6013                                         image_pointer_size_)) {
6014           VLOG(class_linker) << "Conflicting default method implementations found: "
6015                              << PrettyMethod(current_method) << " and "
6016                              << PrettyMethod(*out_default_method) << " in class "
6017                              << PrettyClass(klass.Get()) << " conflict.";
6018           *out_default_method = nullptr;
6019           return DefaultMethodSearchResult::kDefaultConflict;
6020         } else {
6021           break;  // Continue checking at the next interface.
6022         }
6023       } else {
6024         // chosen_iface == null
6025         if (!ContainsOverridingMethodOf(self,
6026                                         target_name_comparator,
6027                                         iftable,
6028                                         k,
6029                                         iface,
6030                                         image_pointer_size_)) {
6031           // Don't set this as the chosen interface if something else is overriding it (because that
6032           // other interface would be potentially chosen instead if it was default). If the other
6033           // interface was abstract then we wouldn't select this interface as chosen anyway since
6034           // the abstract method masks it.
6035           *out_default_method = current_method;
6036           chosen_iface.Assign(iface.Get());
6037           // We should now finish traversing the graph to find if we have default methods that
6038           // conflict.
6039         } else {
6040           VLOG(class_linker) << "A default method '" << PrettyMethod(current_method) << "' was "
6041                             << "skipped because it was overridden by an abstract method in a "
6042                             << "subinterface on class '" << PrettyClass(klass.Get()) << "'";
6043         }
6044       }
6045       break;
6046     }
6047   }
6048   if (*out_default_method != nullptr) {
6049     VLOG(class_linker) << "Default method '" << PrettyMethod(*out_default_method) << "' selected "
6050                        << "as the implementation for '" << PrettyMethod(target_method) << "' "
6051                        << "in '" << PrettyClass(klass.Get()) << "'";
6052     return DefaultMethodSearchResult::kDefaultFound;
6053   } else {
6054     return DefaultMethodSearchResult::kAbstractFound;
6055   }
6056 }
6057 
AddMethodToConflictTable(mirror::Class * klass,ArtMethod * conflict_method,ArtMethod * interface_method,ArtMethod * method,bool force_new_conflict_method)6058 ArtMethod* ClassLinker::AddMethodToConflictTable(mirror::Class* klass,
6059                                                  ArtMethod* conflict_method,
6060                                                  ArtMethod* interface_method,
6061                                                  ArtMethod* method,
6062                                                  bool force_new_conflict_method) {
6063   ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
6064   Runtime* const runtime = Runtime::Current();
6065   LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6066   bool new_entry = conflict_method == runtime->GetImtConflictMethod() || force_new_conflict_method;
6067 
6068   // Create a new entry if the existing one is the shared conflict method.
6069   ArtMethod* new_conflict_method = new_entry
6070       ? runtime->CreateImtConflictMethod(linear_alloc)
6071       : conflict_method;
6072 
6073   // Allocate a new table. Note that we will leak this table at the next conflict,
6074   // but that's a tradeoff compared to making the table fixed size.
6075   void* data = linear_alloc->Alloc(
6076       Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table,
6077                                                                        image_pointer_size_));
6078   if (data == nullptr) {
6079     LOG(ERROR) << "Failed to allocate conflict table";
6080     return conflict_method;
6081   }
6082   ImtConflictTable* new_table = new (data) ImtConflictTable(current_table,
6083                                                             interface_method,
6084                                                             method,
6085                                                             image_pointer_size_);
6086 
6087   // Do a fence to ensure threads see the data in the table before it is assigned
6088   // to the conflict method.
6089   // Note that there is a race in the presence of multiple threads and we may leak
6090   // memory from the LinearAlloc, but that's a tradeoff compared to using
6091   // atomic operations.
6092   QuasiAtomic::ThreadFenceRelease();
6093   new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6094   return new_conflict_method;
6095 }
6096 
SetIMTRef(ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,ArtMethod * current_method,bool * new_conflict,ArtMethod ** imt_ref)6097 void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method,
6098                             ArtMethod* imt_conflict_method,
6099                             ArtMethod* current_method,
6100                             /*out*/bool* new_conflict,
6101                             /*out*/ArtMethod** imt_ref) {
6102   // Place method in imt if entry is empty, place conflict otherwise.
6103   if (*imt_ref == unimplemented_method) {
6104     *imt_ref = current_method;
6105   } else if (!(*imt_ref)->IsRuntimeMethod()) {
6106     // If we are not a conflict and we have the same signature and name as the imt
6107     // entry, it must be that we overwrote a superclass vtable entry.
6108     // Note that we have checked IsRuntimeMethod, as there may be multiple different
6109     // conflict methods.
6110     MethodNameAndSignatureComparator imt_comparator(
6111         (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_));
6112     if (imt_comparator.HasSameNameAndSignature(
6113           current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6114       *imt_ref = current_method;
6115     } else {
6116       *imt_ref = imt_conflict_method;
6117       *new_conflict = true;
6118     }
6119   } else {
6120     // Place the default conflict method. Note that there may be an existing conflict
6121     // method in the IMT, but it could be one tailored to the super class, with a
6122     // specific ImtConflictTable.
6123     *imt_ref = imt_conflict_method;
6124     *new_conflict = true;
6125   }
6126 }
6127 
FillIMTAndConflictTables(mirror::Class * klass)6128 void ClassLinker::FillIMTAndConflictTables(mirror::Class* klass) {
6129   DCHECK(klass->ShouldHaveImt()) << PrettyClass(klass);
6130   DCHECK(!klass->IsTemp()) << PrettyClass(klass);
6131   ArtMethod* imt_data[ImTable::kSize];
6132   Runtime* const runtime = Runtime::Current();
6133   ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6134   ArtMethod* const conflict_method = runtime->GetImtConflictMethod();
6135   std::fill_n(imt_data, arraysize(imt_data), unimplemented_method);
6136   if (klass->GetIfTable() != nullptr) {
6137     bool new_conflict = false;
6138     FillIMTFromIfTable(klass->GetIfTable(),
6139                        unimplemented_method,
6140                        conflict_method,
6141                        klass,
6142                        /*create_conflict_tables*/true,
6143                        /*ignore_copied_methods*/false,
6144                        &new_conflict,
6145                        &imt_data[0]);
6146   }
6147   if (!klass->ShouldHaveImt()) {
6148     return;
6149   }
6150   // Compare the IMT with the super class including the conflict methods. If they are equivalent,
6151   // we can just use the same pointer.
6152   ImTable* imt = nullptr;
6153   mirror::Class* super_class = klass->GetSuperClass();
6154   if (super_class != nullptr && super_class->ShouldHaveImt()) {
6155     ImTable* super_imt = super_class->GetImt(image_pointer_size_);
6156     bool same = true;
6157     for (size_t i = 0; same && i < ImTable::kSize; ++i) {
6158       ArtMethod* method = imt_data[i];
6159       ArtMethod* super_method = super_imt->Get(i, image_pointer_size_);
6160       if (method != super_method) {
6161         bool is_conflict_table = method->IsRuntimeMethod() &&
6162                                  method != unimplemented_method &&
6163                                  method != conflict_method;
6164         // Verify conflict contents.
6165         bool super_conflict_table = super_method->IsRuntimeMethod() &&
6166                                     super_method != unimplemented_method &&
6167                                     super_method != conflict_method;
6168         if (!is_conflict_table || !super_conflict_table) {
6169           same = false;
6170         } else {
6171           ImtConflictTable* table1 = method->GetImtConflictTable(image_pointer_size_);
6172           ImtConflictTable* table2 = super_method->GetImtConflictTable(image_pointer_size_);
6173           same = same && table1->Equals(table2, image_pointer_size_);
6174         }
6175       }
6176     }
6177     if (same) {
6178       imt = super_imt;
6179     }
6180   }
6181   if (imt == nullptr) {
6182     imt = klass->GetImt(image_pointer_size_);
6183     DCHECK(imt != nullptr);
6184     imt->Populate(imt_data, image_pointer_size_);
6185   } else {
6186     klass->SetImt(imt, image_pointer_size_);
6187   }
6188 }
6189 
GetIMTIndex(ArtMethod * interface_method)6190 static inline uint32_t GetIMTIndex(ArtMethod* interface_method)
6191     SHARED_REQUIRES(Locks::mutator_lock_) {
6192   return interface_method->GetDexMethodIndex() % ImTable::kSize;
6193 }
6194 
CreateImtConflictTable(size_t count,LinearAlloc * linear_alloc,size_t image_pointer_size)6195 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count,
6196                                                       LinearAlloc* linear_alloc,
6197                                                       size_t image_pointer_size) {
6198   void* data = linear_alloc->Alloc(Thread::Current(),
6199                                    ImtConflictTable::ComputeSize(count,
6200                                                                  image_pointer_size));
6201   return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr;
6202 }
6203 
CreateImtConflictTable(size_t count,LinearAlloc * linear_alloc)6204 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) {
6205   return CreateImtConflictTable(count, linear_alloc, image_pointer_size_);
6206 }
6207 
FillIMTFromIfTable(mirror::IfTable * if_table,ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,mirror::Class * klass,bool create_conflict_tables,bool ignore_copied_methods,bool * new_conflict,ArtMethod ** imt)6208 void ClassLinker::FillIMTFromIfTable(mirror::IfTable* if_table,
6209                                      ArtMethod* unimplemented_method,
6210                                      ArtMethod* imt_conflict_method,
6211                                      mirror::Class* klass,
6212                                      bool create_conflict_tables,
6213                                      bool ignore_copied_methods,
6214                                      /*out*/bool* new_conflict,
6215                                      /*out*/ArtMethod** imt) {
6216   uint32_t conflict_counts[ImTable::kSize] = {};
6217   for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6218     mirror::Class* interface = if_table->GetInterface(i);
6219     const size_t num_virtuals = interface->NumVirtualMethods();
6220     const size_t method_array_count = if_table->GetMethodArrayCount(i);
6221     // Virtual methods can be larger than the if table methods if there are default methods.
6222     DCHECK_GE(num_virtuals, method_array_count);
6223     if (kIsDebugBuild) {
6224       if (klass->IsInterface()) {
6225         DCHECK_EQ(method_array_count, 0u);
6226       } else {
6227         DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count);
6228       }
6229     }
6230     if (method_array_count == 0) {
6231       continue;
6232     }
6233     auto* method_array = if_table->GetMethodArray(i);
6234     for (size_t j = 0; j < method_array_count; ++j) {
6235       ArtMethod* implementation_method =
6236           method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6237       if (ignore_copied_methods && implementation_method->IsCopied()) {
6238         continue;
6239       }
6240       DCHECK(implementation_method != nullptr);
6241       // Miranda methods cannot be used to implement an interface method, but they are safe to put
6242       // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods
6243       // or interface methods in the IMT here they will not create extra conflicts since we compare
6244       // names and signatures in SetIMTRef.
6245       ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6246       const uint32_t imt_index = GetIMTIndex(interface_method);
6247 
6248       // There is only any conflicts if all of the interface methods for an IMT slot don't have
6249       // the same implementation method, keep track of this to avoid creating a conflict table in
6250       // this case.
6251 
6252       // Conflict table size for each IMT slot.
6253       ++conflict_counts[imt_index];
6254 
6255       SetIMTRef(unimplemented_method,
6256                 imt_conflict_method,
6257                 implementation_method,
6258                 /*out*/new_conflict,
6259                 /*out*/&imt[imt_index]);
6260     }
6261   }
6262 
6263   if (create_conflict_tables) {
6264     // Create the conflict tables.
6265     LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6266     for (size_t i = 0; i < ImTable::kSize; ++i) {
6267       size_t conflicts = conflict_counts[i];
6268       if (imt[i] == imt_conflict_method) {
6269         ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc);
6270         if (new_table != nullptr) {
6271           ArtMethod* new_conflict_method =
6272               Runtime::Current()->CreateImtConflictMethod(linear_alloc);
6273           new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6274           imt[i] = new_conflict_method;
6275         } else {
6276           LOG(ERROR) << "Failed to allocate conflict table";
6277           imt[i] = imt_conflict_method;
6278         }
6279       } else {
6280         DCHECK_NE(imt[i], imt_conflict_method);
6281       }
6282     }
6283 
6284     for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6285       mirror::Class* interface = if_table->GetInterface(i);
6286       const size_t method_array_count = if_table->GetMethodArrayCount(i);
6287       // Virtual methods can be larger than the if table methods if there are default methods.
6288       if (method_array_count == 0) {
6289         continue;
6290       }
6291       auto* method_array = if_table->GetMethodArray(i);
6292       for (size_t j = 0; j < method_array_count; ++j) {
6293         ArtMethod* implementation_method =
6294             method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6295         if (ignore_copied_methods && implementation_method->IsCopied()) {
6296           continue;
6297         }
6298         DCHECK(implementation_method != nullptr);
6299         ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6300         const uint32_t imt_index = GetIMTIndex(interface_method);
6301         if (!imt[imt_index]->IsRuntimeMethod() ||
6302             imt[imt_index] == unimplemented_method ||
6303             imt[imt_index] == imt_conflict_method) {
6304           continue;
6305         }
6306         ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_);
6307         const size_t num_entries = table->NumEntries(image_pointer_size_);
6308         table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method);
6309         table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method);
6310       }
6311     }
6312   }
6313 }
6314 
6315 // Simple helper function that checks that no subtypes of 'val' are contained within the 'classes'
6316 // set.
NotSubinterfaceOfAny(const std::unordered_set<mirror::Class * > & classes,mirror::Class * val)6317 static bool NotSubinterfaceOfAny(const std::unordered_set<mirror::Class*>& classes,
6318                                  mirror::Class* val)
6319     REQUIRES(Roles::uninterruptible_)
6320     SHARED_REQUIRES(Locks::mutator_lock_) {
6321   DCHECK(val != nullptr);
6322   for (auto c : classes) {
6323     if (val->IsAssignableFrom(&*c)) {
6324       return false;
6325     }
6326   }
6327   return true;
6328 }
6329 
6330 // Fills in and flattens the interface inheritance hierarchy.
6331 //
6332 // By the end of this function all interfaces in the transitive closure of to_process are added to
6333 // the iftable and every interface precedes all of its sub-interfaces in this list.
6334 //
6335 // all I, J: Interface | I <: J implies J precedes I
6336 //
6337 // (note A <: B means that A is a subtype of B)
6338 //
6339 // This returns the total number of items in the iftable. The iftable might be resized down after
6340 // this call.
6341 //
6342 // We order this backwards so that we do not need to reorder superclass interfaces when new
6343 // interfaces are added in subclass's interface tables.
6344 //
6345 // Upon entry into this function iftable is a copy of the superclass's iftable with the first
6346 // super_ifcount entries filled in with the transitive closure of the interfaces of the superclass.
6347 // The other entries are uninitialized.  We will fill in the remaining entries in this function. The
6348 // iftable must be large enough to hold all interfaces without changing its size.
FillIfTable(mirror::IfTable * iftable,size_t super_ifcount,std::vector<mirror::Class * > to_process)6349 static size_t FillIfTable(mirror::IfTable* iftable,
6350                           size_t super_ifcount,
6351                           std::vector<mirror::Class*> to_process)
6352     REQUIRES(Roles::uninterruptible_)
6353     SHARED_REQUIRES(Locks::mutator_lock_) {
6354   // This is the set of all class's already in the iftable. Used to make checking if a class has
6355   // already been added quicker.
6356   std::unordered_set<mirror::Class*> classes_in_iftable;
6357   // The first super_ifcount elements are from the superclass. We note that they are already added.
6358   for (size_t i = 0; i < super_ifcount; i++) {
6359     mirror::Class* iface = iftable->GetInterface(i);
6360     DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering.";
6361     classes_in_iftable.insert(iface);
6362   }
6363   size_t filled_ifcount = super_ifcount;
6364   for (mirror::Class* interface : to_process) {
6365     // Let us call the first filled_ifcount elements of iftable the current-iface-list.
6366     // At this point in the loop current-iface-list has the invariant that:
6367     //    for every pair of interfaces I,J within it:
6368     //      if index_of(I) < index_of(J) then I is not a subtype of J
6369 
6370     // If we have already seen this element then all of its super-interfaces must already be in the
6371     // current-iface-list so we can skip adding it.
6372     if (!ContainsElement(classes_in_iftable, interface)) {
6373       // We haven't seen this interface so add all of its super-interfaces onto the
6374       // current-iface-list, skipping those already on it.
6375       int32_t ifcount = interface->GetIfTableCount();
6376       for (int32_t j = 0; j < ifcount; j++) {
6377         mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j);
6378         if (!ContainsElement(classes_in_iftable, super_interface)) {
6379           DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering.";
6380           classes_in_iftable.insert(super_interface);
6381           iftable->SetInterface(filled_ifcount, super_interface);
6382           filled_ifcount++;
6383         }
6384       }
6385       DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering";
6386       // Place this interface onto the current-iface-list after all of its super-interfaces.
6387       classes_in_iftable.insert(interface);
6388       iftable->SetInterface(filled_ifcount, interface);
6389       filled_ifcount++;
6390     } else if (kIsDebugBuild) {
6391       // Check all super-interfaces are already in the list.
6392       int32_t ifcount = interface->GetIfTableCount();
6393       for (int32_t j = 0; j < ifcount; j++) {
6394         mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j);
6395         DCHECK(ContainsElement(classes_in_iftable, super_interface))
6396             << "Iftable does not contain " << PrettyClass(super_interface)
6397             << ", a superinterface of " << PrettyClass(interface);
6398       }
6399     }
6400   }
6401   if (kIsDebugBuild) {
6402     // Check that the iftable is ordered correctly.
6403     for (size_t i = 0; i < filled_ifcount; i++) {
6404       mirror::Class* if_a = iftable->GetInterface(i);
6405       for (size_t j = i + 1; j < filled_ifcount; j++) {
6406         mirror::Class* if_b = iftable->GetInterface(j);
6407         // !(if_a <: if_b)
6408         CHECK(!if_b->IsAssignableFrom(if_a))
6409             << "Bad interface order: " << PrettyClass(if_a) << " (index " << i << ") extends "
6410             << PrettyClass(if_b) << " (index " << j << ") and so should be after it in the "
6411             << "interface list.";
6412       }
6413     }
6414   }
6415   return filled_ifcount;
6416 }
6417 
SetupInterfaceLookupTable(Thread * self,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces)6418 bool ClassLinker::SetupInterfaceLookupTable(Thread* self, Handle<mirror::Class> klass,
6419                                             Handle<mirror::ObjectArray<mirror::Class>> interfaces) {
6420   StackHandleScope<1> hs(self);
6421   const size_t super_ifcount =
6422       klass->HasSuperClass() ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6423   const bool have_interfaces = interfaces.Get() != nullptr;
6424   const size_t num_interfaces =
6425       have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces();
6426   if (num_interfaces == 0) {
6427     if (super_ifcount == 0) {
6428       // Class implements no interfaces.
6429       DCHECK_EQ(klass->GetIfTableCount(), 0);
6430       DCHECK(klass->GetIfTable() == nullptr);
6431       return true;
6432     }
6433     // Class implements same interfaces as parent, are any of these not marker interfaces?
6434     bool has_non_marker_interface = false;
6435     mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
6436     for (size_t i = 0; i < super_ifcount; ++i) {
6437       if (super_iftable->GetMethodArrayCount(i) > 0) {
6438         has_non_marker_interface = true;
6439         break;
6440       }
6441     }
6442     // Class just inherits marker interfaces from parent so recycle parent's iftable.
6443     if (!has_non_marker_interface) {
6444       klass->SetIfTable(super_iftable);
6445       return true;
6446     }
6447   }
6448   size_t ifcount = super_ifcount + num_interfaces;
6449   // Check that every class being implemented is an interface.
6450   for (size_t i = 0; i < num_interfaces; i++) {
6451     mirror::Class* interface = have_interfaces
6452         ? interfaces->GetWithoutChecks(i)
6453         : mirror::Class::GetDirectInterface(self, klass, i);
6454     DCHECK(interface != nullptr);
6455     if (UNLIKELY(!interface->IsInterface())) {
6456       std::string temp;
6457       ThrowIncompatibleClassChangeError(klass.Get(),
6458                                         "Class %s implements non-interface class %s",
6459                                         PrettyDescriptor(klass.Get()).c_str(),
6460                                         PrettyDescriptor(interface->GetDescriptor(&temp)).c_str());
6461       return false;
6462     }
6463     ifcount += interface->GetIfTableCount();
6464   }
6465   // Create the interface function table.
6466   MutableHandle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount)));
6467   if (UNLIKELY(iftable.Get() == nullptr)) {
6468     self->AssertPendingOOMException();
6469     return false;
6470   }
6471   // Fill in table with superclass's iftable.
6472   if (super_ifcount != 0) {
6473     mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
6474     for (size_t i = 0; i < super_ifcount; i++) {
6475       mirror::Class* super_interface = super_iftable->GetInterface(i);
6476       iftable->SetInterface(i, super_interface);
6477     }
6478   }
6479 
6480   // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread
6481   // cancellation. That is it will suspend if one has a pending suspend request but otherwise
6482   // doesn't really do anything.
6483   self->AllowThreadSuspension();
6484 
6485   size_t new_ifcount;
6486   {
6487     ScopedAssertNoThreadSuspension nts(self, "Copying mirror::Class*'s for FillIfTable");
6488     std::vector<mirror::Class*> to_add;
6489     for (size_t i = 0; i < num_interfaces; i++) {
6490       mirror::Class* interface = have_interfaces ? interfaces->Get(i) :
6491           mirror::Class::GetDirectInterface(self, klass, i);
6492       to_add.push_back(interface);
6493     }
6494 
6495     new_ifcount = FillIfTable(iftable.Get(), super_ifcount, std::move(to_add));
6496   }
6497 
6498   self->AllowThreadSuspension();
6499 
6500   // Shrink iftable in case duplicates were found
6501   if (new_ifcount < ifcount) {
6502     DCHECK_NE(num_interfaces, 0U);
6503     iftable.Assign(down_cast<mirror::IfTable*>(
6504         iftable->CopyOf(self, new_ifcount * mirror::IfTable::kMax)));
6505     if (UNLIKELY(iftable.Get() == nullptr)) {
6506       self->AssertPendingOOMException();
6507       return false;
6508     }
6509     ifcount = new_ifcount;
6510   } else {
6511     DCHECK_EQ(new_ifcount, ifcount);
6512   }
6513   klass->SetIfTable(iftable.Get());
6514   return true;
6515 }
6516 
6517 // Finds the method with a name/signature that matches cmp in the given list of methods. The list of
6518 // methods must be unique.
FindSameNameAndSignature(MethodNameAndSignatureComparator & cmp,const ScopedArenaVector<ArtMethod * > & list)6519 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp,
6520                                            const ScopedArenaVector<ArtMethod*>& list)
6521     SHARED_REQUIRES(Locks::mutator_lock_) {
6522   for (ArtMethod* method : list) {
6523     if (cmp.HasSameNameAndSignature(method)) {
6524       return method;
6525     }
6526   }
6527   return nullptr;
6528 }
6529 
SanityCheckVTable(Handle<mirror::Class> klass,uint32_t pointer_size)6530 static void SanityCheckVTable(Handle<mirror::Class> klass, uint32_t pointer_size)
6531     SHARED_REQUIRES(Locks::mutator_lock_) {
6532   mirror::PointerArray* check_vtable = klass->GetVTableDuringLinking();
6533   mirror::Class* superclass = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr;
6534   int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0;
6535   for (int32_t i = 0; i < check_vtable->GetLength(); ++i) {
6536     ArtMethod* m = check_vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
6537     CHECK(m != nullptr);
6538 
6539     ArraySlice<ArtMethod> virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size);
6540     auto is_same_method = [m] (const ArtMethod& meth) {
6541       return &meth == m;
6542     };
6543     CHECK((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) ||
6544           std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())
6545         << "While linking class '" << PrettyClass(klass.Get()) << "' unable to find owning class "
6546         << "of '" << PrettyMethod(m) << "' (vtable index: " << i << ").";
6547   }
6548 }
6549 
FillImtFromSuperClass(Handle<mirror::Class> klass,ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,bool * new_conflict,ArtMethod ** imt)6550 void ClassLinker::FillImtFromSuperClass(Handle<mirror::Class> klass,
6551                                         ArtMethod* unimplemented_method,
6552                                         ArtMethod* imt_conflict_method,
6553                                         bool* new_conflict,
6554                                         ArtMethod** imt) {
6555   DCHECK(klass->HasSuperClass());
6556   mirror::Class* super_class = klass->GetSuperClass();
6557   if (super_class->ShouldHaveImt()) {
6558     ImTable* super_imt = super_class->GetImt(image_pointer_size_);
6559     for (size_t i = 0; i < ImTable::kSize; ++i) {
6560       imt[i] = super_imt->Get(i, image_pointer_size_);
6561     }
6562   } else {
6563     // No imt in the super class, need to reconstruct from the iftable.
6564     mirror::IfTable* if_table = super_class->GetIfTable();
6565     if (if_table != nullptr) {
6566       // Ignore copied methods since we will handle these in LinkInterfaceMethods.
6567       FillIMTFromIfTable(if_table,
6568                          unimplemented_method,
6569                          imt_conflict_method,
6570                          klass.Get(),
6571                          /*create_conflict_table*/false,
6572                          /*ignore_copied_methods*/true,
6573                          /*out*/new_conflict,
6574                          /*out*/imt);
6575     }
6576   }
6577 }
6578 
6579 // TODO This method needs to be split up into several smaller methods.
LinkInterfaceMethods(Thread * self,Handle<mirror::Class> klass,const std::unordered_map<size_t,ClassLinker::MethodTranslation> & default_translations,bool * out_new_conflict,ArtMethod ** out_imt)6580 bool ClassLinker::LinkInterfaceMethods(
6581     Thread* self,
6582     Handle<mirror::Class> klass,
6583     const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
6584     bool* out_new_conflict,
6585     ArtMethod** out_imt) {
6586   StackHandleScope<3> hs(self);
6587   Runtime* const runtime = Runtime::Current();
6588 
6589   const bool is_interface = klass->IsInterface();
6590   const bool has_superclass = klass->HasSuperClass();
6591   const bool fill_tables = !is_interface;
6592   const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6593   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
6594   const size_t method_size = ArtMethod::Size(image_pointer_size_);
6595   const size_t ifcount = klass->GetIfTableCount();
6596 
6597   MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
6598 
6599   // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create
6600   // the virtual methods array.
6601   // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array
6602   // during cross compilation.
6603   // Use the linear alloc pool since this one is in the low 4gb for the compiler.
6604   ArenaStack stack(runtime->GetLinearAlloc()->GetArenaPool());
6605   ScopedArenaAllocator allocator(&stack);
6606 
6607   ScopedArenaVector<ArtMethod*> default_conflict_methods(allocator.Adapter());
6608   ScopedArenaVector<ArtMethod*> miranda_methods(allocator.Adapter());
6609   ScopedArenaVector<ArtMethod*> default_methods(allocator.Adapter());
6610 
6611   MutableHandle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6612   ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6613   ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod();
6614   // Copy the IMT from the super class if possible.
6615   const bool extend_super_iftable = has_superclass;
6616   if (has_superclass && fill_tables) {
6617     FillImtFromSuperClass(klass,
6618                           unimplemented_method,
6619                           imt_conflict_method,
6620                           out_new_conflict,
6621                           out_imt);
6622   }
6623   // Allocate method arrays before since we don't want miss visiting miranda method roots due to
6624   // thread suspension.
6625   if (fill_tables) {
6626     for (size_t i = 0; i < ifcount; ++i) {
6627       size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6628       if (num_methods > 0) {
6629         const bool is_super = i < super_ifcount;
6630         // This is an interface implemented by a super-class. Therefore we can just copy the method
6631         // array from the superclass.
6632         const bool super_interface = is_super && extend_super_iftable;
6633         mirror::PointerArray* method_array;
6634         if (super_interface) {
6635           mirror::IfTable* if_table = klass->GetSuperClass()->GetIfTable();
6636           DCHECK(if_table != nullptr);
6637           DCHECK(if_table->GetMethodArray(i) != nullptr);
6638           // If we are working on a super interface, try extending the existing method array.
6639           method_array = down_cast<mirror::PointerArray*>(if_table->GetMethodArray(i)->Clone(self));
6640         } else {
6641           method_array = AllocPointerArray(self, num_methods);
6642         }
6643         if (UNLIKELY(method_array == nullptr)) {
6644           self->AssertPendingOOMException();
6645           return false;
6646         }
6647         iftable->SetMethodArray(i, method_array);
6648       }
6649     }
6650   }
6651 
6652   auto* old_cause = self->StartAssertNoThreadSuspension(
6653       "Copying ArtMethods for LinkInterfaceMethods");
6654   // Going in reverse to ensure that we will hit abstract methods that override defaults before the
6655   // defaults. This means we don't need to do any trickery when creating the Miranda methods, since
6656   // they will already be null. This has the additional benefit that the declarer of a miranda
6657   // method will actually declare an abstract method.
6658   for (size_t i = ifcount; i != 0; ) {
6659     --i;
6660 
6661     DCHECK_GE(i, 0u);
6662     DCHECK_LT(i, ifcount);
6663 
6664     size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6665     if (num_methods > 0) {
6666       StackHandleScope<2> hs2(self);
6667       const bool is_super = i < super_ifcount;
6668       const bool super_interface = is_super && extend_super_iftable;
6669       // We don't actually create or fill these tables for interfaces, we just copy some methods for
6670       // conflict methods. Just set this as nullptr in those cases.
6671       Handle<mirror::PointerArray> method_array(fill_tables
6672                                                 ? hs2.NewHandle(iftable->GetMethodArray(i))
6673                                                 : hs2.NewHandle<mirror::PointerArray>(nullptr));
6674 
6675       ArraySlice<ArtMethod> input_virtual_methods;
6676       ScopedNullHandle<mirror::PointerArray> null_handle;
6677       Handle<mirror::PointerArray> input_vtable_array(null_handle);
6678       int32_t input_array_length = 0;
6679 
6680       // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty
6681       //      and confusing. Default methods should always look through all the superclasses
6682       //      because they are the last choice of an implementation. We get around this by looking
6683       //      at the super-classes iftable methods (copied into method_array previously) when we are
6684       //      looking for the implementation of a super-interface method but that is rather dirty.
6685       bool using_virtuals;
6686       if (super_interface || is_interface) {
6687         // If we are overwriting a super class interface, try to only virtual methods instead of the
6688         // whole vtable.
6689         using_virtuals = true;
6690         input_virtual_methods = klass->GetDeclaredMethodsSlice(image_pointer_size_);
6691         input_array_length = input_virtual_methods.size();
6692       } else {
6693         // For a new interface, however, we need the whole vtable in case a new
6694         // interface method is implemented in the whole superclass.
6695         using_virtuals = false;
6696         DCHECK(vtable.Get() != nullptr);
6697         input_vtable_array = vtable;
6698         input_array_length = input_vtable_array->GetLength();
6699       }
6700 
6701       // For each method in interface
6702       for (size_t j = 0; j < num_methods; ++j) {
6703         auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_);
6704         MethodNameAndSignatureComparator interface_name_comparator(
6705             interface_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6706         uint32_t imt_index = GetIMTIndex(interface_method);
6707         ArtMethod** imt_ptr = &out_imt[imt_index];
6708         // For each method listed in the interface's method list, find the
6709         // matching method in our class's method list.  We want to favor the
6710         // subclass over the superclass, which just requires walking
6711         // back from the end of the vtable.  (This only matters if the
6712         // superclass defines a private method and this class redefines
6713         // it -- otherwise it would use the same vtable slot.  In .dex files
6714         // those don't end up in the virtual method table, so it shouldn't
6715         // matter which direction we go.  We walk it backward anyway.)
6716         //
6717         // To find defaults we need to do the same but also go over interfaces.
6718         bool found_impl = false;
6719         ArtMethod* vtable_impl = nullptr;
6720         for (int32_t k = input_array_length - 1; k >= 0; --k) {
6721           ArtMethod* vtable_method = using_virtuals ?
6722               &input_virtual_methods[k] :
6723               input_vtable_array->GetElementPtrSize<ArtMethod*>(k, image_pointer_size_);
6724           ArtMethod* vtable_method_for_name_comparison =
6725               vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_);
6726           if (interface_name_comparator.HasSameNameAndSignature(
6727               vtable_method_for_name_comparison)) {
6728             if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) {
6729               // Must do EndAssertNoThreadSuspension before throw since the throw can cause
6730               // allocations.
6731               self->EndAssertNoThreadSuspension(old_cause);
6732               ThrowIllegalAccessError(klass.Get(),
6733                   "Method '%s' implementing interface method '%s' is not public",
6734                   PrettyMethod(vtable_method).c_str(), PrettyMethod(interface_method).c_str());
6735               return false;
6736             } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) {
6737               // We might have a newer, better, default method for this, so we just skip it. If we
6738               // are still using this we will select it again when scanning for default methods. To
6739               // obviate the need to copy the method again we will make a note that we already found
6740               // a default here.
6741               // TODO This should be much cleaner.
6742               vtable_impl = vtable_method;
6743               break;
6744             } else {
6745               found_impl = true;
6746               if (LIKELY(fill_tables)) {
6747                 method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_);
6748                 // Place method in imt if entry is empty, place conflict otherwise.
6749                 SetIMTRef(unimplemented_method,
6750                           imt_conflict_method,
6751                           vtable_method,
6752                           /*out*/out_new_conflict,
6753                           /*out*/imt_ptr);
6754               }
6755               break;
6756             }
6757           }
6758         }
6759         // Continue on to the next method if we are done.
6760         if (LIKELY(found_impl)) {
6761           continue;
6762         } else if (LIKELY(super_interface)) {
6763           // Don't look for a default implementation when the super-method is implemented directly
6764           // by the class.
6765           //
6766           // See if we can use the superclasses method and skip searching everything else.
6767           // Note: !found_impl && super_interface
6768           CHECK(extend_super_iftable);
6769           // If this is a super_interface method it is possible we shouldn't override it because a
6770           // superclass could have implemented it directly.  We get the method the superclass used
6771           // to implement this to know if we can override it with a default method. Doing this is
6772           // safe since we know that the super_iftable is filled in so we can simply pull it from
6773           // there. We don't bother if this is not a super-classes interface since in that case we
6774           // have scanned the entire vtable anyway and would have found it.
6775           // TODO This is rather dirty but it is faster than searching through the entire vtable
6776           //      every time.
6777           ArtMethod* supers_method =
6778               method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6779           DCHECK(supers_method != nullptr);
6780           DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method));
6781           if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) {
6782             // The method is not overridable by a default method (i.e. it is directly implemented
6783             // in some class). Therefore move onto the next interface method.
6784             continue;
6785           } else {
6786             // If the super-classes method is override-able by a default method we need to keep
6787             // track of it since though it is override-able it is not guaranteed to be 'overridden'.
6788             // If it turns out not to be overridden and we did not keep track of it we might add it
6789             // to the vtable twice, causing corruption in this class and possibly any subclasses.
6790             DCHECK(vtable_impl == nullptr || vtable_impl == supers_method)
6791                 << "vtable_impl was " << PrettyMethod(vtable_impl) << " and not 'nullptr' or "
6792                 << PrettyMethod(supers_method) << " as expected. IFTable appears to be corrupt!";
6793             vtable_impl = supers_method;
6794           }
6795         }
6796         // If we haven't found it yet we should search through the interfaces for default methods.
6797         ArtMethod* current_method = nullptr;
6798         switch (FindDefaultMethodImplementation(self,
6799                                                 interface_method,
6800                                                 klass,
6801                                                 /*out*/&current_method)) {
6802           case DefaultMethodSearchResult::kDefaultConflict: {
6803             // Default method conflict.
6804             DCHECK(current_method == nullptr);
6805             ArtMethod* default_conflict_method = nullptr;
6806             if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) {
6807               // We can reuse the method from the superclass, don't bother adding it to virtuals.
6808               default_conflict_method = vtable_impl;
6809             } else {
6810               // See if we already have a conflict method for this method.
6811               ArtMethod* preexisting_conflict = FindSameNameAndSignature(interface_name_comparator,
6812                                                                          default_conflict_methods);
6813               if (LIKELY(preexisting_conflict != nullptr)) {
6814                 // We already have another conflict we can reuse.
6815                 default_conflict_method = preexisting_conflict;
6816               } else {
6817                 // Note that we do this even if we are an interface since we need to create this and
6818                 // cannot reuse another classes.
6819                 // Create a new conflict method for this to use.
6820                 default_conflict_method =
6821                     reinterpret_cast<ArtMethod*>(allocator.Alloc(method_size));
6822                 new(default_conflict_method) ArtMethod(interface_method, image_pointer_size_);
6823                 default_conflict_methods.push_back(default_conflict_method);
6824               }
6825             }
6826             current_method = default_conflict_method;
6827             break;
6828           }  // case kDefaultConflict
6829           case DefaultMethodSearchResult::kDefaultFound: {
6830             DCHECK(current_method != nullptr);
6831             // Found a default method.
6832             if (vtable_impl != nullptr &&
6833                 current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) {
6834               // We found a default method but it was the same one we already have from our
6835               // superclass. Don't bother adding it to our vtable again.
6836               current_method = vtable_impl;
6837             } else if (LIKELY(fill_tables)) {
6838               // Interfaces don't need to copy default methods since they don't have vtables.
6839               // Only record this default method if it is new to save space.
6840               // TODO It might be worthwhile to copy default methods on interfaces anyway since it
6841               //      would make lookup for interface super much faster. (We would only need to scan
6842               //      the iftable to find if there is a NSME or AME.)
6843               ArtMethod* old = FindSameNameAndSignature(interface_name_comparator, default_methods);
6844               if (old == nullptr) {
6845                 // We found a default method implementation and there were no conflicts.
6846                 // Save the default method. We need to add it to the vtable.
6847                 default_methods.push_back(current_method);
6848               } else {
6849                 CHECK(old == current_method) << "Multiple default implementations selected!";
6850               }
6851             }
6852             break;
6853           }  // case kDefaultFound
6854           case DefaultMethodSearchResult::kAbstractFound: {
6855             DCHECK(current_method == nullptr);
6856             // Abstract method masks all defaults.
6857             if (vtable_impl != nullptr &&
6858                 vtable_impl->IsAbstract() &&
6859                 !vtable_impl->IsDefaultConflicting()) {
6860               // We need to make this an abstract method but the version in the vtable already is so
6861               // don't do anything.
6862               current_method = vtable_impl;
6863             }
6864             break;
6865           }  // case kAbstractFound
6866         }
6867         if (LIKELY(fill_tables)) {
6868           if (current_method == nullptr && !super_interface) {
6869             // We could not find an implementation for this method and since it is a brand new
6870             // interface we searched the entire vtable (and all default methods) for an
6871             // implementation but couldn't find one. We therefore need to make a miranda method.
6872             //
6873             // Find out if there is already a miranda method we can use.
6874             ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator,
6875                                                                  miranda_methods);
6876             if (miranda_method == nullptr) {
6877               DCHECK(interface_method->IsAbstract()) << PrettyMethod(interface_method);
6878               miranda_method = reinterpret_cast<ArtMethod*>(allocator.Alloc(method_size));
6879               CHECK(miranda_method != nullptr);
6880               // Point the interface table at a phantom slot.
6881               new(miranda_method) ArtMethod(interface_method, image_pointer_size_);
6882               miranda_methods.push_back(miranda_method);
6883             }
6884             current_method = miranda_method;
6885           }
6886 
6887           if (current_method != nullptr) {
6888             // We found a default method implementation. Record it in the iftable and IMT.
6889             method_array->SetElementPtrSize(j, current_method, image_pointer_size_);
6890             SetIMTRef(unimplemented_method,
6891                       imt_conflict_method,
6892                       current_method,
6893                       /*out*/out_new_conflict,
6894                       /*out*/imt_ptr);
6895           }
6896         }
6897       }  // For each method in interface end.
6898     }  // if (num_methods > 0)
6899   }  // For each interface.
6900   const bool has_new_virtuals = !(miranda_methods.empty() &&
6901                                   default_methods.empty() &&
6902                                   default_conflict_methods.empty());
6903   // TODO don't extend virtuals of interface unless necessary (when is it?).
6904   if (has_new_virtuals) {
6905     DCHECK(!is_interface || (default_methods.empty() && miranda_methods.empty()))
6906         << "Interfaces should only have default-conflict methods appended to them.";
6907     VLOG(class_linker) << PrettyClass(klass.Get()) << ": miranda_methods=" << miranda_methods.size()
6908                        << " default_methods=" << default_methods.size()
6909                        << " default_conflict_methods=" << default_conflict_methods.size();
6910     const size_t old_method_count = klass->NumMethods();
6911     const size_t new_method_count = old_method_count +
6912                                     miranda_methods.size() +
6913                                     default_methods.size() +
6914                                     default_conflict_methods.size();
6915     // Attempt to realloc to save RAM if possible.
6916     LengthPrefixedArray<ArtMethod>* old_methods = klass->GetMethodsPtr();
6917     // The Realloced virtual methods aren't visible from the class roots, so there is no issue
6918     // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the
6919     // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since
6920     // CopyFrom has internal read barriers.
6921     //
6922     // TODO We should maybe move some of this into mirror::Class or at least into another method.
6923     const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_method_count,
6924                                                                         method_size,
6925                                                                         method_alignment);
6926     const size_t new_size = LengthPrefixedArray<ArtMethod>::ComputeSize(new_method_count,
6927                                                                         method_size,
6928                                                                         method_alignment);
6929     const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0;
6930     auto* methods = reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(
6931         runtime->GetLinearAlloc()->Realloc(self, old_methods, old_methods_ptr_size, new_size));
6932     if (UNLIKELY(methods == nullptr)) {
6933       self->AssertPendingOOMException();
6934       self->EndAssertNoThreadSuspension(old_cause);
6935       return false;
6936     }
6937     ScopedArenaUnorderedMap<ArtMethod*, ArtMethod*> move_table(allocator.Adapter());
6938     if (methods != old_methods) {
6939       // Maps from heap allocated miranda method to linear alloc miranda method.
6940       StrideIterator<ArtMethod> out = methods->begin(method_size, method_alignment);
6941       // Copy over the old methods.
6942       for (auto& m : klass->GetMethods(image_pointer_size_)) {
6943         move_table.emplace(&m, &*out);
6944         // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read
6945         // barriers when it copies.
6946         out->CopyFrom(&m, image_pointer_size_);
6947         ++out;
6948       }
6949     }
6950     StrideIterator<ArtMethod> out(methods->begin(method_size, method_alignment) + old_method_count);
6951     // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and
6952     // we want the roots of the miranda methods to get visited.
6953     for (ArtMethod* mir_method : miranda_methods) {
6954       ArtMethod& new_method = *out;
6955       new_method.CopyFrom(mir_method, image_pointer_size_);
6956       new_method.SetAccessFlags(new_method.GetAccessFlags() | kAccMiranda | kAccCopied);
6957       DCHECK_NE(new_method.GetAccessFlags() & kAccAbstract, 0u)
6958           << "Miranda method should be abstract!";
6959       move_table.emplace(mir_method, &new_method);
6960       ++out;
6961     }
6962     // We need to copy the default methods into our own method table since the runtime requires that
6963     // every method on a class's vtable be in that respective class's virtual method table.
6964     // NOTE This means that two classes might have the same implementation of a method from the same
6965     // interface but will have different ArtMethod*s for them. This also means we cannot compare a
6966     // default method found on a class with one found on the declaring interface directly and must
6967     // look at the declaring class to determine if they are the same.
6968     for (ArtMethod* def_method : default_methods) {
6969       ArtMethod& new_method = *out;
6970       new_method.CopyFrom(def_method, image_pointer_size_);
6971       // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been verified
6972       // yet it shouldn't have methods that are skipping access checks.
6973       // TODO This is rather arbitrary. We should maybe support classes where only some of its
6974       // methods are skip_access_checks.
6975       constexpr uint32_t kSetFlags = kAccDefault | kAccCopied;
6976       constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks;
6977       new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
6978       move_table.emplace(def_method, &new_method);
6979       ++out;
6980     }
6981     for (ArtMethod* conf_method : default_conflict_methods) {
6982       ArtMethod& new_method = *out;
6983       new_method.CopyFrom(conf_method, image_pointer_size_);
6984       // This is a type of default method (there are default method impls, just a conflict) so mark
6985       // this as a default, non-abstract method, since thats what it is. Also clear the
6986       // kAccSkipAccessChecks bit since this class hasn't been verified yet it shouldn't have
6987       // methods that are skipping access checks.
6988       constexpr uint32_t kSetFlags = kAccDefault | kAccDefaultConflict | kAccCopied;
6989       constexpr uint32_t kMaskFlags = ~(kAccAbstract | kAccSkipAccessChecks);
6990       new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
6991       DCHECK(new_method.IsDefaultConflicting());
6992       // The actual method might or might not be marked abstract since we just copied it from a
6993       // (possibly default) interface method. We need to set it entry point to be the bridge so that
6994       // the compiler will not invoke the implementation of whatever method we copied from.
6995       EnsureThrowsInvocationError(&new_method);
6996       move_table.emplace(conf_method, &new_method);
6997       ++out;
6998     }
6999     methods->SetSize(new_method_count);
7000     UpdateClassMethods(klass.Get(), methods);
7001     // Done copying methods, they are all roots in the class now, so we can end the no thread
7002     // suspension assert.
7003     self->EndAssertNoThreadSuspension(old_cause);
7004 
7005     if (fill_tables) {
7006       // Update the vtable to the new method structures. We can skip this for interfaces since they
7007       // do not have vtables.
7008       const size_t old_vtable_count = vtable->GetLength();
7009       const size_t new_vtable_count = old_vtable_count +
7010                                       miranda_methods.size() +
7011                                       default_methods.size() +
7012                                       default_conflict_methods.size();
7013       vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, new_vtable_count)));
7014       if (UNLIKELY(vtable.Get() == nullptr)) {
7015         self->AssertPendingOOMException();
7016         return false;
7017       }
7018       out = methods->begin(method_size, method_alignment) + old_method_count;
7019       size_t vtable_pos = old_vtable_count;
7020       // Update all the newly copied method's indexes so they denote their placement in the vtable.
7021       for (size_t i = old_method_count; i < new_method_count; ++i) {
7022         // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_
7023         // fields are references into the dex file the method was defined in. Since the ArtMethod
7024         // does not store that information it uses declaring_class_->dex_cache_.
7025         out->SetMethodIndex(0xFFFF & vtable_pos);
7026         vtable->SetElementPtrSize(vtable_pos, &*out, image_pointer_size_);
7027         ++out;
7028         ++vtable_pos;
7029       }
7030       CHECK_EQ(vtable_pos, new_vtable_count);
7031       // Update old vtable methods. We use the default_translations map to figure out what each
7032       // vtable entry should be updated to, if they need to be at all.
7033       for (size_t i = 0; i < old_vtable_count; ++i) {
7034         ArtMethod* translated_method = vtable->GetElementPtrSize<ArtMethod*>(
7035               i, image_pointer_size_);
7036         // Try and find what we need to change this method to.
7037         auto translation_it = default_translations.find(i);
7038         bool found_translation = false;
7039         if (translation_it != default_translations.end()) {
7040           if (translation_it->second.IsInConflict()) {
7041             // Find which conflict method we are to use for this method.
7042             MethodNameAndSignatureComparator old_method_comparator(
7043                 translated_method->GetInterfaceMethodIfProxy(image_pointer_size_));
7044             ArtMethod* new_conflict_method = FindSameNameAndSignature(old_method_comparator,
7045                                                                       default_conflict_methods);
7046             CHECK(new_conflict_method != nullptr) << "Expected a conflict method!";
7047             translated_method = new_conflict_method;
7048           } else if (translation_it->second.IsAbstract()) {
7049             // Find which miranda method we are to use for this method.
7050             MethodNameAndSignatureComparator old_method_comparator(
7051                 translated_method->GetInterfaceMethodIfProxy(image_pointer_size_));
7052             ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator,
7053                                                                 miranda_methods);
7054             DCHECK(miranda_method != nullptr);
7055             translated_method = miranda_method;
7056           } else {
7057             // Normal default method (changed from an older default or abstract interface method).
7058             DCHECK(translation_it->second.IsTranslation());
7059             translated_method = translation_it->second.GetTranslation();
7060           }
7061           found_translation = true;
7062         }
7063         DCHECK(translated_method != nullptr);
7064         auto it = move_table.find(translated_method);
7065         if (it != move_table.end()) {
7066           auto* new_method = it->second;
7067           DCHECK(new_method != nullptr);
7068           vtable->SetElementPtrSize(i, new_method, image_pointer_size_);
7069         } else {
7070           // If it was not going to be updated we wouldn't have put it into the default_translations
7071           // map.
7072           CHECK(!found_translation) << "We were asked to update this vtable entry. Must not fail.";
7073         }
7074       }
7075       klass->SetVTable(vtable.Get());
7076 
7077       // Go fix up all the stale iftable pointers.
7078       for (size_t i = 0; i < ifcount; ++i) {
7079         for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
7080           auto* method_array = iftable->GetMethodArray(i);
7081           auto* m = method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
7082           DCHECK(m != nullptr) << PrettyClass(klass.Get());
7083           auto it = move_table.find(m);
7084           if (it != move_table.end()) {
7085             auto* new_m = it->second;
7086             DCHECK(new_m != nullptr) << PrettyClass(klass.Get());
7087             method_array->SetElementPtrSize(j, new_m, image_pointer_size_);
7088           }
7089         }
7090       }
7091 
7092       // Fix up IMT next
7093       for (size_t i = 0; i < ImTable::kSize; ++i) {
7094         auto it = move_table.find(out_imt[i]);
7095         if (it != move_table.end()) {
7096           out_imt[i] = it->second;
7097         }
7098       }
7099     }
7100 
7101     // Check that there are no stale methods are in the dex cache array.
7102     if (kIsDebugBuild) {
7103       auto* resolved_methods = klass->GetDexCache()->GetResolvedMethods();
7104       for (size_t i = 0, count = klass->GetDexCache()->NumResolvedMethods(); i < count; ++i) {
7105         auto* m = mirror::DexCache::GetElementPtrSize(resolved_methods, i, image_pointer_size_);
7106         CHECK(move_table.find(m) == move_table.end() ||
7107               // The original versions of copied methods will still be present so allow those too.
7108               // Note that if the first check passes this might fail to GetDeclaringClass().
7109               std::find_if(m->GetDeclaringClass()->GetMethods(image_pointer_size_).begin(),
7110                            m->GetDeclaringClass()->GetMethods(image_pointer_size_).end(),
7111                            [m] (ArtMethod& meth) {
7112                              return &meth == m;
7113                            }) != m->GetDeclaringClass()->GetMethods(image_pointer_size_).end())
7114             << "Obsolete methods " << PrettyMethod(m) << " is in dex cache!";
7115       }
7116     }
7117     // Put some random garbage in old methods to help find stale pointers.
7118     if (methods != old_methods && old_methods != nullptr && kIsDebugBuild) {
7119       // Need to make sure the GC is not running since it could be scanning the methods we are
7120       // about to overwrite.
7121       ScopedThreadStateChange tsc(self, kSuspended);
7122       gc::ScopedGCCriticalSection gcs(self,
7123                                       gc::kGcCauseClassLinker,
7124                                       gc::kCollectorTypeClassLinker);
7125       memset(old_methods, 0xFEu, old_size);
7126     }
7127   } else {
7128     self->EndAssertNoThreadSuspension(old_cause);
7129   }
7130   if (kIsDebugBuild && !is_interface) {
7131     SanityCheckVTable(klass, image_pointer_size_);
7132   }
7133   return true;
7134 }
7135 
LinkInstanceFields(Thread * self,Handle<mirror::Class> klass)7136 bool ClassLinker::LinkInstanceFields(Thread* self, Handle<mirror::Class> klass) {
7137   CHECK(klass.Get() != nullptr);
7138   return LinkFields(self, klass, false, nullptr);
7139 }
7140 
LinkStaticFields(Thread * self,Handle<mirror::Class> klass,size_t * class_size)7141 bool ClassLinker::LinkStaticFields(Thread* self, Handle<mirror::Class> klass, size_t* class_size) {
7142   CHECK(klass.Get() != nullptr);
7143   return LinkFields(self, klass, true, class_size);
7144 }
7145 
7146 struct LinkFieldsComparator {
SHARED_REQUIRESart::LinkFieldsComparator7147   explicit LinkFieldsComparator() SHARED_REQUIRES(Locks::mutator_lock_) {
7148   }
7149   // No thread safety analysis as will be called from STL. Checked lock held in constructor.
operator ()art::LinkFieldsComparator7150   bool operator()(ArtField* field1, ArtField* field2)
7151       NO_THREAD_SAFETY_ANALYSIS {
7152     // First come reference fields, then 64-bit, then 32-bit, and then 16-bit, then finally 8-bit.
7153     Primitive::Type type1 = field1->GetTypeAsPrimitiveType();
7154     Primitive::Type type2 = field2->GetTypeAsPrimitiveType();
7155     if (type1 != type2) {
7156       if (type1 == Primitive::kPrimNot) {
7157         // Reference always goes first.
7158         return true;
7159       }
7160       if (type2 == Primitive::kPrimNot) {
7161         // Reference always goes first.
7162         return false;
7163       }
7164       size_t size1 = Primitive::ComponentSize(type1);
7165       size_t size2 = Primitive::ComponentSize(type2);
7166       if (size1 != size2) {
7167         // Larger primitive types go first.
7168         return size1 > size2;
7169       }
7170       // Primitive types differ but sizes match. Arbitrarily order by primitive type.
7171       return type1 < type2;
7172     }
7173     // Same basic group? Then sort by dex field index. This is guaranteed to be sorted
7174     // by name and for equal names by type id index.
7175     // NOTE: This works also for proxies. Their static fields are assigned appropriate indexes.
7176     return field1->GetDexFieldIndex() < field2->GetDexFieldIndex();
7177   }
7178 };
7179 
LinkFields(Thread * self,Handle<mirror::Class> klass,bool is_static,size_t * class_size)7180 bool ClassLinker::LinkFields(Thread* self,
7181                              Handle<mirror::Class> klass,
7182                              bool is_static,
7183                              size_t* class_size) {
7184   self->AllowThreadSuspension();
7185   const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
7186   LengthPrefixedArray<ArtField>* const fields = is_static ? klass->GetSFieldsPtr() :
7187       klass->GetIFieldsPtr();
7188 
7189   // Initialize field_offset
7190   MemberOffset field_offset(0);
7191   if (is_static) {
7192     field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_);
7193   } else {
7194     mirror::Class* super_class = klass->GetSuperClass();
7195     if (super_class != nullptr) {
7196       CHECK(super_class->IsResolved())
7197           << PrettyClass(klass.Get()) << " " << PrettyClass(super_class);
7198       field_offset = MemberOffset(super_class->GetObjectSize());
7199     }
7200   }
7201 
7202   CHECK_EQ(num_fields == 0, fields == nullptr) << PrettyClass(klass.Get());
7203 
7204   // we want a relatively stable order so that adding new fields
7205   // minimizes disruption of C++ version such as Class and Method.
7206   //
7207   // The overall sort order order is:
7208   // 1) All object reference fields, sorted alphabetically.
7209   // 2) All java long (64-bit) integer fields, sorted alphabetically.
7210   // 3) All java double (64-bit) floating point fields, sorted alphabetically.
7211   // 4) All java int (32-bit) integer fields, sorted alphabetically.
7212   // 5) All java float (32-bit) floating point fields, sorted alphabetically.
7213   // 6) All java char (16-bit) integer fields, sorted alphabetically.
7214   // 7) All java short (16-bit) integer fields, sorted alphabetically.
7215   // 8) All java boolean (8-bit) integer fields, sorted alphabetically.
7216   // 9) All java byte (8-bit) integer fields, sorted alphabetically.
7217   //
7218   // Once the fields are sorted in this order we will attempt to fill any gaps that might be present
7219   // in the memory layout of the structure. See ShuffleForward for how this is done.
7220   std::deque<ArtField*> grouped_and_sorted_fields;
7221   const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension(
7222       "Naked ArtField references in deque");
7223   for (size_t i = 0; i < num_fields; i++) {
7224     grouped_and_sorted_fields.push_back(&fields->At(i));
7225   }
7226   std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(),
7227             LinkFieldsComparator());
7228 
7229   // References should be at the front.
7230   size_t current_field = 0;
7231   size_t num_reference_fields = 0;
7232   FieldGaps gaps;
7233 
7234   for (; current_field < num_fields; current_field++) {
7235     ArtField* field = grouped_and_sorted_fields.front();
7236     Primitive::Type type = field->GetTypeAsPrimitiveType();
7237     bool isPrimitive = type != Primitive::kPrimNot;
7238     if (isPrimitive) {
7239       break;  // past last reference, move on to the next phase
7240     }
7241     if (UNLIKELY(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(
7242         field_offset.Uint32Value()))) {
7243       MemberOffset old_offset = field_offset;
7244       field_offset = MemberOffset(RoundUp(field_offset.Uint32Value(), 4));
7245       AddFieldGap(old_offset.Uint32Value(), field_offset.Uint32Value(), &gaps);
7246     }
7247     DCHECK_ALIGNED(field_offset.Uint32Value(), sizeof(mirror::HeapReference<mirror::Object>));
7248     grouped_and_sorted_fields.pop_front();
7249     num_reference_fields++;
7250     field->SetOffset(field_offset);
7251     field_offset = MemberOffset(field_offset.Uint32Value() +
7252                                 sizeof(mirror::HeapReference<mirror::Object>));
7253   }
7254   // Gaps are stored as a max heap which means that we must shuffle from largest to smallest
7255   // otherwise we could end up with suboptimal gap fills.
7256   ShuffleForward<8>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7257   ShuffleForward<4>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7258   ShuffleForward<2>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7259   ShuffleForward<1>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7260   CHECK(grouped_and_sorted_fields.empty()) << "Missed " << grouped_and_sorted_fields.size() <<
7261       " fields.";
7262   self->EndAssertNoThreadSuspension(old_no_suspend_cause);
7263 
7264   // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
7265   if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) {
7266     // We know there are no non-reference fields in the Reference classes, and we know
7267     // that 'referent' is alphabetically last, so this is easy...
7268     CHECK_EQ(num_reference_fields, num_fields) << PrettyClass(klass.Get());
7269     CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent")
7270         << PrettyClass(klass.Get());
7271     --num_reference_fields;
7272   }
7273 
7274   size_t size = field_offset.Uint32Value();
7275   // Update klass
7276   if (is_static) {
7277     klass->SetNumReferenceStaticFields(num_reference_fields);
7278     *class_size = size;
7279   } else {
7280     klass->SetNumReferenceInstanceFields(num_reference_fields);
7281     mirror::Class* super_class = klass->GetSuperClass();
7282     if (num_reference_fields == 0 || super_class == nullptr) {
7283       // object has one reference field, klass, but we ignore it since we always visit the class.
7284       // super_class is null iff the class is java.lang.Object.
7285       if (super_class == nullptr ||
7286           (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) {
7287         klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields);
7288       }
7289     }
7290     if (kIsDebugBuild) {
7291       DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;"));
7292       size_t total_reference_instance_fields = 0;
7293       mirror::Class* cur_super = klass.Get();
7294       while (cur_super != nullptr) {
7295         total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking();
7296         cur_super = cur_super->GetSuperClass();
7297       }
7298       if (super_class == nullptr) {
7299         CHECK_EQ(total_reference_instance_fields, 1u) << PrettyDescriptor(klass.Get());
7300       } else {
7301         // Check that there is at least num_reference_fields other than Object.class.
7302         CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields)
7303             << PrettyClass(klass.Get());
7304       }
7305     }
7306     if (!klass->IsVariableSize()) {
7307       std::string temp;
7308       DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp);
7309       size_t previous_size = klass->GetObjectSize();
7310       if (previous_size != 0) {
7311         // Make sure that we didn't originally have an incorrect size.
7312         CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp);
7313       }
7314       klass->SetObjectSize(size);
7315     }
7316   }
7317 
7318   if (kIsDebugBuild) {
7319     // Make sure that the fields array is ordered by name but all reference
7320     // offsets are at the beginning as far as alignment allows.
7321     MemberOffset start_ref_offset = is_static
7322         ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_)
7323         : klass->GetFirstReferenceInstanceFieldOffset();
7324     MemberOffset end_ref_offset(start_ref_offset.Uint32Value() +
7325                                 num_reference_fields *
7326                                     sizeof(mirror::HeapReference<mirror::Object>));
7327     MemberOffset current_ref_offset = start_ref_offset;
7328     for (size_t i = 0; i < num_fields; i++) {
7329       ArtField* field = &fields->At(i);
7330       VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance")
7331           << " class=" << PrettyClass(klass.Get()) << " field=" << PrettyField(field) << " offset="
7332           << field->GetOffsetDuringLinking();
7333       if (i != 0) {
7334         ArtField* const prev_field = &fields->At(i - 1);
7335         // NOTE: The field names can be the same. This is not possible in the Java language
7336         // but it's valid Java/dex bytecode and for example proguard can generate such bytecode.
7337         DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0);
7338       }
7339       Primitive::Type type = field->GetTypeAsPrimitiveType();
7340       bool is_primitive = type != Primitive::kPrimNot;
7341       if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") &&
7342           strcmp("referent", field->GetName()) == 0) {
7343         is_primitive = true;  // We lied above, so we have to expect a lie here.
7344       }
7345       MemberOffset offset = field->GetOffsetDuringLinking();
7346       if (is_primitive) {
7347         if (offset.Uint32Value() < end_ref_offset.Uint32Value()) {
7348           // Shuffled before references.
7349           size_t type_size = Primitive::ComponentSize(type);
7350           CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>));
7351           CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value());
7352           CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value());
7353           CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value()));
7354         }
7355       } else {
7356         CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value());
7357         current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() +
7358                                           sizeof(mirror::HeapReference<mirror::Object>));
7359       }
7360     }
7361     CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value());
7362   }
7363   return true;
7364 }
7365 
7366 //  Set the bitmap of reference instance field offsets.
CreateReferenceInstanceOffsets(Handle<mirror::Class> klass)7367 void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) {
7368   uint32_t reference_offsets = 0;
7369   mirror::Class* super_class = klass->GetSuperClass();
7370   // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially).
7371   if (super_class != nullptr) {
7372     reference_offsets = super_class->GetReferenceInstanceOffsets();
7373     // Compute reference offsets unless our superclass overflowed.
7374     if (reference_offsets != mirror::Class::kClassWalkSuper) {
7375       size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking();
7376       if (num_reference_fields != 0u) {
7377         // All of the fields that contain object references are guaranteed be grouped in memory
7378         // starting at an appropriately aligned address after super class object data.
7379         uint32_t start_offset = RoundUp(super_class->GetObjectSize(),
7380                                         sizeof(mirror::HeapReference<mirror::Object>));
7381         uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) /
7382             sizeof(mirror::HeapReference<mirror::Object>);
7383         if (start_bit + num_reference_fields > 32) {
7384           reference_offsets = mirror::Class::kClassWalkSuper;
7385         } else {
7386           reference_offsets |= (0xffffffffu << start_bit) &
7387                                (0xffffffffu >> (32 - (start_bit + num_reference_fields)));
7388         }
7389       }
7390     }
7391   }
7392   klass->SetReferenceInstanceOffsets(reference_offsets);
7393 }
7394 
ResolveString(const DexFile & dex_file,uint32_t string_idx,Handle<mirror::DexCache> dex_cache)7395 mirror::String* ClassLinker::ResolveString(const DexFile& dex_file,
7396                                            uint32_t string_idx,
7397                                            Handle<mirror::DexCache> dex_cache) {
7398   DCHECK(dex_cache.Get() != nullptr);
7399   mirror::String* resolved = dex_cache->GetResolvedString(string_idx);
7400   if (resolved != nullptr) {
7401     return resolved;
7402   }
7403   uint32_t utf16_length;
7404   const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7405   mirror::String* string = intern_table_->InternStrong(utf16_length, utf8_data);
7406   dex_cache->SetResolvedString(string_idx, string);
7407   return string;
7408 }
7409 
LookupString(const DexFile & dex_file,uint32_t string_idx,Handle<mirror::DexCache> dex_cache)7410 mirror::String* ClassLinker::LookupString(const DexFile& dex_file,
7411                                           uint32_t string_idx,
7412                                           Handle<mirror::DexCache> dex_cache) {
7413   DCHECK(dex_cache.Get() != nullptr);
7414   mirror::String* resolved = dex_cache->GetResolvedString(string_idx);
7415   if (resolved != nullptr) {
7416     return resolved;
7417   }
7418   uint32_t utf16_length;
7419   const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7420   mirror::String* string = intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data);
7421   if (string != nullptr) {
7422     dex_cache->SetResolvedString(string_idx, string);
7423   }
7424   return string;
7425 }
7426 
ResolveType(const DexFile & dex_file,uint16_t type_idx,mirror::Class * referrer)7427 mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7428                                         uint16_t type_idx,
7429                                         mirror::Class* referrer) {
7430   StackHandleScope<2> hs(Thread::Current());
7431   Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
7432   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
7433   return ResolveType(dex_file, type_idx, dex_cache, class_loader);
7434 }
7435 
ResolveType(const DexFile & dex_file,uint16_t type_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)7436 mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7437                                         uint16_t type_idx,
7438                                         Handle<mirror::DexCache> dex_cache,
7439                                         Handle<mirror::ClassLoader> class_loader) {
7440   DCHECK(dex_cache.Get() != nullptr);
7441   mirror::Class* resolved = dex_cache->GetResolvedType(type_idx);
7442   if (resolved == nullptr) {
7443     Thread* self = Thread::Current();
7444     const char* descriptor = dex_file.StringByTypeIdx(type_idx);
7445     resolved = FindClass(self, descriptor, class_loader);
7446     if (resolved != nullptr) {
7447       // TODO: we used to throw here if resolved's class loader was not the
7448       //       boot class loader. This was to permit different classes with the
7449       //       same name to be loaded simultaneously by different loaders
7450       dex_cache->SetResolvedType(type_idx, resolved);
7451     } else {
7452       CHECK(self->IsExceptionPending())
7453           << "Expected pending exception for failed resolution of: " << descriptor;
7454       // Convert a ClassNotFoundException to a NoClassDefFoundError.
7455       StackHandleScope<1> hs(self);
7456       Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
7457       if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) {
7458         DCHECK(resolved == nullptr);  // No Handle needed to preserve resolved.
7459         self->ClearException();
7460         ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
7461         self->GetException()->SetCause(cause.Get());
7462       }
7463     }
7464   }
7465   DCHECK((resolved == nullptr) || resolved->IsResolved() || resolved->IsErroneous())
7466       << PrettyDescriptor(resolved) << " " << resolved->GetStatus();
7467   return resolved;
7468 }
7469 
7470 template <ClassLinker::ResolveMode kResolveMode>
ResolveMethod(const DexFile & dex_file,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,ArtMethod * referrer,InvokeType type)7471 ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file,
7472                                       uint32_t method_idx,
7473                                       Handle<mirror::DexCache> dex_cache,
7474                                       Handle<mirror::ClassLoader> class_loader,
7475                                       ArtMethod* referrer,
7476                                       InvokeType type) {
7477   DCHECK(dex_cache.Get() != nullptr);
7478   // Check for hit in the dex cache.
7479   ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
7480   if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
7481     DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
7482     if (kResolveMode == ClassLinker::kForceICCECheck) {
7483       if (resolved->CheckIncompatibleClassChange(type)) {
7484         ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
7485         return nullptr;
7486       }
7487     }
7488     return resolved;
7489   }
7490   // Fail, get the declaring class.
7491   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7492   mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
7493   if (klass == nullptr) {
7494     DCHECK(Thread::Current()->IsExceptionPending());
7495     return nullptr;
7496   }
7497   // Scan using method_idx, this saves string compares but will only hit for matching dex
7498   // caches/files.
7499   switch (type) {
7500     case kDirect:  // Fall-through.
7501     case kStatic:
7502       resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7503       DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
7504       break;
7505     case kInterface:
7506       // We have to check whether the method id really belongs to an interface (dex static bytecode
7507       // constraint A15). Otherwise you must not invoke-interface on it.
7508       //
7509       // This is not symmetric to A12-A14 (direct, static, virtual), as using FindInterfaceMethod
7510       // assumes that the given type is an interface, and will check the interface table if the
7511       // method isn't declared in the class. So it may find an interface method (usually by name
7512       // in the handling below, but we do the constraint check early). In that case,
7513       // CheckIncompatibleClassChange will succeed (as it is called on an interface method)
7514       // unexpectedly.
7515       // Example:
7516       //    interface I {
7517       //      foo()
7518       //    }
7519       //    class A implements I {
7520       //      ...
7521       //    }
7522       //    class B extends A {
7523       //      ...
7524       //    }
7525       //    invoke-interface B.foo
7526       //      -> FindInterfaceMethod finds I.foo (interface method), not A.foo (miranda method)
7527       if (UNLIKELY(!klass->IsInterface())) {
7528         ThrowIncompatibleClassChangeError(klass,
7529                                           "Found class %s, but interface was expected",
7530                                           PrettyDescriptor(klass).c_str());
7531         return nullptr;
7532       } else {
7533         resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7534         DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
7535       }
7536       break;
7537     case kSuper:
7538       if (klass->IsInterface()) {
7539         resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7540       } else {
7541         resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7542       }
7543       break;
7544     case kVirtual:
7545       resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7546       break;
7547     default:
7548       LOG(FATAL) << "Unreachable - invocation type: " << type;
7549       UNREACHABLE();
7550   }
7551   if (resolved == nullptr) {
7552     // Search by name, which works across dex files.
7553     const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
7554     const Signature signature = dex_file.GetMethodSignature(method_id);
7555     switch (type) {
7556       case kDirect:  // Fall-through.
7557       case kStatic:
7558         resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
7559         DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
7560         break;
7561       case kInterface:
7562         resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7563         DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
7564         break;
7565       case kSuper:
7566         if (klass->IsInterface()) {
7567           resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7568         } else {
7569           resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7570         }
7571         break;
7572       case kVirtual:
7573         resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7574         break;
7575     }
7576   }
7577   // If we found a method, check for incompatible class changes.
7578   if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) {
7579     // Be a good citizen and update the dex cache to speed subsequent calls.
7580     dex_cache->SetResolvedMethod(method_idx, resolved, image_pointer_size_);
7581     return resolved;
7582   } else {
7583     // If we had a method, it's an incompatible-class-change error.
7584     if (resolved != nullptr) {
7585       ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
7586     } else {
7587       // We failed to find the method which means either an access error, an incompatible class
7588       // change, or no such method. First try to find the method among direct and virtual methods.
7589       const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
7590       const Signature signature = dex_file.GetMethodSignature(method_id);
7591       switch (type) {
7592         case kDirect:
7593         case kStatic:
7594           resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7595           // Note: kDirect and kStatic are also mutually exclusive, but in that case we would
7596           //       have had a resolved method before, which triggers the "true" branch above.
7597           break;
7598         case kInterface:
7599         case kVirtual:
7600         case kSuper:
7601           resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
7602           break;
7603       }
7604 
7605       // If we found something, check that it can be accessed by the referrer.
7606       bool exception_generated = false;
7607       if (resolved != nullptr && referrer != nullptr) {
7608         mirror::Class* methods_class = resolved->GetDeclaringClass();
7609         mirror::Class* referring_class = referrer->GetDeclaringClass();
7610         if (!referring_class->CanAccess(methods_class)) {
7611           ThrowIllegalAccessErrorClassForMethodDispatch(referring_class,
7612                                                         methods_class,
7613                                                         resolved,
7614                                                         type);
7615           exception_generated = true;
7616         } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) {
7617           ThrowIllegalAccessErrorMethod(referring_class, resolved);
7618           exception_generated = true;
7619         }
7620       }
7621       if (!exception_generated) {
7622         // Otherwise, throw an IncompatibleClassChangeError if we found something, and check
7623         // interface methods and throw if we find the method there. If we find nothing, throw a
7624         // NoSuchMethodError.
7625         switch (type) {
7626           case kDirect:
7627           case kStatic:
7628             if (resolved != nullptr) {
7629               ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
7630             } else {
7631               resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7632               if (resolved != nullptr) {
7633                 ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
7634               } else {
7635                 ThrowNoSuchMethodError(type, klass, name, signature);
7636               }
7637             }
7638             break;
7639           case kInterface:
7640             if (resolved != nullptr) {
7641               ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7642             } else {
7643               resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7644               if (resolved != nullptr) {
7645                 ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
7646               } else {
7647                 ThrowNoSuchMethodError(type, klass, name, signature);
7648               }
7649             }
7650             break;
7651           case kSuper:
7652             if (resolved != nullptr) {
7653               ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7654             } else {
7655               ThrowNoSuchMethodError(type, klass, name, signature);
7656             }
7657             break;
7658           case kVirtual:
7659             if (resolved != nullptr) {
7660               ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7661             } else {
7662               resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7663               if (resolved != nullptr) {
7664                 ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
7665               } else {
7666                 ThrowNoSuchMethodError(type, klass, name, signature);
7667               }
7668             }
7669             break;
7670         }
7671       }
7672     }
7673     Thread::Current()->AssertPendingException();
7674     return nullptr;
7675   }
7676 }
7677 
ResolveMethodWithoutInvokeType(const DexFile & dex_file,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)7678 ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(const DexFile& dex_file,
7679                                                        uint32_t method_idx,
7680                                                        Handle<mirror::DexCache> dex_cache,
7681                                                        Handle<mirror::ClassLoader> class_loader) {
7682   ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
7683   if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
7684     DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
7685     return resolved;
7686   }
7687   // Fail, get the declaring class.
7688   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7689   mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
7690   if (klass == nullptr) {
7691     Thread::Current()->AssertPendingException();
7692     return nullptr;
7693   }
7694   if (klass->IsInterface()) {
7695     LOG(FATAL) << "ResolveAmbiguousMethod: unexpected method in interface: " << PrettyClass(klass);
7696     return nullptr;
7697   }
7698 
7699   // Search both direct and virtual methods
7700   resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7701   if (resolved == nullptr) {
7702     resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7703   }
7704 
7705   return resolved;
7706 }
7707 
ResolveField(const DexFile & dex_file,uint32_t field_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,bool is_static)7708 ArtField* ClassLinker::ResolveField(const DexFile& dex_file,
7709                                     uint32_t field_idx,
7710                                     Handle<mirror::DexCache> dex_cache,
7711                                     Handle<mirror::ClassLoader> class_loader,
7712                                     bool is_static) {
7713   DCHECK(dex_cache.Get() != nullptr);
7714   ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
7715   if (resolved != nullptr) {
7716     return resolved;
7717   }
7718   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
7719   Thread* const self = Thread::Current();
7720   StackHandleScope<1> hs(self);
7721   Handle<mirror::Class> klass(
7722       hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)));
7723   if (klass.Get() == nullptr) {
7724     DCHECK(Thread::Current()->IsExceptionPending());
7725     return nullptr;
7726   }
7727 
7728   if (is_static) {
7729     resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx);
7730   } else {
7731     resolved = klass->FindInstanceField(dex_cache.Get(), field_idx);
7732   }
7733 
7734   if (resolved == nullptr) {
7735     const char* name = dex_file.GetFieldName(field_id);
7736     const char* type = dex_file.GetFieldTypeDescriptor(field_id);
7737     if (is_static) {
7738       resolved = mirror::Class::FindStaticField(self, klass, name, type);
7739     } else {
7740       resolved = klass->FindInstanceField(name, type);
7741     }
7742     if (resolved == nullptr) {
7743       ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass.Get(), type, name);
7744       return nullptr;
7745     }
7746   }
7747   dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
7748   return resolved;
7749 }
7750 
ResolveFieldJLS(const DexFile & dex_file,uint32_t field_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)7751 ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file,
7752                                        uint32_t field_idx,
7753                                        Handle<mirror::DexCache> dex_cache,
7754                                        Handle<mirror::ClassLoader> class_loader) {
7755   DCHECK(dex_cache.Get() != nullptr);
7756   ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
7757   if (resolved != nullptr) {
7758     return resolved;
7759   }
7760   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
7761   Thread* self = Thread::Current();
7762   StackHandleScope<1> hs(self);
7763   Handle<mirror::Class> klass(
7764       hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)));
7765   if (klass.Get() == nullptr) {
7766     DCHECK(Thread::Current()->IsExceptionPending());
7767     return nullptr;
7768   }
7769 
7770   StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_));
7771   StringPiece type(dex_file.StringDataByIdx(
7772       dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_));
7773   resolved = mirror::Class::FindField(self, klass, name, type);
7774   if (resolved != nullptr) {
7775     dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
7776   } else {
7777     ThrowNoSuchFieldError("", klass.Get(), type, name);
7778   }
7779   return resolved;
7780 }
7781 
MethodShorty(uint32_t method_idx,ArtMethod * referrer,uint32_t * length)7782 const char* ClassLinker::MethodShorty(uint32_t method_idx,
7783                                       ArtMethod* referrer,
7784                                       uint32_t* length) {
7785   mirror::Class* declaring_class = referrer->GetDeclaringClass();
7786   mirror::DexCache* dex_cache = declaring_class->GetDexCache();
7787   const DexFile& dex_file = *dex_cache->GetDexFile();
7788   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7789   return dex_file.GetMethodShorty(method_id, length);
7790 }
7791 
7792 class DumpClassVisitor : public ClassVisitor {
7793  public:
DumpClassVisitor(int flags)7794   explicit DumpClassVisitor(int flags) : flags_(flags) {}
7795 
operator ()(mirror::Class * klass)7796   bool operator()(mirror::Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
7797     klass->DumpClass(LOG(ERROR), flags_);
7798     return true;
7799   }
7800 
7801  private:
7802   const int flags_;
7803 };
7804 
DumpAllClasses(int flags)7805 void ClassLinker::DumpAllClasses(int flags) {
7806   DumpClassVisitor visitor(flags);
7807   VisitClasses(&visitor);
7808 }
7809 
CreateOatMethod(const void * code)7810 static OatFile::OatMethod CreateOatMethod(const void* code) {
7811   CHECK(code != nullptr);
7812   const uint8_t* base = reinterpret_cast<const uint8_t*>(code);  // Base of data points at code.
7813   base -= sizeof(void*);  // Move backward so that code_offset != 0.
7814   const uint32_t code_offset = sizeof(void*);
7815   return OatFile::OatMethod(base, code_offset);
7816 }
7817 
IsQuickResolutionStub(const void * entry_point) const7818 bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const {
7819   return (entry_point == GetQuickResolutionStub()) ||
7820       (quick_resolution_trampoline_ == entry_point);
7821 }
7822 
IsQuickToInterpreterBridge(const void * entry_point) const7823 bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const {
7824   return (entry_point == GetQuickToInterpreterBridge()) ||
7825       (quick_to_interpreter_bridge_trampoline_ == entry_point);
7826 }
7827 
IsQuickGenericJniStub(const void * entry_point) const7828 bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const {
7829   return (entry_point == GetQuickGenericJniStub()) ||
7830       (quick_generic_jni_trampoline_ == entry_point);
7831 }
7832 
GetRuntimeQuickGenericJniStub() const7833 const void* ClassLinker::GetRuntimeQuickGenericJniStub() const {
7834   return GetQuickGenericJniStub();
7835 }
7836 
SetEntryPointsToCompiledCode(ArtMethod * method,const void * method_code) const7837 void ClassLinker::SetEntryPointsToCompiledCode(ArtMethod* method,
7838                                                const void* method_code) const {
7839   OatFile::OatMethod oat_method = CreateOatMethod(method_code);
7840   oat_method.LinkMethod(method);
7841 }
7842 
SetEntryPointsToInterpreter(ArtMethod * method) const7843 void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const {
7844   if (!method->IsNative()) {
7845     method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
7846   } else {
7847     const void* quick_method_code = GetQuickGenericJniStub();
7848     OatFile::OatMethod oat_method = CreateOatMethod(quick_method_code);
7849     oat_method.LinkMethod(method);
7850   }
7851 }
7852 
DumpForSigQuit(std::ostream & os)7853 void ClassLinker::DumpForSigQuit(std::ostream& os) {
7854   ScopedObjectAccess soa(Thread::Current());
7855   if (dex_cache_boot_image_class_lookup_required_) {
7856     AddBootImageClassesToClassTable();
7857   }
7858   ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_);
7859   os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes="
7860      << NumNonZygoteClasses() << "\n";
7861 }
7862 
7863 class CountClassesVisitor : public ClassLoaderVisitor {
7864  public:
CountClassesVisitor()7865   CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {}
7866 
Visit(mirror::ClassLoader * class_loader)7867   void Visit(mirror::ClassLoader* class_loader)
7868       SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
7869     ClassTable* const class_table = class_loader->GetClassTable();
7870     if (class_table != nullptr) {
7871       num_zygote_classes += class_table->NumZygoteClasses();
7872       num_non_zygote_classes += class_table->NumNonZygoteClasses();
7873     }
7874   }
7875 
7876   size_t num_zygote_classes;
7877   size_t num_non_zygote_classes;
7878 };
7879 
NumZygoteClasses() const7880 size_t ClassLinker::NumZygoteClasses() const {
7881   CountClassesVisitor visitor;
7882   VisitClassLoaders(&visitor);
7883   return visitor.num_zygote_classes + boot_class_table_.NumZygoteClasses();
7884 }
7885 
NumNonZygoteClasses() const7886 size_t ClassLinker::NumNonZygoteClasses() const {
7887   CountClassesVisitor visitor;
7888   VisitClassLoaders(&visitor);
7889   return visitor.num_non_zygote_classes + boot_class_table_.NumNonZygoteClasses();
7890 }
7891 
NumLoadedClasses()7892 size_t ClassLinker::NumLoadedClasses() {
7893   if (dex_cache_boot_image_class_lookup_required_) {
7894     AddBootImageClassesToClassTable();
7895   }
7896   ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
7897   // Only return non zygote classes since these are the ones which apps which care about.
7898   return NumNonZygoteClasses();
7899 }
7900 
GetClassesLockOwner()7901 pid_t ClassLinker::GetClassesLockOwner() {
7902   return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid();
7903 }
7904 
GetDexLockOwner()7905 pid_t ClassLinker::GetDexLockOwner() {
7906   return dex_lock_.GetExclusiveOwnerTid();
7907 }
7908 
SetClassRoot(ClassRoot class_root,mirror::Class * klass)7909 void ClassLinker::SetClassRoot(ClassRoot class_root, mirror::Class* klass) {
7910   DCHECK(!init_done_);
7911 
7912   DCHECK(klass != nullptr);
7913   DCHECK(klass->GetClassLoader() == nullptr);
7914 
7915   mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read();
7916   DCHECK(class_roots != nullptr);
7917   DCHECK(class_roots->Get(class_root) == nullptr);
7918   class_roots->Set<false>(class_root, klass);
7919 }
7920 
GetClassRootDescriptor(ClassRoot class_root)7921 const char* ClassLinker::GetClassRootDescriptor(ClassRoot class_root) {
7922   static const char* class_roots_descriptors[] = {
7923     "Ljava/lang/Class;",
7924     "Ljava/lang/Object;",
7925     "[Ljava/lang/Class;",
7926     "[Ljava/lang/Object;",
7927     "Ljava/lang/String;",
7928     "Ljava/lang/DexCache;",
7929     "Ljava/lang/ref/Reference;",
7930     "Ljava/lang/reflect/Constructor;",
7931     "Ljava/lang/reflect/Field;",
7932     "Ljava/lang/reflect/Method;",
7933     "Ljava/lang/reflect/Proxy;",
7934     "[Ljava/lang/String;",
7935     "[Ljava/lang/reflect/Constructor;",
7936     "[Ljava/lang/reflect/Field;",
7937     "[Ljava/lang/reflect/Method;",
7938     "Ljava/lang/ClassLoader;",
7939     "Ljava/lang/Throwable;",
7940     "Ljava/lang/ClassNotFoundException;",
7941     "Ljava/lang/StackTraceElement;",
7942     "Z",
7943     "B",
7944     "C",
7945     "D",
7946     "F",
7947     "I",
7948     "J",
7949     "S",
7950     "V",
7951     "[Z",
7952     "[B",
7953     "[C",
7954     "[D",
7955     "[F",
7956     "[I",
7957     "[J",
7958     "[S",
7959     "[Ljava/lang/StackTraceElement;",
7960   };
7961   static_assert(arraysize(class_roots_descriptors) == size_t(kClassRootsMax),
7962                 "Mismatch between class descriptors and class-root enum");
7963 
7964   const char* descriptor = class_roots_descriptors[class_root];
7965   CHECK(descriptor != nullptr);
7966   return descriptor;
7967 }
7968 
CreatePathClassLoader(Thread * self,const std::vector<const DexFile * > & dex_files)7969 jobject ClassLinker::CreatePathClassLoader(Thread* self,
7970                                            const std::vector<const DexFile*>& dex_files) {
7971   // SOAAlreadyRunnable is protected, and we need something to add a global reference.
7972   // We could move the jobject to the callers, but all call-sites do this...
7973   ScopedObjectAccessUnchecked soa(self);
7974 
7975   // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex.
7976   StackHandleScope<10> hs(self);
7977 
7978   ArtField* dex_elements_field =
7979       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
7980 
7981   mirror::Class* dex_elements_class = dex_elements_field->GetType<true>();
7982   DCHECK(dex_elements_class != nullptr);
7983   DCHECK(dex_elements_class->IsArrayClass());
7984   Handle<mirror::ObjectArray<mirror::Object>> h_dex_elements(hs.NewHandle(
7985       mirror::ObjectArray<mirror::Object>::Alloc(self, dex_elements_class, dex_files.size())));
7986   Handle<mirror::Class> h_dex_element_class =
7987       hs.NewHandle(dex_elements_class->GetComponentType());
7988 
7989   ArtField* element_file_field =
7990       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
7991   DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass());
7992 
7993   ArtField* cookie_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie);
7994   DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->GetType<false>());
7995 
7996   ArtField* file_name_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_fileName);
7997   DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->GetType<false>());
7998 
7999   // Fill the elements array.
8000   int32_t index = 0;
8001   for (const DexFile* dex_file : dex_files) {
8002     StackHandleScope<4> hs2(self);
8003 
8004     // CreatePathClassLoader is only used by gtests. Index 0 of h_long_array is supposed to be the
8005     // oat file but we can leave it null.
8006     Handle<mirror::LongArray> h_long_array = hs2.NewHandle(mirror::LongArray::Alloc(
8007         self,
8008         kDexFileIndexStart + 1));
8009     DCHECK(h_long_array.Get() != nullptr);
8010     h_long_array->Set(kDexFileIndexStart, reinterpret_cast<intptr_t>(dex_file));
8011 
8012     Handle<mirror::Object> h_dex_file = hs2.NewHandle(
8013         cookie_field->GetDeclaringClass()->AllocObject(self));
8014     DCHECK(h_dex_file.Get() != nullptr);
8015     cookie_field->SetObject<false>(h_dex_file.Get(), h_long_array.Get());
8016 
8017     Handle<mirror::String> h_file_name = hs2.NewHandle(
8018         mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str()));
8019     DCHECK(h_file_name.Get() != nullptr);
8020     file_name_field->SetObject<false>(h_dex_file.Get(), h_file_name.Get());
8021 
8022     Handle<mirror::Object> h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self));
8023     DCHECK(h_element.Get() != nullptr);
8024     element_file_field->SetObject<false>(h_element.Get(), h_dex_file.Get());
8025 
8026     h_dex_elements->Set(index, h_element.Get());
8027     index++;
8028   }
8029   DCHECK_EQ(index, h_dex_elements->GetLength());
8030 
8031   // Create DexPathList.
8032   Handle<mirror::Object> h_dex_path_list = hs.NewHandle(
8033       dex_elements_field->GetDeclaringClass()->AllocObject(self));
8034   DCHECK(h_dex_path_list.Get() != nullptr);
8035   // Set elements.
8036   dex_elements_field->SetObject<false>(h_dex_path_list.Get(), h_dex_elements.Get());
8037 
8038   // Create PathClassLoader.
8039   Handle<mirror::Class> h_path_class_class = hs.NewHandle(
8040       soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader));
8041   Handle<mirror::Object> h_path_class_loader = hs.NewHandle(
8042       h_path_class_class->AllocObject(self));
8043   DCHECK(h_path_class_loader.Get() != nullptr);
8044   // Set DexPathList.
8045   ArtField* path_list_field =
8046       soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList);
8047   DCHECK(path_list_field != nullptr);
8048   path_list_field->SetObject<false>(h_path_class_loader.Get(), h_dex_path_list.Get());
8049 
8050   // Make a pretend boot-classpath.
8051   // TODO: Should we scan the image?
8052   ArtField* const parent_field =
8053       mirror::Class::FindField(self, hs.NewHandle(h_path_class_loader->GetClass()), "parent",
8054                                "Ljava/lang/ClassLoader;");
8055   DCHECK(parent_field != nullptr);
8056   mirror::Object* boot_cl =
8057       soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self);
8058   parent_field->SetObject<false>(h_path_class_loader.Get(), boot_cl);
8059 
8060   // Make it a global ref and return.
8061   ScopedLocalRef<jobject> local_ref(
8062       soa.Env(), soa.Env()->AddLocalReference<jobject>(h_path_class_loader.Get()));
8063   return soa.Env()->NewGlobalRef(local_ref.get());
8064 }
8065 
CreateRuntimeMethod(LinearAlloc * linear_alloc)8066 ArtMethod* ClassLinker::CreateRuntimeMethod(LinearAlloc* linear_alloc) {
8067   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
8068   const size_t method_size = ArtMethod::Size(image_pointer_size_);
8069   LengthPrefixedArray<ArtMethod>* method_array = AllocArtMethodArray(
8070       Thread::Current(),
8071       linear_alloc,
8072       1);
8073   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
8074   CHECK(method != nullptr);
8075   method->SetDexMethodIndex(DexFile::kDexNoIndex);
8076   CHECK(method->IsRuntimeMethod());
8077   return method;
8078 }
8079 
DropFindArrayClassCache()8080 void ClassLinker::DropFindArrayClassCache() {
8081   std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
8082   find_array_class_cache_next_victim_ = 0;
8083 }
8084 
ClearClassTableStrongRoots() const8085 void ClassLinker::ClearClassTableStrongRoots() const {
8086   Thread* const self = Thread::Current();
8087   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8088   for (const ClassLoaderData& data : class_loaders_) {
8089     if (data.class_table != nullptr) {
8090       data.class_table->ClearStrongRoots();
8091     }
8092   }
8093 }
8094 
VisitClassLoaders(ClassLoaderVisitor * visitor) const8095 void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const {
8096   Thread* const self = Thread::Current();
8097   for (const ClassLoaderData& data : class_loaders_) {
8098     // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8099     auto* const class_loader = down_cast<mirror::ClassLoader*>(self->DecodeJObject(data.weak_root));
8100     if (class_loader != nullptr) {
8101       visitor->Visit(class_loader);
8102     }
8103   }
8104 }
8105 
InsertDexFileInToClassLoader(mirror::Object * dex_file,mirror::ClassLoader * class_loader)8106 void ClassLinker::InsertDexFileInToClassLoader(mirror::Object* dex_file,
8107                                                mirror::ClassLoader* class_loader) {
8108   DCHECK(dex_file != nullptr);
8109   Thread* const self = Thread::Current();
8110   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8111   ClassTable* const table = ClassTableForClassLoader(class_loader);
8112   DCHECK(table != nullptr);
8113   if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) {
8114     // It was not already inserted, perform the write barrier to let the GC know the class loader's
8115     // class table was modified.
8116     Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
8117   }
8118 }
8119 
CleanupClassLoaders()8120 void ClassLinker::CleanupClassLoaders() {
8121   Thread* const self = Thread::Current();
8122   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8123   for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) {
8124     const ClassLoaderData& data = *it;
8125     // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8126     auto* const class_loader = down_cast<mirror::ClassLoader*>(self->DecodeJObject(data.weak_root));
8127     if (class_loader != nullptr) {
8128       ++it;
8129     } else {
8130       VLOG(class_linker) << "Freeing class loader";
8131       DeleteClassLoader(self, data);
8132       it = class_loaders_.erase(it);
8133     }
8134   }
8135 }
8136 
GetResolvedClasses(bool ignore_boot_classes)8137 std::set<DexCacheResolvedClasses> ClassLinker::GetResolvedClasses(bool ignore_boot_classes) {
8138   ScopedTrace trace(__PRETTY_FUNCTION__);
8139   ScopedObjectAccess soa(Thread::Current());
8140   ScopedAssertNoThreadSuspension ants(soa.Self(), __FUNCTION__);
8141   std::set<DexCacheResolvedClasses> ret;
8142   VLOG(class_linker) << "Collecting resolved classes";
8143   const uint64_t start_time = NanoTime();
8144   ReaderMutexLock mu(soa.Self(), *DexLock());
8145   // Loop through all the dex caches and inspect resolved classes.
8146   for (const ClassLinker::DexCacheData& data : GetDexCachesData()) {
8147     if (soa.Self()->IsJWeakCleared(data.weak_root)) {
8148       continue;
8149     }
8150     mirror::DexCache* dex_cache =
8151         down_cast<mirror::DexCache*>(soa.Self()->DecodeJObject(data.weak_root));
8152     if (dex_cache == nullptr) {
8153       continue;
8154     }
8155     const DexFile* dex_file = dex_cache->GetDexFile();
8156     const std::string& location = dex_file->GetLocation();
8157     const size_t num_class_defs = dex_file->NumClassDefs();
8158     // Use the resolved types, this will miss array classes.
8159     const size_t num_types = dex_file->NumTypeIds();
8160     VLOG(class_linker) << "Collecting class profile for dex file " << location
8161                        << " types=" << num_types << " class_defs=" << num_class_defs;
8162     DexCacheResolvedClasses resolved_classes(dex_file->GetLocation(),
8163                                              dex_file->GetBaseLocation(),
8164                                              dex_file->GetLocationChecksum());
8165     size_t num_resolved = 0;
8166     std::unordered_set<uint16_t> class_set;
8167     CHECK_EQ(num_types, dex_cache->NumResolvedTypes());
8168     for (size_t i = 0; i < num_types; ++i) {
8169       mirror::Class* klass = dex_cache->GetResolvedType(i);
8170       // Filter out null class loader since that is the boot class loader.
8171       if (klass == nullptr || (ignore_boot_classes && klass->GetClassLoader() == nullptr)) {
8172         continue;
8173       }
8174       ++num_resolved;
8175       DCHECK(!klass->IsProxyClass());
8176       if (!klass->IsResolved()) {
8177         DCHECK(klass->IsErroneous());
8178         continue;
8179       }
8180       mirror::DexCache* klass_dex_cache = klass->GetDexCache();
8181       if (klass_dex_cache == dex_cache) {
8182         const size_t class_def_idx = klass->GetDexClassDefIndex();
8183         DCHECK(klass->IsResolved());
8184         CHECK_LT(class_def_idx, num_class_defs);
8185         class_set.insert(class_def_idx);
8186       }
8187     }
8188 
8189     if (!class_set.empty()) {
8190       auto it = ret.find(resolved_classes);
8191       if (it != ret.end()) {
8192         // Already have the key, union the class def idxs.
8193         it->AddClasses(class_set.begin(), class_set.end());
8194       } else {
8195         resolved_classes.AddClasses(class_set.begin(), class_set.end());
8196         ret.insert(resolved_classes);
8197       }
8198     }
8199 
8200     VLOG(class_linker) << "Dex location " << location << " has " << num_resolved << " / "
8201                        << num_class_defs << " resolved classes";
8202   }
8203   VLOG(class_linker) << "Collecting class profile took " << PrettyDuration(NanoTime() - start_time);
8204   return ret;
8205 }
8206 
GetClassDescriptorsForProfileKeys(const std::set<DexCacheResolvedClasses> & classes)8207 std::unordered_set<std::string> ClassLinker::GetClassDescriptorsForProfileKeys(
8208     const std::set<DexCacheResolvedClasses>& classes) {
8209   ScopedTrace trace(__PRETTY_FUNCTION__);
8210   std::unordered_set<std::string> ret;
8211   Thread* const self = Thread::Current();
8212   std::unordered_map<std::string, const DexFile*> location_to_dex_file;
8213   ScopedObjectAccess soa(self);
8214   ScopedAssertNoThreadSuspension ants(soa.Self(), __FUNCTION__);
8215   ReaderMutexLock mu(self, *DexLock());
8216   for (const ClassLinker::DexCacheData& data : GetDexCachesData()) {
8217     if (!self->IsJWeakCleared(data.weak_root)) {
8218       mirror::DexCache* dex_cache =
8219           down_cast<mirror::DexCache*>(soa.Self()->DecodeJObject(data.weak_root));
8220       if (dex_cache != nullptr) {
8221         const DexFile* dex_file = dex_cache->GetDexFile();
8222         // There could be duplicates if two dex files with the same location are mapped.
8223         location_to_dex_file.emplace(
8224             ProfileCompilationInfo::GetProfileDexFileKey(dex_file->GetLocation()), dex_file);
8225       }
8226     }
8227   }
8228   for (const DexCacheResolvedClasses& info : classes) {
8229     const std::string& profile_key = info.GetDexLocation();
8230     auto found = location_to_dex_file.find(profile_key);
8231     if (found != location_to_dex_file.end()) {
8232       const DexFile* dex_file = found->second;
8233       VLOG(profiler) << "Found opened dex file for " << dex_file->GetLocation() << " with "
8234                      << info.GetClasses().size() << " classes";
8235       DCHECK_EQ(dex_file->GetLocationChecksum(), info.GetLocationChecksum());
8236       for (uint16_t class_def_idx : info.GetClasses()) {
8237         if (class_def_idx >= dex_file->NumClassDefs()) {
8238           LOG(WARNING) << "Class def index " << class_def_idx << " >= " << dex_file->NumClassDefs();
8239           continue;
8240         }
8241         const DexFile::TypeId& type_id = dex_file->GetTypeId(
8242             dex_file->GetClassDef(class_def_idx).class_idx_);
8243         const char* descriptor = dex_file->GetTypeDescriptor(type_id);
8244         ret.insert(descriptor);
8245       }
8246     } else {
8247       VLOG(class_linker) << "Failed to find opened dex file for profile key " << profile_key;
8248     }
8249   }
8250   return ret;
8251 }
8252 
8253 // Instantiate ResolveMethod.
8254 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kForceICCECheck>(
8255     const DexFile& dex_file,
8256     uint32_t method_idx,
8257     Handle<mirror::DexCache> dex_cache,
8258     Handle<mirror::ClassLoader> class_loader,
8259     ArtMethod* referrer,
8260     InvokeType type);
8261 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kNoICCECheckForCache>(
8262     const DexFile& dex_file,
8263     uint32_t method_idx,
8264     Handle<mirror::DexCache> dex_cache,
8265     Handle<mirror::ClassLoader> class_loader,
8266     ArtMethod* referrer,
8267     InvokeType type);
8268 
8269 }  // namespace art
8270