1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "base/stl_util.h"
21 #include "debugger.h"
22 #include "gc/accounting/heap_bitmap-inl.h"
23 #include "gc/accounting/space_bitmap-inl.h"
24 #include "gc/reference_processor.h"
25 #include "gc/space/image_space.h"
26 #include "gc/space/space-inl.h"
27 #include "image-inl.h"
28 #include "intern_table.h"
29 #include "mirror/class-inl.h"
30 #include "mirror/object-inl.h"
31 #include "scoped_thread_state_change.h"
32 #include "thread-inl.h"
33 #include "thread_list.h"
34 #include "well_known_classes.h"
35
36 namespace art {
37 namespace gc {
38 namespace collector {
39
40 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
41
ConcurrentCopying(Heap * heap,const std::string & name_prefix)42 ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
43 : GarbageCollector(heap,
44 name_prefix + (name_prefix.empty() ? "" : " ") +
45 "concurrent copying + mark sweep"),
46 region_space_(nullptr), gc_barrier_(new Barrier(0)),
47 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
48 kDefaultGcMarkStackSize,
49 kDefaultGcMarkStackSize)),
50 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
51 thread_running_gc_(nullptr),
52 is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
53 heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff),
54 weak_ref_access_enabled_(true),
55 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
56 rb_table_(heap_->GetReadBarrierTable()),
57 force_evacuate_all_(false) {
58 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
59 "The region space size and the read barrier table region size must match");
60 cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
61 Thread* self = Thread::Current();
62 {
63 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
64 // Cache this so that we won't have to lock heap_bitmap_lock_ in
65 // Mark() which could cause a nested lock on heap_bitmap_lock_
66 // when GC causes a RB while doing GC or a lock order violation
67 // (class_linker_lock_ and heap_bitmap_lock_).
68 heap_mark_bitmap_ = heap->GetMarkBitmap();
69 }
70 {
71 MutexLock mu(self, mark_stack_lock_);
72 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
73 accounting::AtomicStack<mirror::Object>* mark_stack =
74 accounting::AtomicStack<mirror::Object>::Create(
75 "thread local mark stack", kMarkStackSize, kMarkStackSize);
76 pooled_mark_stacks_.push_back(mark_stack);
77 }
78 }
79 }
80
MarkHeapReference(mirror::HeapReference<mirror::Object> * from_ref)81 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* from_ref) {
82 // Used for preserving soft references, should be OK to not have a CAS here since there should be
83 // no other threads which can trigger read barriers on the same referent during reference
84 // processing.
85 from_ref->Assign(Mark(from_ref->AsMirrorPtr()));
86 DCHECK(!from_ref->IsNull());
87 }
88
~ConcurrentCopying()89 ConcurrentCopying::~ConcurrentCopying() {
90 STLDeleteElements(&pooled_mark_stacks_);
91 }
92
RunPhases()93 void ConcurrentCopying::RunPhases() {
94 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
95 CHECK(!is_active_);
96 is_active_ = true;
97 Thread* self = Thread::Current();
98 thread_running_gc_ = self;
99 Locks::mutator_lock_->AssertNotHeld(self);
100 {
101 ReaderMutexLock mu(self, *Locks::mutator_lock_);
102 InitializePhase();
103 }
104 FlipThreadRoots();
105 {
106 ReaderMutexLock mu(self, *Locks::mutator_lock_);
107 MarkingPhase();
108 }
109 // Verify no from space refs. This causes a pause.
110 if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
111 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
112 ScopedPause pause(this);
113 CheckEmptyMarkStack();
114 if (kVerboseMode) {
115 LOG(INFO) << "Verifying no from-space refs";
116 }
117 VerifyNoFromSpaceReferences();
118 if (kVerboseMode) {
119 LOG(INFO) << "Done verifying no from-space refs";
120 }
121 CheckEmptyMarkStack();
122 }
123 {
124 ReaderMutexLock mu(self, *Locks::mutator_lock_);
125 ReclaimPhase();
126 }
127 FinishPhase();
128 CHECK(is_active_);
129 is_active_ = false;
130 thread_running_gc_ = nullptr;
131 }
132
BindBitmaps()133 void ConcurrentCopying::BindBitmaps() {
134 Thread* self = Thread::Current();
135 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
136 // Mark all of the spaces we never collect as immune.
137 for (const auto& space : heap_->GetContinuousSpaces()) {
138 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
139 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
140 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
141 immune_spaces_.AddSpace(space);
142 const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
143 "cc zygote space bitmap";
144 // TODO: try avoiding using bitmaps for image/zygote to save space.
145 accounting::ContinuousSpaceBitmap* bitmap =
146 accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
147 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
148 cc_bitmaps_.push_back(bitmap);
149 } else if (space == region_space_) {
150 accounting::ContinuousSpaceBitmap* bitmap =
151 accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
152 space->Begin(), space->Capacity());
153 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
154 cc_bitmaps_.push_back(bitmap);
155 region_space_bitmap_ = bitmap;
156 }
157 }
158 }
159
InitializePhase()160 void ConcurrentCopying::InitializePhase() {
161 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
162 if (kVerboseMode) {
163 LOG(INFO) << "GC InitializePhase";
164 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
165 << reinterpret_cast<void*>(region_space_->Limit());
166 }
167 CheckEmptyMarkStack();
168 immune_spaces_.Reset();
169 bytes_moved_.StoreRelaxed(0);
170 objects_moved_.StoreRelaxed(0);
171 if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
172 GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
173 GetCurrentIteration()->GetClearSoftReferences()) {
174 force_evacuate_all_ = true;
175 } else {
176 force_evacuate_all_ = false;
177 }
178 BindBitmaps();
179 if (kVerboseMode) {
180 LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
181 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
182 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
183 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
184 LOG(INFO) << "Immune space: " << *space;
185 }
186 LOG(INFO) << "GC end of InitializePhase";
187 }
188 }
189
190 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
191 class ConcurrentCopying::ThreadFlipVisitor : public Closure {
192 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)193 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
194 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
195 }
196
Run(Thread * thread)197 virtual void Run(Thread* thread) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
198 // Note: self is not necessarily equal to thread since thread may be suspended.
199 Thread* self = Thread::Current();
200 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
201 << thread->GetState() << " thread " << thread << " self " << self;
202 thread->SetIsGcMarking(true);
203 if (use_tlab_ && thread->HasTlab()) {
204 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
205 // This must come before the revoke.
206 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
207 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
208 reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
209 FetchAndAddSequentiallyConsistent(thread_local_objects);
210 } else {
211 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
212 }
213 }
214 if (kUseThreadLocalAllocationStack) {
215 thread->RevokeThreadLocalAllocationStack();
216 }
217 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
218 thread->VisitRoots(concurrent_copying_);
219 concurrent_copying_->GetBarrier().Pass(self);
220 }
221
222 private:
223 ConcurrentCopying* const concurrent_copying_;
224 const bool use_tlab_;
225 };
226
227 // Called back from Runtime::FlipThreadRoots() during a pause.
228 class ConcurrentCopying::FlipCallback : public Closure {
229 public:
FlipCallback(ConcurrentCopying * concurrent_copying)230 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
231 : concurrent_copying_(concurrent_copying) {
232 }
233
Run(Thread * thread)234 virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
235 ConcurrentCopying* cc = concurrent_copying_;
236 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
237 // Note: self is not necessarily equal to thread since thread may be suspended.
238 Thread* self = Thread::Current();
239 CHECK(thread == self);
240 Locks::mutator_lock_->AssertExclusiveHeld(self);
241 cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
242 cc->SwapStacks();
243 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
244 cc->RecordLiveStackFreezeSize(self);
245 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
246 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
247 }
248 cc->is_marking_ = true;
249 cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
250 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
251 CHECK(Runtime::Current()->IsAotCompiler());
252 TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
253 Runtime::Current()->VisitTransactionRoots(cc);
254 }
255 }
256
257 private:
258 ConcurrentCopying* const concurrent_copying_;
259 };
260
261 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()262 void ConcurrentCopying::FlipThreadRoots() {
263 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
264 if (kVerboseMode) {
265 LOG(INFO) << "time=" << region_space_->Time();
266 region_space_->DumpNonFreeRegions(LOG(INFO));
267 }
268 Thread* self = Thread::Current();
269 Locks::mutator_lock_->AssertNotHeld(self);
270 gc_barrier_->Init(self, 0);
271 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
272 FlipCallback flip_callback(this);
273 heap_->ThreadFlipBegin(self); // Sync with JNI critical calls.
274 size_t barrier_count = Runtime::Current()->FlipThreadRoots(
275 &thread_flip_visitor, &flip_callback, this);
276 heap_->ThreadFlipEnd(self);
277 {
278 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
279 gc_barrier_->Increment(self, barrier_count);
280 }
281 is_asserting_to_space_invariant_ = true;
282 QuasiAtomic::ThreadFenceForConstructor();
283 if (kVerboseMode) {
284 LOG(INFO) << "time=" << region_space_->Time();
285 region_space_->DumpNonFreeRegions(LOG(INFO));
286 LOG(INFO) << "GC end of FlipThreadRoots";
287 }
288 }
289
SwapStacks()290 void ConcurrentCopying::SwapStacks() {
291 heap_->SwapStacks();
292 }
293
RecordLiveStackFreezeSize(Thread * self)294 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
295 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
296 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
297 }
298
299 // Used to visit objects in the immune spaces.
300 class ConcurrentCopying::ImmuneSpaceObjVisitor {
301 public:
ImmuneSpaceObjVisitor(ConcurrentCopying * cc)302 explicit ImmuneSpaceObjVisitor(ConcurrentCopying* cc) : collector_(cc) {}
303
operator ()(mirror::Object * obj) const304 void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
305 SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
306 DCHECK(obj != nullptr);
307 DCHECK(collector_->immune_spaces_.ContainsObject(obj));
308 accounting::ContinuousSpaceBitmap* cc_bitmap =
309 collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
310 DCHECK(cc_bitmap != nullptr)
311 << "An immune space object must have a bitmap";
312 if (kIsDebugBuild) {
313 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
314 << "Immune space object must be already marked";
315 }
316 // This may or may not succeed, which is ok.
317 if (kUseBakerReadBarrier) {
318 obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
319 }
320 if (cc_bitmap->AtomicTestAndSet(obj)) {
321 // Already marked. Do nothing.
322 } else {
323 // Newly marked. Set the gray bit and push it onto the mark stack.
324 CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
325 collector_->PushOntoMarkStack(obj);
326 }
327 }
328
329 private:
330 ConcurrentCopying* const collector_;
331 };
332
333 class EmptyCheckpoint : public Closure {
334 public:
EmptyCheckpoint(ConcurrentCopying * concurrent_copying)335 explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
336 : concurrent_copying_(concurrent_copying) {
337 }
338
Run(Thread * thread)339 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
340 // Note: self is not necessarily equal to thread since thread may be suspended.
341 Thread* self = Thread::Current();
342 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
343 << thread->GetState() << " thread " << thread << " self " << self;
344 // If thread is a running mutator, then act on behalf of the garbage collector.
345 // See the code in ThreadList::RunCheckpoint.
346 concurrent_copying_->GetBarrier().Pass(self);
347 }
348
349 private:
350 ConcurrentCopying* const concurrent_copying_;
351 };
352
353 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
MarkingPhase()354 void ConcurrentCopying::MarkingPhase() {
355 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
356 if (kVerboseMode) {
357 LOG(INFO) << "GC MarkingPhase";
358 }
359 CHECK(weak_ref_access_enabled_);
360 {
361 // Mark the image root. The WB-based collectors do not need to
362 // scan the image objects from roots by relying on the card table,
363 // but it's necessary for the RB to-space invariant to hold.
364 TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
365 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
366 if (space->IsImageSpace()) {
367 gc::space::ImageSpace* image = space->AsImageSpace();
368 if (image != nullptr) {
369 mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
370 mirror::Object* marked_image_root = Mark(image_root);
371 CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
372 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
373 AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
374 }
375 }
376 }
377 }
378 }
379 {
380 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
381 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
382 }
383 {
384 // TODO: don't visit the transaction roots if it's not active.
385 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
386 Runtime::Current()->VisitNonThreadRoots(this);
387 }
388
389 // Immune spaces.
390 for (auto& space : immune_spaces_.GetSpaces()) {
391 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
392 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
393 ImmuneSpaceObjVisitor visitor(this);
394 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
395 reinterpret_cast<uintptr_t>(space->Limit()),
396 visitor);
397 }
398
399 Thread* self = Thread::Current();
400 {
401 TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
402 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
403 // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
404 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
405 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
406 // reach the point where we process weak references, we can avoid using a lock when accessing
407 // the GC mark stack, which makes mark stack processing more efficient.
408
409 // Process the mark stack once in the thread local stack mode. This marks most of the live
410 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
411 // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
412 // objects and push refs on the mark stack.
413 ProcessMarkStack();
414 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
415 // for the last time before transitioning to the shared mark stack mode, which would process new
416 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
417 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
418 // important to do these together in a single checkpoint so that we can ensure that mutators
419 // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
420 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
421 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
422 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
423 SwitchToSharedMarkStackMode();
424 CHECK(!self->GetWeakRefAccessEnabled());
425 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
426 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
427 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
428 // (via read barriers) have no way to produce any more refs to process. Marking converges once
429 // before we process weak refs below.
430 ProcessMarkStack();
431 CheckEmptyMarkStack();
432 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
433 // lock from this point on.
434 SwitchToGcExclusiveMarkStackMode();
435 CheckEmptyMarkStack();
436 if (kVerboseMode) {
437 LOG(INFO) << "ProcessReferences";
438 }
439 // Process weak references. This may produce new refs to process and have them processed via
440 // ProcessMarkStack (in the GC exclusive mark stack mode).
441 ProcessReferences(self);
442 CheckEmptyMarkStack();
443 if (kVerboseMode) {
444 LOG(INFO) << "SweepSystemWeaks";
445 }
446 SweepSystemWeaks(self);
447 if (kVerboseMode) {
448 LOG(INFO) << "SweepSystemWeaks done";
449 }
450 // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
451 // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
452 // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
453 ProcessMarkStack();
454 CheckEmptyMarkStack();
455 // Re-enable weak ref accesses.
456 ReenableWeakRefAccess(self);
457 // Free data for class loaders that we unloaded.
458 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
459 // Marking is done. Disable marking.
460 DisableMarking();
461 CheckEmptyMarkStack();
462 }
463
464 CHECK(weak_ref_access_enabled_);
465 if (kVerboseMode) {
466 LOG(INFO) << "GC end of MarkingPhase";
467 }
468 }
469
ReenableWeakRefAccess(Thread * self)470 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
471 if (kVerboseMode) {
472 LOG(INFO) << "ReenableWeakRefAccess";
473 }
474 weak_ref_access_enabled_.StoreRelaxed(true); // This is for new threads.
475 QuasiAtomic::ThreadFenceForConstructor();
476 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
477 {
478 MutexLock mu(self, *Locks::thread_list_lock_);
479 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
480 for (Thread* thread : thread_list) {
481 thread->SetWeakRefAccessEnabled(true);
482 }
483 }
484 // Unblock blocking threads.
485 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
486 Runtime::Current()->BroadcastForNewSystemWeaks();
487 }
488
489 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
490 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)491 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
492 : concurrent_copying_(concurrent_copying) {
493 }
494
Run(Thread * thread)495 void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
496 // Note: self is not necessarily equal to thread since thread may be suspended.
497 Thread* self = Thread::Current();
498 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
499 << thread->GetState() << " thread " << thread << " self " << self;
500 // Disable the thread-local is_gc_marking flag.
501 // Note a thread that has just started right before this checkpoint may have already this flag
502 // set to false, which is ok.
503 thread->SetIsGcMarking(false);
504 // If thread is a running mutator, then act on behalf of the garbage collector.
505 // See the code in ThreadList::RunCheckpoint.
506 concurrent_copying_->GetBarrier().Pass(self);
507 }
508
509 private:
510 ConcurrentCopying* const concurrent_copying_;
511 };
512
IssueDisableMarkingCheckpoint()513 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
514 Thread* self = Thread::Current();
515 DisableMarkingCheckpoint check_point(this);
516 ThreadList* thread_list = Runtime::Current()->GetThreadList();
517 gc_barrier_->Init(self, 0);
518 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
519 // If there are no threads to wait which implies that all the checkpoint functions are finished,
520 // then no need to release the mutator lock.
521 if (barrier_count == 0) {
522 return;
523 }
524 // Release locks then wait for all mutator threads to pass the barrier.
525 Locks::mutator_lock_->SharedUnlock(self);
526 {
527 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
528 gc_barrier_->Increment(self, barrier_count);
529 }
530 Locks::mutator_lock_->SharedLock(self);
531 }
532
DisableMarking()533 void ConcurrentCopying::DisableMarking() {
534 // Change the global is_marking flag to false. Do a fence before doing a checkpoint to update the
535 // thread-local flags so that a new thread starting up will get the correct is_marking flag.
536 is_marking_ = false;
537 QuasiAtomic::ThreadFenceForConstructor();
538 // Use a checkpoint to turn off the thread-local is_gc_marking flags and to ensure no threads are
539 // still in the middle of a read barrier which may have a from-space ref cached in a local
540 // variable.
541 IssueDisableMarkingCheckpoint();
542 if (kUseTableLookupReadBarrier) {
543 heap_->rb_table_->ClearAll();
544 DCHECK(heap_->rb_table_->IsAllCleared());
545 }
546 is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
547 mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
548 }
549
IssueEmptyCheckpoint()550 void ConcurrentCopying::IssueEmptyCheckpoint() {
551 Thread* self = Thread::Current();
552 EmptyCheckpoint check_point(this);
553 ThreadList* thread_list = Runtime::Current()->GetThreadList();
554 gc_barrier_->Init(self, 0);
555 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
556 // If there are no threads to wait which implys that all the checkpoint functions are finished,
557 // then no need to release the mutator lock.
558 if (barrier_count == 0) {
559 return;
560 }
561 // Release locks then wait for all mutator threads to pass the barrier.
562 Locks::mutator_lock_->SharedUnlock(self);
563 {
564 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
565 gc_barrier_->Increment(self, barrier_count);
566 }
567 Locks::mutator_lock_->SharedLock(self);
568 }
569
ExpandGcMarkStack()570 void ConcurrentCopying::ExpandGcMarkStack() {
571 DCHECK(gc_mark_stack_->IsFull());
572 const size_t new_size = gc_mark_stack_->Capacity() * 2;
573 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
574 gc_mark_stack_->End());
575 gc_mark_stack_->Resize(new_size);
576 for (auto& ref : temp) {
577 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
578 }
579 DCHECK(!gc_mark_stack_->IsFull());
580 }
581
PushOntoMarkStack(mirror::Object * to_ref)582 void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
583 CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
584 << " " << to_ref << " " << PrettyTypeOf(to_ref);
585 Thread* self = Thread::Current(); // TODO: pass self as an argument from call sites?
586 CHECK(thread_running_gc_ != nullptr);
587 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
588 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
589 if (LIKELY(self == thread_running_gc_)) {
590 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
591 CHECK(self->GetThreadLocalMarkStack() == nullptr);
592 if (UNLIKELY(gc_mark_stack_->IsFull())) {
593 ExpandGcMarkStack();
594 }
595 gc_mark_stack_->PushBack(to_ref);
596 } else {
597 // Otherwise, use a thread-local mark stack.
598 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
599 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
600 MutexLock mu(self, mark_stack_lock_);
601 // Get a new thread local mark stack.
602 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
603 if (!pooled_mark_stacks_.empty()) {
604 // Use a pooled mark stack.
605 new_tl_mark_stack = pooled_mark_stacks_.back();
606 pooled_mark_stacks_.pop_back();
607 } else {
608 // None pooled. Create a new one.
609 new_tl_mark_stack =
610 accounting::AtomicStack<mirror::Object>::Create(
611 "thread local mark stack", 4 * KB, 4 * KB);
612 }
613 DCHECK(new_tl_mark_stack != nullptr);
614 DCHECK(new_tl_mark_stack->IsEmpty());
615 new_tl_mark_stack->PushBack(to_ref);
616 self->SetThreadLocalMarkStack(new_tl_mark_stack);
617 if (tl_mark_stack != nullptr) {
618 // Store the old full stack into a vector.
619 revoked_mark_stacks_.push_back(tl_mark_stack);
620 }
621 } else {
622 tl_mark_stack->PushBack(to_ref);
623 }
624 }
625 } else if (mark_stack_mode == kMarkStackModeShared) {
626 // Access the shared GC mark stack with a lock.
627 MutexLock mu(self, mark_stack_lock_);
628 if (UNLIKELY(gc_mark_stack_->IsFull())) {
629 ExpandGcMarkStack();
630 }
631 gc_mark_stack_->PushBack(to_ref);
632 } else {
633 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
634 static_cast<uint32_t>(kMarkStackModeGcExclusive))
635 << "ref=" << to_ref
636 << " self->gc_marking=" << self->GetIsGcMarking()
637 << " cc->is_marking=" << is_marking_;
638 CHECK(self == thread_running_gc_)
639 << "Only GC-running thread should access the mark stack "
640 << "in the GC exclusive mark stack mode";
641 // Access the GC mark stack without a lock.
642 if (UNLIKELY(gc_mark_stack_->IsFull())) {
643 ExpandGcMarkStack();
644 }
645 gc_mark_stack_->PushBack(to_ref);
646 }
647 }
648
GetAllocationStack()649 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
650 return heap_->allocation_stack_.get();
651 }
652
GetLiveStack()653 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
654 return heap_->live_stack_.get();
655 }
656
657 // The following visitors are that used to verify that there's no
658 // references to the from-space left after marking.
659 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
660 public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)661 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
662 : collector_(collector) {}
663
operator ()(mirror::Object * ref) const664 void operator()(mirror::Object* ref) const
665 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
666 if (ref == nullptr) {
667 // OK.
668 return;
669 }
670 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
671 if (kUseBakerReadBarrier) {
672 if (collector_->RegionSpace()->IsInToSpace(ref)) {
673 CHECK(ref->GetReadBarrierPointer() == nullptr)
674 << "To-space ref " << ref << " " << PrettyTypeOf(ref)
675 << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
676 } else {
677 CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
678 (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
679 collector_->IsOnAllocStack(ref)))
680 << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
681 << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
682 << " but isn't on the alloc stack (and has white rb_ptr)."
683 << " Is it in the non-moving space="
684 << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
685 }
686 }
687 }
688
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)689 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
690 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
691 DCHECK(root != nullptr);
692 operator()(root);
693 }
694
695 private:
696 ConcurrentCopying* const collector_;
697 };
698
699 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
700 public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)701 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
702 : collector_(collector) {}
703
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const704 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
705 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
706 mirror::Object* ref =
707 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
708 VerifyNoFromSpaceRefsVisitor visitor(collector_);
709 visitor(ref);
710 }
operator ()(mirror::Class * klass,mirror::Reference * ref) const711 void operator()(mirror::Class* klass, mirror::Reference* ref) const
712 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
713 CHECK(klass->IsTypeOfReferenceClass());
714 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
715 }
716
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const717 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
718 SHARED_REQUIRES(Locks::mutator_lock_) {
719 if (!root->IsNull()) {
720 VisitRoot(root);
721 }
722 }
723
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const724 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
725 SHARED_REQUIRES(Locks::mutator_lock_) {
726 VerifyNoFromSpaceRefsVisitor visitor(collector_);
727 visitor(root->AsMirrorPtr());
728 }
729
730 private:
731 ConcurrentCopying* const collector_;
732 };
733
734 class ConcurrentCopying::VerifyNoFromSpaceRefsObjectVisitor {
735 public:
VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying * collector)736 explicit VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
737 : collector_(collector) {}
operator ()(mirror::Object * obj) const738 void operator()(mirror::Object* obj) const
739 SHARED_REQUIRES(Locks::mutator_lock_) {
740 ObjectCallback(obj, collector_);
741 }
ObjectCallback(mirror::Object * obj,void * arg)742 static void ObjectCallback(mirror::Object* obj, void *arg)
743 SHARED_REQUIRES(Locks::mutator_lock_) {
744 CHECK(obj != nullptr);
745 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
746 space::RegionSpace* region_space = collector->RegionSpace();
747 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
748 VerifyNoFromSpaceRefsFieldVisitor visitor(collector);
749 obj->VisitReferences(visitor, visitor);
750 if (kUseBakerReadBarrier) {
751 if (collector->RegionSpace()->IsInToSpace(obj)) {
752 CHECK(obj->GetReadBarrierPointer() == nullptr)
753 << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
754 } else {
755 CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
756 (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
757 collector->IsOnAllocStack(obj)))
758 << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
759 << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
760 << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
761 << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
762 }
763 }
764 }
765
766 private:
767 ConcurrentCopying* const collector_;
768 };
769
770 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()771 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
772 Thread* self = Thread::Current();
773 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
774 // Verify all threads have is_gc_marking to be false
775 {
776 MutexLock mu(self, *Locks::thread_list_lock_);
777 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
778 for (Thread* thread : thread_list) {
779 CHECK(!thread->GetIsGcMarking());
780 }
781 }
782 VerifyNoFromSpaceRefsObjectVisitor visitor(this);
783 // Roots.
784 {
785 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
786 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
787 Runtime::Current()->VisitRoots(&ref_visitor);
788 }
789 // The to-space.
790 region_space_->WalkToSpace(VerifyNoFromSpaceRefsObjectVisitor::ObjectCallback, this);
791 // Non-moving spaces.
792 {
793 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
794 heap_->GetMarkBitmap()->Visit(visitor);
795 }
796 // The alloc stack.
797 {
798 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
799 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
800 it < end; ++it) {
801 mirror::Object* const obj = it->AsMirrorPtr();
802 if (obj != nullptr && obj->GetClass() != nullptr) {
803 // TODO: need to call this only if obj is alive?
804 ref_visitor(obj);
805 visitor(obj);
806 }
807 }
808 }
809 // TODO: LOS. But only refs in LOS are classes.
810 }
811
812 // The following visitors are used to assert the to-space invariant.
813 class ConcurrentCopying::AssertToSpaceInvariantRefsVisitor {
814 public:
AssertToSpaceInvariantRefsVisitor(ConcurrentCopying * collector)815 explicit AssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
816 : collector_(collector) {}
817
operator ()(mirror::Object * ref) const818 void operator()(mirror::Object* ref) const
819 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
820 if (ref == nullptr) {
821 // OK.
822 return;
823 }
824 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
825 }
826
827 private:
828 ConcurrentCopying* const collector_;
829 };
830
831 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
832 public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)833 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
834 : collector_(collector) {}
835
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const836 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
837 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
838 mirror::Object* ref =
839 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
840 AssertToSpaceInvariantRefsVisitor visitor(collector_);
841 visitor(ref);
842 }
operator ()(mirror::Class * klass,mirror::Reference * ref ATTRIBUTE_UNUSED) const843 void operator()(mirror::Class* klass, mirror::Reference* ref ATTRIBUTE_UNUSED) const
844 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
845 CHECK(klass->IsTypeOfReferenceClass());
846 }
847
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const848 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
849 SHARED_REQUIRES(Locks::mutator_lock_) {
850 if (!root->IsNull()) {
851 VisitRoot(root);
852 }
853 }
854
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const855 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
856 SHARED_REQUIRES(Locks::mutator_lock_) {
857 AssertToSpaceInvariantRefsVisitor visitor(collector_);
858 visitor(root->AsMirrorPtr());
859 }
860
861 private:
862 ConcurrentCopying* const collector_;
863 };
864
865 class ConcurrentCopying::AssertToSpaceInvariantObjectVisitor {
866 public:
AssertToSpaceInvariantObjectVisitor(ConcurrentCopying * collector)867 explicit AssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
868 : collector_(collector) {}
operator ()(mirror::Object * obj) const869 void operator()(mirror::Object* obj) const
870 SHARED_REQUIRES(Locks::mutator_lock_) {
871 ObjectCallback(obj, collector_);
872 }
ObjectCallback(mirror::Object * obj,void * arg)873 static void ObjectCallback(mirror::Object* obj, void *arg)
874 SHARED_REQUIRES(Locks::mutator_lock_) {
875 CHECK(obj != nullptr);
876 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
877 space::RegionSpace* region_space = collector->RegionSpace();
878 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
879 collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
880 AssertToSpaceInvariantFieldVisitor visitor(collector);
881 obj->VisitReferences(visitor, visitor);
882 }
883
884 private:
885 ConcurrentCopying* const collector_;
886 };
887
888 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
889 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)890 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
891 bool disable_weak_ref_access)
892 : concurrent_copying_(concurrent_copying),
893 disable_weak_ref_access_(disable_weak_ref_access) {
894 }
895
Run(Thread * thread)896 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
897 // Note: self is not necessarily equal to thread since thread may be suspended.
898 Thread* self = Thread::Current();
899 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
900 << thread->GetState() << " thread " << thread << " self " << self;
901 // Revoke thread local mark stacks.
902 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
903 if (tl_mark_stack != nullptr) {
904 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
905 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
906 thread->SetThreadLocalMarkStack(nullptr);
907 }
908 // Disable weak ref access.
909 if (disable_weak_ref_access_) {
910 thread->SetWeakRefAccessEnabled(false);
911 }
912 // If thread is a running mutator, then act on behalf of the garbage collector.
913 // See the code in ThreadList::RunCheckpoint.
914 concurrent_copying_->GetBarrier().Pass(self);
915 }
916
917 private:
918 ConcurrentCopying* const concurrent_copying_;
919 const bool disable_weak_ref_access_;
920 };
921
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access)922 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) {
923 Thread* self = Thread::Current();
924 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
925 ThreadList* thread_list = Runtime::Current()->GetThreadList();
926 gc_barrier_->Init(self, 0);
927 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
928 // If there are no threads to wait which implys that all the checkpoint functions are finished,
929 // then no need to release the mutator lock.
930 if (barrier_count == 0) {
931 return;
932 }
933 Locks::mutator_lock_->SharedUnlock(self);
934 {
935 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
936 gc_barrier_->Increment(self, barrier_count);
937 }
938 Locks::mutator_lock_->SharedLock(self);
939 }
940
RevokeThreadLocalMarkStack(Thread * thread)941 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
942 Thread* self = Thread::Current();
943 CHECK_EQ(self, thread);
944 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
945 if (tl_mark_stack != nullptr) {
946 CHECK(is_marking_);
947 MutexLock mu(self, mark_stack_lock_);
948 revoked_mark_stacks_.push_back(tl_mark_stack);
949 thread->SetThreadLocalMarkStack(nullptr);
950 }
951 }
952
ProcessMarkStack()953 void ConcurrentCopying::ProcessMarkStack() {
954 if (kVerboseMode) {
955 LOG(INFO) << "ProcessMarkStack. ";
956 }
957 bool empty_prev = false;
958 while (true) {
959 bool empty = ProcessMarkStackOnce();
960 if (empty_prev && empty) {
961 // Saw empty mark stack for a second time, done.
962 break;
963 }
964 empty_prev = empty;
965 }
966 }
967
ProcessMarkStackOnce()968 bool ConcurrentCopying::ProcessMarkStackOnce() {
969 Thread* self = Thread::Current();
970 CHECK(thread_running_gc_ != nullptr);
971 CHECK(self == thread_running_gc_);
972 CHECK(self->GetThreadLocalMarkStack() == nullptr);
973 size_t count = 0;
974 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
975 if (mark_stack_mode == kMarkStackModeThreadLocal) {
976 // Process the thread-local mark stacks and the GC mark stack.
977 count += ProcessThreadLocalMarkStacks(false);
978 while (!gc_mark_stack_->IsEmpty()) {
979 mirror::Object* to_ref = gc_mark_stack_->PopBack();
980 ProcessMarkStackRef(to_ref);
981 ++count;
982 }
983 gc_mark_stack_->Reset();
984 } else if (mark_stack_mode == kMarkStackModeShared) {
985 // Process the shared GC mark stack with a lock.
986 {
987 MutexLock mu(self, mark_stack_lock_);
988 CHECK(revoked_mark_stacks_.empty());
989 }
990 while (true) {
991 std::vector<mirror::Object*> refs;
992 {
993 // Copy refs with lock. Note the number of refs should be small.
994 MutexLock mu(self, mark_stack_lock_);
995 if (gc_mark_stack_->IsEmpty()) {
996 break;
997 }
998 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
999 p != gc_mark_stack_->End(); ++p) {
1000 refs.push_back(p->AsMirrorPtr());
1001 }
1002 gc_mark_stack_->Reset();
1003 }
1004 for (mirror::Object* ref : refs) {
1005 ProcessMarkStackRef(ref);
1006 ++count;
1007 }
1008 }
1009 } else {
1010 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1011 static_cast<uint32_t>(kMarkStackModeGcExclusive));
1012 {
1013 MutexLock mu(self, mark_stack_lock_);
1014 CHECK(revoked_mark_stacks_.empty());
1015 }
1016 // Process the GC mark stack in the exclusive mode. No need to take the lock.
1017 while (!gc_mark_stack_->IsEmpty()) {
1018 mirror::Object* to_ref = gc_mark_stack_->PopBack();
1019 ProcessMarkStackRef(to_ref);
1020 ++count;
1021 }
1022 gc_mark_stack_->Reset();
1023 }
1024
1025 // Return true if the stack was empty.
1026 return count == 0;
1027 }
1028
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access)1029 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) {
1030 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
1031 RevokeThreadLocalMarkStacks(disable_weak_ref_access);
1032 size_t count = 0;
1033 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
1034 {
1035 MutexLock mu(Thread::Current(), mark_stack_lock_);
1036 // Make a copy of the mark stack vector.
1037 mark_stacks = revoked_mark_stacks_;
1038 revoked_mark_stacks_.clear();
1039 }
1040 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
1041 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
1042 mirror::Object* to_ref = p->AsMirrorPtr();
1043 ProcessMarkStackRef(to_ref);
1044 ++count;
1045 }
1046 {
1047 MutexLock mu(Thread::Current(), mark_stack_lock_);
1048 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
1049 // The pool has enough. Delete it.
1050 delete mark_stack;
1051 } else {
1052 // Otherwise, put it into the pool for later reuse.
1053 mark_stack->Reset();
1054 pooled_mark_stacks_.push_back(mark_stack);
1055 }
1056 }
1057 }
1058 return count;
1059 }
1060
ProcessMarkStackRef(mirror::Object * to_ref)1061 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
1062 DCHECK(!region_space_->IsInFromSpace(to_ref));
1063 if (kUseBakerReadBarrier) {
1064 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1065 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1066 << " is_marked=" << IsMarked(to_ref);
1067 }
1068 // Scan ref fields.
1069 Scan(to_ref);
1070 // Mark the gray ref as white or black.
1071 if (kUseBakerReadBarrier) {
1072 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1073 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1074 << " is_marked=" << IsMarked(to_ref);
1075 }
1076 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
1077 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
1078 to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
1079 !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())))) {
1080 // Leave this Reference gray in the queue so that GetReferent() will trigger a read barrier. We
1081 // will change it to black or white later in ReferenceQueue::DequeuePendingReference().
1082 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) << "Left unenqueued ref gray " << to_ref;
1083 } else {
1084 // We may occasionally leave a Reference black or white in the queue if its referent happens to
1085 // be concurrently marked after the Scan() call above has enqueued the Reference, in which case
1086 // the above IsInToSpace() evaluates to true and we change the color from gray to black or white
1087 // here in this else block.
1088 if (kUseBakerReadBarrier) {
1089 if (region_space_->IsInToSpace(to_ref)) {
1090 // If to-space, change from gray to white.
1091 bool success = to_ref->AtomicSetReadBarrierPointer</*kCasRelease*/true>(
1092 ReadBarrier::GrayPtr(),
1093 ReadBarrier::WhitePtr());
1094 DCHECK(success) << "Must succeed as we won the race.";
1095 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1096 } else {
1097 // If non-moving space/unevac from space, change from gray
1098 // to black. We can't change gray to white because it's not
1099 // safe to use CAS if two threads change values in opposite
1100 // directions (A->B and B->A). So, we change it to black to
1101 // indicate non-moving objects that have been marked
1102 // through. Note we'd need to change from black to white
1103 // later (concurrently).
1104 bool success = to_ref->AtomicSetReadBarrierPointer</*kCasRelease*/true>(
1105 ReadBarrier::GrayPtr(),
1106 ReadBarrier::BlackPtr());
1107 DCHECK(success) << "Must succeed as we won the race.";
1108 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1109 }
1110 }
1111 }
1112 #else
1113 DCHECK(!kUseBakerReadBarrier);
1114 #endif
1115 if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
1116 AssertToSpaceInvariantObjectVisitor visitor(this);
1117 visitor(to_ref);
1118 }
1119 }
1120
SwitchToSharedMarkStackMode()1121 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1122 Thread* self = Thread::Current();
1123 CHECK(thread_running_gc_ != nullptr);
1124 CHECK_EQ(self, thread_running_gc_);
1125 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1126 MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1127 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1128 static_cast<uint32_t>(kMarkStackModeThreadLocal));
1129 mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1130 CHECK(weak_ref_access_enabled_.LoadRelaxed());
1131 weak_ref_access_enabled_.StoreRelaxed(false);
1132 QuasiAtomic::ThreadFenceForConstructor();
1133 // Process the thread local mark stacks one last time after switching to the shared mark stack
1134 // mode and disable weak ref accesses.
1135 ProcessThreadLocalMarkStacks(true);
1136 if (kVerboseMode) {
1137 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1138 }
1139 }
1140
SwitchToGcExclusiveMarkStackMode()1141 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1142 Thread* self = Thread::Current();
1143 CHECK(thread_running_gc_ != nullptr);
1144 CHECK_EQ(self, thread_running_gc_);
1145 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1146 MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1147 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1148 static_cast<uint32_t>(kMarkStackModeShared));
1149 mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1150 QuasiAtomic::ThreadFenceForConstructor();
1151 if (kVerboseMode) {
1152 LOG(INFO) << "Switched to GC exclusive mark stack mode";
1153 }
1154 }
1155
CheckEmptyMarkStack()1156 void ConcurrentCopying::CheckEmptyMarkStack() {
1157 Thread* self = Thread::Current();
1158 CHECK(thread_running_gc_ != nullptr);
1159 CHECK_EQ(self, thread_running_gc_);
1160 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1161 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1162 if (mark_stack_mode == kMarkStackModeThreadLocal) {
1163 // Thread-local mark stack mode.
1164 RevokeThreadLocalMarkStacks(false);
1165 MutexLock mu(Thread::Current(), mark_stack_lock_);
1166 if (!revoked_mark_stacks_.empty()) {
1167 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1168 while (!mark_stack->IsEmpty()) {
1169 mirror::Object* obj = mark_stack->PopBack();
1170 if (kUseBakerReadBarrier) {
1171 mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
1172 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
1173 << " is_marked=" << IsMarked(obj);
1174 } else {
1175 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
1176 << " is_marked=" << IsMarked(obj);
1177 }
1178 }
1179 }
1180 LOG(FATAL) << "mark stack is not empty";
1181 }
1182 } else {
1183 // Shared, GC-exclusive, or off.
1184 MutexLock mu(Thread::Current(), mark_stack_lock_);
1185 CHECK(gc_mark_stack_->IsEmpty());
1186 CHECK(revoked_mark_stacks_.empty());
1187 }
1188 }
1189
SweepSystemWeaks(Thread * self)1190 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1191 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1192 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1193 Runtime::Current()->SweepSystemWeaks(this);
1194 }
1195
Sweep(bool swap_bitmaps)1196 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1197 {
1198 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1199 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1200 if (kEnableFromSpaceAccountingCheck) {
1201 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1202 }
1203 heap_->MarkAllocStackAsLive(live_stack);
1204 live_stack->Reset();
1205 }
1206 CheckEmptyMarkStack();
1207 TimingLogger::ScopedTiming split("Sweep", GetTimings());
1208 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1209 if (space->IsContinuousMemMapAllocSpace()) {
1210 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1211 if (space == region_space_ || immune_spaces_.ContainsSpace(space)) {
1212 continue;
1213 }
1214 TimingLogger::ScopedTiming split2(
1215 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1216 RecordFree(alloc_space->Sweep(swap_bitmaps));
1217 }
1218 }
1219 SweepLargeObjects(swap_bitmaps);
1220 }
1221
SweepLargeObjects(bool swap_bitmaps)1222 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1223 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1224 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1225 }
1226
1227 class ConcurrentCopying::ClearBlackPtrsVisitor {
1228 public:
ClearBlackPtrsVisitor(ConcurrentCopying * cc)1229 explicit ClearBlackPtrsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
operator ()(mirror::Object * obj) const1230 void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
1231 SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1232 DCHECK(obj != nullptr);
1233 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
1234 DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
1235 obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1236 DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1237 }
1238
1239 private:
1240 ConcurrentCopying* const collector_;
1241 };
1242
1243 // Clear the black ptrs in non-moving objects back to white.
ClearBlackPtrs()1244 void ConcurrentCopying::ClearBlackPtrs() {
1245 CHECK(kUseBakerReadBarrier);
1246 TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
1247 ClearBlackPtrsVisitor visitor(this);
1248 for (auto& space : heap_->GetContinuousSpaces()) {
1249 if (space == region_space_) {
1250 continue;
1251 }
1252 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1253 if (kVerboseMode) {
1254 LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
1255 }
1256 mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1257 reinterpret_cast<uintptr_t>(space->Limit()),
1258 visitor);
1259 }
1260 space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
1261 large_object_space->GetMarkBitmap()->VisitMarkedRange(
1262 reinterpret_cast<uintptr_t>(large_object_space->Begin()),
1263 reinterpret_cast<uintptr_t>(large_object_space->End()),
1264 visitor);
1265 // Objects on the allocation stack?
1266 if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
1267 size_t count = GetAllocationStack()->Size();
1268 auto* it = GetAllocationStack()->Begin();
1269 auto* end = GetAllocationStack()->End();
1270 for (size_t i = 0; i < count; ++i, ++it) {
1271 CHECK_LT(it, end);
1272 mirror::Object* obj = it->AsMirrorPtr();
1273 if (obj != nullptr) {
1274 // Must have been cleared above.
1275 CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1276 }
1277 }
1278 }
1279 }
1280
ReclaimPhase()1281 void ConcurrentCopying::ReclaimPhase() {
1282 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1283 if (kVerboseMode) {
1284 LOG(INFO) << "GC ReclaimPhase";
1285 }
1286 Thread* self = Thread::Current();
1287
1288 {
1289 // Double-check that the mark stack is empty.
1290 // Note: need to set this after VerifyNoFromSpaceRef().
1291 is_asserting_to_space_invariant_ = false;
1292 QuasiAtomic::ThreadFenceForConstructor();
1293 if (kVerboseMode) {
1294 LOG(INFO) << "Issue an empty check point. ";
1295 }
1296 IssueEmptyCheckpoint();
1297 // Disable the check.
1298 is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1299 CheckEmptyMarkStack();
1300 }
1301
1302 {
1303 // Record freed objects.
1304 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1305 // Don't include thread-locals that are in the to-space.
1306 uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1307 uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1308 uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1309 uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1310 uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1311 uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1312 if (kEnableFromSpaceAccountingCheck) {
1313 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1314 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1315 }
1316 CHECK_LE(to_objects, from_objects);
1317 CHECK_LE(to_bytes, from_bytes);
1318 int64_t freed_bytes = from_bytes - to_bytes;
1319 int64_t freed_objects = from_objects - to_objects;
1320 if (kVerboseMode) {
1321 LOG(INFO) << "RecordFree:"
1322 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1323 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1324 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1325 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1326 << " from_space size=" << region_space_->FromSpaceSize()
1327 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1328 << " to_space size=" << region_space_->ToSpaceSize();
1329 LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1330 }
1331 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1332 if (kVerboseMode) {
1333 LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1334 }
1335 }
1336
1337 {
1338 TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
1339 ComputeUnevacFromSpaceLiveRatio();
1340 }
1341
1342 {
1343 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1344 region_space_->ClearFromSpace();
1345 }
1346
1347 {
1348 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1349 if (kUseBakerReadBarrier) {
1350 ClearBlackPtrs();
1351 }
1352 Sweep(false);
1353 SwapBitmaps();
1354 heap_->UnBindBitmaps();
1355
1356 // Remove bitmaps for the immune spaces.
1357 while (!cc_bitmaps_.empty()) {
1358 accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
1359 cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
1360 delete cc_bitmap;
1361 cc_bitmaps_.pop_back();
1362 }
1363 region_space_bitmap_ = nullptr;
1364 }
1365
1366 CheckEmptyMarkStack();
1367
1368 if (kVerboseMode) {
1369 LOG(INFO) << "GC end of ReclaimPhase";
1370 }
1371 }
1372
1373 class ConcurrentCopying::ComputeUnevacFromSpaceLiveRatioVisitor {
1374 public:
ComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying * cc)1375 explicit ComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
1376 : collector_(cc) {}
operator ()(mirror::Object * ref) const1377 void operator()(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_)
1378 SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1379 DCHECK(ref != nullptr);
1380 DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
1381 DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
1382 if (kUseBakerReadBarrier) {
1383 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
1384 // Clear the black ptr.
1385 ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1386 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
1387 }
1388 size_t obj_size = ref->SizeOf();
1389 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1390 collector_->region_space_->AddLiveBytes(ref, alloc_size);
1391 }
1392
1393 private:
1394 ConcurrentCopying* const collector_;
1395 };
1396
1397 // Compute how much live objects are left in regions.
ComputeUnevacFromSpaceLiveRatio()1398 void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
1399 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1400 ComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
1401 region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
1402 reinterpret_cast<uintptr_t>(region_space_->Limit()),
1403 visitor);
1404 }
1405
1406 // Assert the to-space invariant.
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)1407 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
1408 mirror::Object* ref) {
1409 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1410 if (is_asserting_to_space_invariant_) {
1411 if (region_space_->IsInToSpace(ref)) {
1412 // OK.
1413 return;
1414 } else if (region_space_->IsInUnevacFromSpace(ref)) {
1415 CHECK(region_space_bitmap_->Test(ref)) << ref;
1416 } else if (region_space_->IsInFromSpace(ref)) {
1417 // Not OK. Do extra logging.
1418 if (obj != nullptr) {
1419 LogFromSpaceRefHolder(obj, offset);
1420 }
1421 ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1422 CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1423 } else {
1424 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1425 }
1426 }
1427 }
1428
1429 class RootPrinter {
1430 public:
RootPrinter()1431 RootPrinter() { }
1432
1433 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)1434 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1435 SHARED_REQUIRES(Locks::mutator_lock_) {
1436 if (!root->IsNull()) {
1437 VisitRoot(root);
1438 }
1439 }
1440
1441 template <class MirrorType>
VisitRoot(mirror::Object ** root)1442 void VisitRoot(mirror::Object** root)
1443 SHARED_REQUIRES(Locks::mutator_lock_) {
1444 LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1445 }
1446
1447 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)1448 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1449 SHARED_REQUIRES(Locks::mutator_lock_) {
1450 LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1451 }
1452 };
1453
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)1454 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1455 mirror::Object* ref) {
1456 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1457 if (is_asserting_to_space_invariant_) {
1458 if (region_space_->IsInToSpace(ref)) {
1459 // OK.
1460 return;
1461 } else if (region_space_->IsInUnevacFromSpace(ref)) {
1462 CHECK(region_space_bitmap_->Test(ref)) << ref;
1463 } else if (region_space_->IsInFromSpace(ref)) {
1464 // Not OK. Do extra logging.
1465 if (gc_root_source == nullptr) {
1466 // No info.
1467 } else if (gc_root_source->HasArtField()) {
1468 ArtField* field = gc_root_source->GetArtField();
1469 LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1470 RootPrinter root_printer;
1471 field->VisitRoots(root_printer);
1472 } else if (gc_root_source->HasArtMethod()) {
1473 ArtMethod* method = gc_root_source->GetArtMethod();
1474 LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1475 RootPrinter root_printer;
1476 method->VisitRoots(root_printer, sizeof(void*));
1477 }
1478 ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1479 region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1480 PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1481 MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1482 CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1483 } else {
1484 AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1485 }
1486 }
1487 }
1488
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)1489 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1490 if (kUseBakerReadBarrier) {
1491 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1492 << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1493 } else {
1494 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1495 }
1496 if (region_space_->IsInFromSpace(obj)) {
1497 LOG(INFO) << "holder is in the from-space.";
1498 } else if (region_space_->IsInToSpace(obj)) {
1499 LOG(INFO) << "holder is in the to-space.";
1500 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1501 LOG(INFO) << "holder is in the unevac from-space.";
1502 if (region_space_bitmap_->Test(obj)) {
1503 LOG(INFO) << "holder is marked in the region space bitmap.";
1504 } else {
1505 LOG(INFO) << "holder is not marked in the region space bitmap.";
1506 }
1507 } else {
1508 // In a non-moving space.
1509 if (immune_spaces_.ContainsObject(obj)) {
1510 LOG(INFO) << "holder is in an immune image or the zygote space.";
1511 accounting::ContinuousSpaceBitmap* cc_bitmap =
1512 cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1513 CHECK(cc_bitmap != nullptr)
1514 << "An immune space object must have a bitmap.";
1515 if (cc_bitmap->Test(obj)) {
1516 LOG(INFO) << "holder is marked in the bit map.";
1517 } else {
1518 LOG(INFO) << "holder is NOT marked in the bit map.";
1519 }
1520 } else {
1521 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
1522 accounting::ContinuousSpaceBitmap* mark_bitmap =
1523 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1524 accounting::LargeObjectBitmap* los_bitmap =
1525 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1526 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1527 bool is_los = mark_bitmap == nullptr;
1528 if (!is_los && mark_bitmap->Test(obj)) {
1529 LOG(INFO) << "holder is marked in the mark bit map.";
1530 } else if (is_los && los_bitmap->Test(obj)) {
1531 LOG(INFO) << "holder is marked in the los bit map.";
1532 } else {
1533 // If ref is on the allocation stack, then it is considered
1534 // mark/alive (but not necessarily on the live stack.)
1535 if (IsOnAllocStack(obj)) {
1536 LOG(INFO) << "holder is on the alloc stack.";
1537 } else {
1538 LOG(INFO) << "holder is not marked or on the alloc stack.";
1539 }
1540 }
1541 }
1542 }
1543 LOG(INFO) << "offset=" << offset.SizeValue();
1544 }
1545
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)1546 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1547 mirror::Object* ref) {
1548 // In a non-moving spaces. Check that the ref is marked.
1549 if (immune_spaces_.ContainsObject(ref)) {
1550 accounting::ContinuousSpaceBitmap* cc_bitmap =
1551 cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1552 CHECK(cc_bitmap != nullptr)
1553 << "An immune space ref must have a bitmap. " << ref;
1554 if (kUseBakerReadBarrier) {
1555 CHECK(cc_bitmap->Test(ref))
1556 << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1557 << obj->GetReadBarrierPointer() << " ref=" << ref;
1558 } else {
1559 CHECK(cc_bitmap->Test(ref))
1560 << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1561 }
1562 } else {
1563 accounting::ContinuousSpaceBitmap* mark_bitmap =
1564 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1565 accounting::LargeObjectBitmap* los_bitmap =
1566 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1567 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1568 bool is_los = mark_bitmap == nullptr;
1569 if ((!is_los && mark_bitmap->Test(ref)) ||
1570 (is_los && los_bitmap->Test(ref))) {
1571 // OK.
1572 } else {
1573 // If ref is on the allocation stack, then it may not be
1574 // marked live, but considered marked/alive (but not
1575 // necessarily on the live stack).
1576 CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1577 << "obj=" << obj << " ref=" << ref;
1578 }
1579 }
1580 }
1581
1582 // Used to scan ref fields of an object.
1583 class ConcurrentCopying::RefFieldsVisitor {
1584 public:
RefFieldsVisitor(ConcurrentCopying * collector)1585 explicit RefFieldsVisitor(ConcurrentCopying* collector)
1586 : collector_(collector) {}
1587
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1588 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1589 const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1590 SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1591 collector_->Process(obj, offset);
1592 }
1593
operator ()(mirror::Class * klass,mirror::Reference * ref) const1594 void operator()(mirror::Class* klass, mirror::Reference* ref) const
1595 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
1596 CHECK(klass->IsTypeOfReferenceClass());
1597 collector_->DelayReferenceReferent(klass, ref);
1598 }
1599
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1600 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1601 ALWAYS_INLINE
1602 SHARED_REQUIRES(Locks::mutator_lock_) {
1603 if (!root->IsNull()) {
1604 VisitRoot(root);
1605 }
1606 }
1607
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1608 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1609 ALWAYS_INLINE
1610 SHARED_REQUIRES(Locks::mutator_lock_) {
1611 collector_->MarkRoot(root);
1612 }
1613
1614 private:
1615 ConcurrentCopying* const collector_;
1616 };
1617
1618 // Scan ref fields of an object.
Scan(mirror::Object * to_ref)1619 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1620 DCHECK(!region_space_->IsInFromSpace(to_ref));
1621 RefFieldsVisitor visitor(this);
1622 // Disable the read barrier for a performance reason.
1623 to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1624 visitor, visitor);
1625 }
1626
1627 // Process a field.
Process(mirror::Object * obj,MemberOffset offset)1628 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1629 mirror::Object* ref = obj->GetFieldObject<
1630 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1631 mirror::Object* to_ref = Mark(ref);
1632 if (to_ref == ref) {
1633 return;
1634 }
1635 // This may fail if the mutator writes to the field at the same time. But it's ok.
1636 mirror::Object* expected_ref = ref;
1637 mirror::Object* new_ref = to_ref;
1638 do {
1639 if (expected_ref !=
1640 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1641 // It was updated by the mutator.
1642 break;
1643 }
1644 } while (!obj->CasFieldWeakRelaxedObjectWithoutWriteBarrier<
1645 false, false, kVerifyNone>(offset, expected_ref, new_ref));
1646 }
1647
1648 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1649 inline void ConcurrentCopying::VisitRoots(
1650 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1651 for (size_t i = 0; i < count; ++i) {
1652 mirror::Object** root = roots[i];
1653 mirror::Object* ref = *root;
1654 mirror::Object* to_ref = Mark(ref);
1655 if (to_ref == ref) {
1656 continue;
1657 }
1658 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1659 mirror::Object* expected_ref = ref;
1660 mirror::Object* new_ref = to_ref;
1661 do {
1662 if (expected_ref != addr->LoadRelaxed()) {
1663 // It was updated by the mutator.
1664 break;
1665 }
1666 } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
1667 }
1668 }
1669
MarkRoot(mirror::CompressedReference<mirror::Object> * root)1670 inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
1671 DCHECK(!root->IsNull());
1672 mirror::Object* const ref = root->AsMirrorPtr();
1673 mirror::Object* to_ref = Mark(ref);
1674 if (to_ref != ref) {
1675 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1676 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1677 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1678 // If the cas fails, then it was updated by the mutator.
1679 do {
1680 if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1681 // It was updated by the mutator.
1682 break;
1683 }
1684 } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
1685 }
1686 }
1687
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1688 inline void ConcurrentCopying::VisitRoots(
1689 mirror::CompressedReference<mirror::Object>** roots, size_t count,
1690 const RootInfo& info ATTRIBUTE_UNUSED) {
1691 for (size_t i = 0; i < count; ++i) {
1692 mirror::CompressedReference<mirror::Object>* const root = roots[i];
1693 if (!root->IsNull()) {
1694 MarkRoot(root);
1695 }
1696 }
1697 }
1698
1699 // Fill the given memory block with a dummy object. Used to fill in a
1700 // copy of objects that was lost in race.
FillWithDummyObject(mirror::Object * dummy_obj,size_t byte_size)1701 void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1702 CHECK_ALIGNED(byte_size, kObjectAlignment);
1703 memset(dummy_obj, 0, byte_size);
1704 mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1705 CHECK(int_array_class != nullptr);
1706 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1707 size_t component_size = int_array_class->GetComponentSize();
1708 CHECK_EQ(component_size, sizeof(int32_t));
1709 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1710 if (data_offset > byte_size) {
1711 // An int array is too big. Use java.lang.Object.
1712 mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1713 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1714 CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1715 dummy_obj->SetClass(java_lang_Object);
1716 CHECK_EQ(byte_size, dummy_obj->SizeOf());
1717 } else {
1718 // Use an int array.
1719 dummy_obj->SetClass(int_array_class);
1720 CHECK(dummy_obj->IsArrayInstance());
1721 int32_t length = (byte_size - data_offset) / component_size;
1722 dummy_obj->AsArray()->SetLength(length);
1723 CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1724 << "byte_size=" << byte_size << " length=" << length
1725 << " component_size=" << component_size << " data_offset=" << data_offset;
1726 CHECK_EQ(byte_size, dummy_obj->SizeOf())
1727 << "byte_size=" << byte_size << " length=" << length
1728 << " component_size=" << component_size << " data_offset=" << data_offset;
1729 }
1730 }
1731
1732 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(size_t alloc_size)1733 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1734 // Try to reuse the blocks that were unused due to CAS failures.
1735 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
1736 Thread* self = Thread::Current();
1737 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1738 MutexLock mu(self, skipped_blocks_lock_);
1739 auto it = skipped_blocks_map_.lower_bound(alloc_size);
1740 if (it == skipped_blocks_map_.end()) {
1741 // Not found.
1742 return nullptr;
1743 }
1744 {
1745 size_t byte_size = it->first;
1746 CHECK_GE(byte_size, alloc_size);
1747 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1748 // If remainder would be too small for a dummy object, retry with a larger request size.
1749 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1750 if (it == skipped_blocks_map_.end()) {
1751 // Not found.
1752 return nullptr;
1753 }
1754 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
1755 CHECK_GE(it->first - alloc_size, min_object_size)
1756 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1757 }
1758 }
1759 // Found a block.
1760 CHECK(it != skipped_blocks_map_.end());
1761 size_t byte_size = it->first;
1762 uint8_t* addr = it->second;
1763 CHECK_GE(byte_size, alloc_size);
1764 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1765 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
1766 if (kVerboseMode) {
1767 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1768 }
1769 skipped_blocks_map_.erase(it);
1770 memset(addr, 0, byte_size);
1771 if (byte_size > alloc_size) {
1772 // Return the remainder to the map.
1773 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
1774 CHECK_GE(byte_size - alloc_size, min_object_size);
1775 FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1776 byte_size - alloc_size);
1777 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1778 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1779 }
1780 return reinterpret_cast<mirror::Object*>(addr);
1781 }
1782
Copy(mirror::Object * from_ref)1783 mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1784 DCHECK(region_space_->IsInFromSpace(from_ref));
1785 // No read barrier to avoid nested RB that might violate the to-space
1786 // invariant. Note that from_ref is a from space ref so the SizeOf()
1787 // call will access the from-space meta objects, but it's ok and necessary.
1788 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1789 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1790 size_t region_space_bytes_allocated = 0U;
1791 size_t non_moving_space_bytes_allocated = 0U;
1792 size_t bytes_allocated = 0U;
1793 size_t dummy;
1794 mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1795 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &dummy);
1796 bytes_allocated = region_space_bytes_allocated;
1797 if (to_ref != nullptr) {
1798 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1799 }
1800 bool fall_back_to_non_moving = false;
1801 if (UNLIKELY(to_ref == nullptr)) {
1802 // Failed to allocate in the region space. Try the skipped blocks.
1803 to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1804 if (to_ref != nullptr) {
1805 // Succeeded to allocate in a skipped block.
1806 if (heap_->use_tlab_) {
1807 // This is necessary for the tlab case as it's not accounted in the space.
1808 region_space_->RecordAlloc(to_ref);
1809 }
1810 bytes_allocated = region_space_alloc_size;
1811 } else {
1812 // Fall back to the non-moving space.
1813 fall_back_to_non_moving = true;
1814 if (kVerboseMode) {
1815 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1816 << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1817 << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1818 }
1819 fall_back_to_non_moving = true;
1820 to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1821 &non_moving_space_bytes_allocated, nullptr, &dummy);
1822 CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1823 bytes_allocated = non_moving_space_bytes_allocated;
1824 // Mark it in the mark bitmap.
1825 accounting::ContinuousSpaceBitmap* mark_bitmap =
1826 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1827 CHECK(mark_bitmap != nullptr);
1828 CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1829 }
1830 }
1831 DCHECK(to_ref != nullptr);
1832
1833 // Attempt to install the forward pointer. This is in a loop as the
1834 // lock word atomic write can fail.
1835 while (true) {
1836 // Copy the object. TODO: copy only the lockword in the second iteration and on?
1837 memcpy(to_ref, from_ref, obj_size);
1838
1839 LockWord old_lock_word = to_ref->GetLockWord(false);
1840
1841 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1842 // Lost the race. Another thread (either GC or mutator) stored
1843 // the forwarding pointer first. Make the lost copy (to_ref)
1844 // look like a valid but dead (dummy) object and keep it for
1845 // future reuse.
1846 FillWithDummyObject(to_ref, bytes_allocated);
1847 if (!fall_back_to_non_moving) {
1848 DCHECK(region_space_->IsInToSpace(to_ref));
1849 if (bytes_allocated > space::RegionSpace::kRegionSize) {
1850 // Free the large alloc.
1851 region_space_->FreeLarge(to_ref, bytes_allocated);
1852 } else {
1853 // Record the lost copy for later reuse.
1854 heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1855 to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1856 to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1857 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1858 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1859 reinterpret_cast<uint8_t*>(to_ref)));
1860 }
1861 } else {
1862 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1863 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1864 // Free the non-moving-space chunk.
1865 accounting::ContinuousSpaceBitmap* mark_bitmap =
1866 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1867 CHECK(mark_bitmap != nullptr);
1868 CHECK(mark_bitmap->Clear(to_ref));
1869 heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1870 }
1871
1872 // Get the winner's forward ptr.
1873 mirror::Object* lost_fwd_ptr = to_ref;
1874 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1875 CHECK(to_ref != nullptr);
1876 CHECK_NE(to_ref, lost_fwd_ptr);
1877 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1878 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1879 return to_ref;
1880 }
1881
1882 // Set the gray ptr.
1883 if (kUseBakerReadBarrier) {
1884 to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1885 }
1886
1887 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1888
1889 // Try to atomically write the fwd ptr.
1890 bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1891 if (LIKELY(success)) {
1892 // The CAS succeeded.
1893 objects_moved_.FetchAndAddSequentiallyConsistent(1);
1894 bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1895 if (LIKELY(!fall_back_to_non_moving)) {
1896 DCHECK(region_space_->IsInToSpace(to_ref));
1897 } else {
1898 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1899 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1900 }
1901 if (kUseBakerReadBarrier) {
1902 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1903 }
1904 DCHECK(GetFwdPtr(from_ref) == to_ref);
1905 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1906 PushOntoMarkStack(to_ref);
1907 return to_ref;
1908 } else {
1909 // The CAS failed. It may have lost the race or may have failed
1910 // due to monitor/hashcode ops. Either way, retry.
1911 }
1912 }
1913 }
1914
IsMarked(mirror::Object * from_ref)1915 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1916 DCHECK(from_ref != nullptr);
1917 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1918 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1919 // It's already marked.
1920 return from_ref;
1921 }
1922 mirror::Object* to_ref;
1923 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1924 to_ref = GetFwdPtr(from_ref);
1925 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1926 heap_->non_moving_space_->HasAddress(to_ref))
1927 << "from_ref=" << from_ref << " to_ref=" << to_ref;
1928 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1929 if (region_space_bitmap_->Test(from_ref)) {
1930 to_ref = from_ref;
1931 } else {
1932 to_ref = nullptr;
1933 }
1934 } else {
1935 // from_ref is in a non-moving space.
1936 if (immune_spaces_.ContainsObject(from_ref)) {
1937 accounting::ContinuousSpaceBitmap* cc_bitmap =
1938 cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1939 DCHECK(cc_bitmap != nullptr)
1940 << "An immune space object must have a bitmap";
1941 if (kIsDebugBuild) {
1942 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1943 << "Immune space object must be already marked";
1944 }
1945 if (cc_bitmap->Test(from_ref)) {
1946 // Already marked.
1947 to_ref = from_ref;
1948 } else {
1949 // Newly marked.
1950 to_ref = nullptr;
1951 }
1952 } else {
1953 // Non-immune non-moving space. Use the mark bitmap.
1954 accounting::ContinuousSpaceBitmap* mark_bitmap =
1955 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1956 accounting::LargeObjectBitmap* los_bitmap =
1957 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1958 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1959 bool is_los = mark_bitmap == nullptr;
1960 if (!is_los && mark_bitmap->Test(from_ref)) {
1961 // Already marked.
1962 to_ref = from_ref;
1963 } else if (is_los && los_bitmap->Test(from_ref)) {
1964 // Already marked in LOS.
1965 to_ref = from_ref;
1966 } else {
1967 // Not marked.
1968 if (IsOnAllocStack(from_ref)) {
1969 // If on the allocation stack, it's considered marked.
1970 to_ref = from_ref;
1971 } else {
1972 // Not marked.
1973 to_ref = nullptr;
1974 }
1975 }
1976 }
1977 }
1978 return to_ref;
1979 }
1980
IsOnAllocStack(mirror::Object * ref)1981 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1982 QuasiAtomic::ThreadFenceAcquire();
1983 accounting::ObjectStack* alloc_stack = GetAllocationStack();
1984 return alloc_stack->Contains(ref);
1985 }
1986
MarkNonMoving(mirror::Object * ref)1987 mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref) {
1988 // ref is in a non-moving space (from_ref == to_ref).
1989 DCHECK(!region_space_->HasAddress(ref)) << ref;
1990 if (immune_spaces_.ContainsObject(ref)) {
1991 accounting::ContinuousSpaceBitmap* cc_bitmap =
1992 cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1993 DCHECK(cc_bitmap != nullptr)
1994 << "An immune space object must have a bitmap";
1995 if (kIsDebugBuild) {
1996 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref))
1997 << "Immune space object must be already marked";
1998 }
1999 // This may or may not succeed, which is ok.
2000 if (kUseBakerReadBarrier) {
2001 ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2002 }
2003 if (cc_bitmap->AtomicTestAndSet(ref)) {
2004 // Already marked.
2005 } else {
2006 // Newly marked.
2007 if (kUseBakerReadBarrier) {
2008 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::GrayPtr());
2009 }
2010 PushOntoMarkStack(ref);
2011 }
2012 } else {
2013 // Use the mark bitmap.
2014 accounting::ContinuousSpaceBitmap* mark_bitmap =
2015 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
2016 accounting::LargeObjectBitmap* los_bitmap =
2017 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
2018 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
2019 bool is_los = mark_bitmap == nullptr;
2020 if (!is_los && mark_bitmap->Test(ref)) {
2021 // Already marked.
2022 if (kUseBakerReadBarrier) {
2023 DCHECK(ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2024 ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2025 }
2026 } else if (is_los && los_bitmap->Test(ref)) {
2027 // Already marked in LOS.
2028 if (kUseBakerReadBarrier) {
2029 DCHECK(ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2030 ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2031 }
2032 } else {
2033 // Not marked.
2034 if (IsOnAllocStack(ref)) {
2035 // If it's on the allocation stack, it's considered marked. Keep it white.
2036 // Objects on the allocation stack need not be marked.
2037 if (!is_los) {
2038 DCHECK(!mark_bitmap->Test(ref));
2039 } else {
2040 DCHECK(!los_bitmap->Test(ref));
2041 }
2042 if (kUseBakerReadBarrier) {
2043 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr());
2044 }
2045 } else {
2046 // Not marked or on the allocation stack. Try to mark it.
2047 // This may or may not succeed, which is ok.
2048 if (kUseBakerReadBarrier) {
2049 ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2050 }
2051 if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) {
2052 // Already marked.
2053 } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) {
2054 // Already marked in LOS.
2055 } else {
2056 // Newly marked.
2057 if (kUseBakerReadBarrier) {
2058 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::GrayPtr());
2059 }
2060 PushOntoMarkStack(ref);
2061 }
2062 }
2063 }
2064 }
2065 return ref;
2066 }
2067
FinishPhase()2068 void ConcurrentCopying::FinishPhase() {
2069 Thread* const self = Thread::Current();
2070 {
2071 MutexLock mu(self, mark_stack_lock_);
2072 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2073 }
2074 region_space_ = nullptr;
2075 {
2076 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2077 skipped_blocks_map_.clear();
2078 }
2079 ReaderMutexLock mu(self, *Locks::mutator_lock_);
2080 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2081 heap_->ClearMarkedObjects();
2082 }
2083
IsMarkedHeapReference(mirror::HeapReference<mirror::Object> * field)2084 bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) {
2085 mirror::Object* from_ref = field->AsMirrorPtr();
2086 mirror::Object* to_ref = IsMarked(from_ref);
2087 if (to_ref == nullptr) {
2088 return false;
2089 }
2090 if (from_ref != to_ref) {
2091 QuasiAtomic::ThreadFenceRelease();
2092 field->Assign(to_ref);
2093 QuasiAtomic::ThreadFenceSequentiallyConsistent();
2094 }
2095 return true;
2096 }
2097
MarkObject(mirror::Object * from_ref)2098 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2099 return Mark(from_ref);
2100 }
2101
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * reference)2102 void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
2103 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2104 }
2105
ProcessReferences(Thread * self)2106 void ConcurrentCopying::ProcessReferences(Thread* self) {
2107 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2108 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2109 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2110 GetHeap()->GetReferenceProcessor()->ProcessReferences(
2111 true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2112 }
2113
RevokeAllThreadLocalBuffers()2114 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2115 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2116 region_space_->RevokeAllThreadLocalBuffers();
2117 }
2118
2119 } // namespace collector
2120 } // namespace gc
2121 } // namespace art
2122