• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013, The Linux Foundation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are
6  * met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above
10  *       copyright notice, this list of conditions and the following
11  *       disclaimer in the documentation and/or other materials provided
12  *       with the distribution.
13  *     * Neither the name of The Linux Foundation nor the names of its
14  *       contributors may be used to endorse or promote products derived
15  *       from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
24  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
26  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
27  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #define _LARGEFILE64_SOURCE /* enable lseek64() */
31 
32 /******************************************************************************
33  * INCLUDE SECTION
34  ******************************************************************************/
35 #include <stdio.h>
36 #include <fcntl.h>
37 #include <string.h>
38 #include <errno.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <scsi/ufs/ioctl.h>
42 #include <scsi/ufs/ufs.h>
43 #include <unistd.h>
44 #include <linux/fs.h>
45 #include <limits.h>
46 #include <dirent.h>
47 #include <inttypes.h>
48 #include <linux/kernel.h>
49 #include <asm/byteorder.h>
50 #include <map>
51 #include <vector>
52 #include <string>
53 #define LOG_TAG "gpt-utils"
54 #include <cutils/log.h>
55 #include <cutils/properties.h>
56 #include "gpt-utils.h"
57 #ifdef __cplusplus
58 extern "C" {
59 #endif
60 #include "sparse_crc32.h"
61 #ifdef __cplusplus
62 }
63 #endif
64 #include <endian.h>
65 
66 
67 /******************************************************************************
68  * DEFINE SECTION
69  ******************************************************************************/
70 #define BLK_DEV_FILE    "/dev/block/mmcblk0"
71 /* list the names of the backed-up partitions to be swapped */
72 /* extension used for the backup partitions - tzbak, abootbak, etc. */
73 #define BAK_PTN_NAME_EXT    "bak"
74 #define XBL_PRIMARY         "/dev/block/bootdevice/by-name/xbl"
75 #define XBL_BACKUP          "/dev/block/bootdevice/by-name/xblbak"
76 #define XBL_AB_PRIMARY      "/dev/block/bootdevice/by-name/xbl_a"
77 #define XBL_AB_SECONDARY    "/dev/block/bootdevice/by-name/xbl_b"
78 /* GPT defines */
79 #define MAX_LUNS                    26
80 //Size of the buffer that needs to be passed to the UFS ioctl
81 #define UFS_ATTR_DATA_SIZE          32
82 //This will allow us to get the root lun path from the path to the partition.
83 //i.e: from /dev/block/sdaXXX get /dev/block/sda. The assumption here is that
84 //the boot critical luns lie between sda to sdz which is acceptable because
85 //only user added external disks,etc would lie beyond that limit which do not
86 //contain partitions that interest us here.
87 #define PATH_TRUNCATE_LOC (sizeof("/dev/block/sda") - 1)
88 
89 //From /dev/block/sda get just sda
90 #define LUN_NAME_START_LOC (sizeof("/dev/block/") - 1)
91 #define BOOT_LUN_A_ID 1
92 #define BOOT_LUN_B_ID 2
93 /******************************************************************************
94  * MACROS
95  ******************************************************************************/
96 
97 
98 #define GET_4_BYTES(ptr)    ((uint32_t) *((uint8_t *)(ptr)) | \
99         ((uint32_t) *((uint8_t *)(ptr) + 1) << 8) | \
100         ((uint32_t) *((uint8_t *)(ptr) + 2) << 16) | \
101         ((uint32_t) *((uint8_t *)(ptr) + 3) << 24))
102 
103 #define GET_8_BYTES(ptr)    ((uint64_t) *((uint8_t *)(ptr)) | \
104         ((uint64_t) *((uint8_t *)(ptr) + 1) << 8) | \
105         ((uint64_t) *((uint8_t *)(ptr) + 2) << 16) | \
106         ((uint64_t) *((uint8_t *)(ptr) + 3) << 24) | \
107         ((uint64_t) *((uint8_t *)(ptr) + 4) << 32) | \
108         ((uint64_t) *((uint8_t *)(ptr) + 5) << 40) | \
109         ((uint64_t) *((uint8_t *)(ptr) + 6) << 48) | \
110         ((uint64_t) *((uint8_t *)(ptr) + 7) << 56))
111 
112 #define PUT_4_BYTES(ptr, y)   *((uint8_t *)(ptr)) = (y) & 0xff; \
113         *((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \
114         *((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \
115         *((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff;
116 
117 /******************************************************************************
118  * TYPES
119  ******************************************************************************/
120 using namespace std;
121 enum gpt_state {
122     GPT_OK = 0,
123     GPT_BAD_SIGNATURE,
124     GPT_BAD_CRC
125 };
126 //List of LUN's containing boot critical images.
127 //Required in the case of UFS devices
128 struct update_data {
129      char lun_list[MAX_LUNS][PATH_MAX];
130      uint32_t num_valid_entries;
131 };
132 
133 /******************************************************************************
134  * FUNCTIONS
135  ******************************************************************************/
136 /**
137  *  ==========================================================================
138  *
139  *  \brief  Read/Write len bytes from/to block dev
140  *
141  *  \param [in] fd      block dev file descriptor (returned from open)
142  *  \param [in] rw      RW flag: 0 - read, != 0 - write
143  *  \param [in] offset  block dev offset [bytes] - RW start position
144  *  \param [in] buf     Pointer to the buffer containing the data
145  *  \param [in] len     RW size in bytes. Buf must be at least that big
146  *
147  *  \return  0 on success
148  *
149  *  ==========================================================================
150  */
blk_rw(int fd,int rw,int64_t offset,uint8_t * buf,unsigned len)151 static int blk_rw(int fd, int rw, int64_t offset, uint8_t *buf, unsigned len)
152 {
153     int r;
154 
155     if (lseek64(fd, offset, SEEK_SET) < 0) {
156         fprintf(stderr, "block dev lseek64 %" PRIi64 " failed: %s\n", offset,
157                 strerror(errno));
158         return -1;
159     }
160 
161     if (rw)
162         r = write(fd, buf, len);
163     else
164         r = read(fd, buf, len);
165 
166     if (r < 0)
167         fprintf(stderr, "block dev %s failed: %s\n", rw ? "write" : "read",
168                 strerror(errno));
169     else
170         r = 0;
171 
172     return r;
173 }
174 
175 
176 
177 /**
178  *  ==========================================================================
179  *
180  *  \brief  Search within GPT for partition entry with the given name
181  *  or it's backup twin (name-bak).
182  *
183  *  \param [in] ptn_name        Partition name to seek
184  *  \param [in] pentries_start  Partition entries array start pointer
185  *  \param [in] pentries_end    Partition entries array end pointer
186  *  \param [in] pentry_size     Single partition entry size [bytes]
187  *
188  *  \return  First partition entry pointer that matches the name or NULL
189  *
190  *  ==========================================================================
191  */
gpt_pentry_seek(const char * ptn_name,const uint8_t * pentries_start,const uint8_t * pentries_end,uint32_t pentry_size)192 static uint8_t *gpt_pentry_seek(const char *ptn_name,
193                                 const uint8_t *pentries_start,
194                                 const uint8_t *pentries_end,
195                                 uint32_t pentry_size)
196 {
197     char *pentry_name;
198     unsigned len = strlen(ptn_name);
199 
200     for (pentry_name = (char *) (pentries_start + PARTITION_NAME_OFFSET);
201          pentry_name < (char *) pentries_end; pentry_name += pentry_size) {
202         char name8[MAX_GPT_NAME_SIZE / 2];
203         unsigned i;
204 
205         /* Partition names in GPT are UTF-16 - ignoring UTF-16 2nd byte */
206         for (i = 0; i < sizeof(name8); i++)
207             name8[i] = pentry_name[i * 2];
208         if (!strncmp(ptn_name, name8, len))
209             if (name8[len] == 0 || !strcmp(&name8[len], BAK_PTN_NAME_EXT))
210                 return (uint8_t *) (pentry_name - PARTITION_NAME_OFFSET);
211     }
212 
213     return NULL;
214 }
215 
216 
217 
218 /**
219  *  ==========================================================================
220  *
221  *  \brief  Swaps boot chain in GPT partition entries array
222  *
223  *  \param [in] pentries_start  Partition entries array start
224  *  \param [in] pentries_end    Partition entries array end
225  *  \param [in] pentry_size     Single partition entry size
226  *
227  *  \return  0 on success, 1 if no backup partitions found
228  *
229  *  ==========================================================================
230  */
gpt_boot_chain_swap(const uint8_t * pentries_start,const uint8_t * pentries_end,uint32_t pentry_size)231 static int gpt_boot_chain_swap(const uint8_t *pentries_start,
232                                 const uint8_t *pentries_end,
233                                 uint32_t pentry_size)
234 {
235     const char ptn_swap_list[][MAX_GPT_NAME_SIZE] = { PTN_SWAP_LIST };
236 
237     int backup_not_found = 1;
238     unsigned i;
239 
240     for (i = 0; i < ARRAY_SIZE(ptn_swap_list); i++) {
241         uint8_t *ptn_entry;
242         uint8_t *ptn_bak_entry;
243         uint8_t ptn_swap[PTN_ENTRY_SIZE];
244         //Skip the xbl partition on UFS devices. That is handled
245         //seperately.
246         if (gpt_utils_is_ufs_device() && !strncmp(ptn_swap_list[i],
247                                 PTN_XBL,
248                                 strlen(PTN_XBL)))
249             continue;
250 
251         ptn_entry = gpt_pentry_seek(ptn_swap_list[i], pentries_start,
252                         pentries_end, pentry_size);
253         if (ptn_entry == NULL)
254             continue;
255 
256         ptn_bak_entry = gpt_pentry_seek(ptn_swap_list[i],
257                         ptn_entry + pentry_size, pentries_end, pentry_size);
258         if (ptn_bak_entry == NULL) {
259             fprintf(stderr, "'%s' partition not backup - skip safe update\n",
260                     ptn_swap_list[i]);
261             continue;
262         }
263 
264         /* swap primary <-> backup partition entries */
265         memcpy(ptn_swap, ptn_entry, PTN_ENTRY_SIZE);
266         memcpy(ptn_entry, ptn_bak_entry, PTN_ENTRY_SIZE);
267         memcpy(ptn_bak_entry, ptn_swap, PTN_ENTRY_SIZE);
268         backup_not_found = 0;
269     }
270 
271     return backup_not_found;
272 }
273 
274 
275 
276 /**
277  *  ==========================================================================
278  *
279  *  \brief  Sets secondary GPT boot chain
280  *
281  *  \param [in] fd    block dev file descriptor
282  *  \param [in] boot  Boot chain to switch to
283  *
284  *  \return  0 on success
285  *
286  *  ==========================================================================
287  */
gpt2_set_boot_chain(int fd,enum boot_chain boot)288 static int gpt2_set_boot_chain(int fd, enum boot_chain boot)
289 {
290     int64_t  gpt2_header_offset;
291     uint64_t pentries_start_offset;
292     uint32_t gpt_header_size;
293     uint32_t pentry_size;
294     uint32_t pentries_array_size;
295 
296     uint8_t *gpt_header = NULL;
297     uint8_t  *pentries = NULL;
298     uint32_t crc;
299     uint32_t blk_size = 0;
300     int r;
301 
302     if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
303             fprintf(stderr, "Failed to get GPT device block size: %s\n",
304                             strerror(errno));
305             r = -1;
306             goto EXIT;
307     }
308     gpt_header = (uint8_t*)malloc(blk_size);
309     if (!gpt_header) {
310             fprintf(stderr, "Failed to allocate memory to hold GPT block\n");
311             r = -1;
312             goto EXIT;
313     }
314     gpt2_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
315     if (gpt2_header_offset < 0) {
316         fprintf(stderr, "Getting secondary GPT header offset failed: %s\n",
317                 strerror(errno));
318         r = -1;
319         goto EXIT;
320     }
321 
322     /* Read primary GPT header from block dev */
323     r = blk_rw(fd, 0, blk_size, gpt_header, blk_size);
324 
325     if (r) {
326             fprintf(stderr, "Failed to read primary GPT header from blk dev\n");
327             goto EXIT;
328     }
329     pentries_start_offset =
330         GET_8_BYTES(gpt_header + PENTRIES_OFFSET) * blk_size;
331     pentry_size = GET_4_BYTES(gpt_header + PENTRY_SIZE_OFFSET);
332     pentries_array_size =
333         GET_4_BYTES(gpt_header + PARTITION_COUNT_OFFSET) * pentry_size;
334 
335     pentries = (uint8_t *) calloc(1, pentries_array_size);
336     if (pentries == NULL) {
337         fprintf(stderr,
338                     "Failed to alloc memory for GPT partition entries array\n");
339         r = -1;
340         goto EXIT;
341     }
342     /* Read primary GPT partititon entries array from block dev */
343     r = blk_rw(fd, 0, pentries_start_offset, pentries, pentries_array_size);
344     if (r)
345         goto EXIT;
346 
347     crc = sparse_crc32(0, pentries, pentries_array_size);
348     if (GET_4_BYTES(gpt_header + PARTITION_CRC_OFFSET) != crc) {
349         fprintf(stderr, "Primary GPT partition entries array CRC invalid\n");
350         r = -1;
351         goto EXIT;
352     }
353 
354     /* Read secondary GPT header from block dev */
355     r = blk_rw(fd, 0, gpt2_header_offset, gpt_header, blk_size);
356     if (r)
357         goto EXIT;
358 
359     gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);
360     pentries_start_offset =
361         GET_8_BYTES(gpt_header + PENTRIES_OFFSET) * blk_size;
362 
363     if (boot == BACKUP_BOOT) {
364         r = gpt_boot_chain_swap(pentries, pentries + pentries_array_size,
365                                 pentry_size);
366         if (r)
367             goto EXIT;
368     }
369 
370     crc = sparse_crc32(0, pentries, pentries_array_size);
371     PUT_4_BYTES(gpt_header + PARTITION_CRC_OFFSET, crc);
372 
373     /* header CRC is calculated with this field cleared */
374     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
375     crc = sparse_crc32(0, gpt_header, gpt_header_size);
376     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, crc);
377 
378     /* Write the modified GPT header back to block dev */
379     r = blk_rw(fd, 1, gpt2_header_offset, gpt_header, blk_size);
380     if (!r)
381         /* Write the modified GPT partititon entries array back to block dev */
382         r = blk_rw(fd, 1, pentries_start_offset, pentries,
383                     pentries_array_size);
384 
385 EXIT:
386     if(gpt_header)
387             free(gpt_header);
388     if (pentries)
389             free(pentries);
390     return r;
391 }
392 
393 /**
394  *  ==========================================================================
395  *
396  *  \brief  Checks GPT state (header signature and CRC)
397  *
398  *  \param [in] fd      block dev file descriptor
399  *  \param [in] gpt     GPT header to be checked
400  *  \param [out] state  GPT header state
401  *
402  *  \return  0 on success
403  *
404  *  ==========================================================================
405  */
gpt_get_state(int fd,enum gpt_instance gpt,enum gpt_state * state)406 static int gpt_get_state(int fd, enum gpt_instance gpt, enum gpt_state *state)
407 {
408     int64_t gpt_header_offset;
409     uint32_t gpt_header_size;
410     uint8_t  *gpt_header = NULL;
411     uint32_t crc;
412     uint32_t blk_size = 0;
413 
414     *state = GPT_OK;
415 
416     if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
417             fprintf(stderr, "Failed to get GPT device block size: %s\n",
418                             strerror(errno));
419             goto error;
420     }
421     gpt_header = (uint8_t*)malloc(blk_size);
422     if (!gpt_header) {
423             fprintf(stderr, "gpt_get_state:Failed to alloc memory for header\n");
424             goto error;
425     }
426     if (gpt == PRIMARY_GPT)
427         gpt_header_offset = blk_size;
428     else {
429         gpt_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
430         if (gpt_header_offset < 0) {
431             fprintf(stderr, "gpt_get_state:Seek to end of GPT part fail\n");
432             goto error;
433         }
434     }
435 
436     if (blk_rw(fd, 0, gpt_header_offset, gpt_header, blk_size)) {
437         fprintf(stderr, "gpt_get_state: blk_rw failed\n");
438         goto error;
439     }
440     if (memcmp(gpt_header, GPT_SIGNATURE, sizeof(GPT_SIGNATURE)))
441         *state = GPT_BAD_SIGNATURE;
442     gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);
443 
444     crc = GET_4_BYTES(gpt_header + HEADER_CRC_OFFSET);
445     /* header CRC is calculated with this field cleared */
446     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
447     if (sparse_crc32(0, gpt_header, gpt_header_size) != crc)
448         *state = GPT_BAD_CRC;
449     free(gpt_header);
450     return 0;
451 error:
452     if (gpt_header)
453             free(gpt_header);
454     return -1;
455 }
456 
457 
458 
459 /**
460  *  ==========================================================================
461  *
462  *  \brief  Sets GPT header state (used to corrupt and fix GPT signature)
463  *
464  *  \param [in] fd     block dev file descriptor
465  *  \param [in] gpt    GPT header to be checked
466  *  \param [in] state  GPT header state to set (GPT_OK or GPT_BAD_SIGNATURE)
467  *
468  *  \return  0 on success
469  *
470  *  ==========================================================================
471  */
gpt_set_state(int fd,enum gpt_instance gpt,enum gpt_state state)472 static int gpt_set_state(int fd, enum gpt_instance gpt, enum gpt_state state)
473 {
474     int64_t gpt_header_offset;
475     uint32_t gpt_header_size;
476     uint8_t  *gpt_header = NULL;
477     uint32_t crc;
478     uint32_t blk_size = 0;
479 
480     if (ioctl(fd, BLKSSZGET, &blk_size) != 0) {
481             fprintf(stderr, "Failed to get GPT device block size: %s\n",
482                             strerror(errno));
483             goto error;
484     }
485     gpt_header = (uint8_t*)malloc(blk_size);
486     if (!gpt_header) {
487             fprintf(stderr, "Failed to alloc memory for gpt header\n");
488             goto error;
489     }
490     if (gpt == PRIMARY_GPT)
491         gpt_header_offset = blk_size;
492     else {
493         gpt_header_offset = lseek64(fd, 0, SEEK_END) - blk_size;
494         if (gpt_header_offset < 0) {
495             fprintf(stderr, "Failed to seek to end of GPT device\n");
496             goto error;
497         }
498     }
499     if (blk_rw(fd, 0, gpt_header_offset, gpt_header, blk_size)) {
500         fprintf(stderr, "Failed to r/w gpt header\n");
501         goto error;
502     }
503     if (state == GPT_OK)
504         memcpy(gpt_header, GPT_SIGNATURE, sizeof(GPT_SIGNATURE));
505     else if (state == GPT_BAD_SIGNATURE)
506         *gpt_header = 0;
507     else {
508         fprintf(stderr, "gpt_set_state: Invalid state\n");
509         goto error;
510     }
511 
512     gpt_header_size = GET_4_BYTES(gpt_header + HEADER_SIZE_OFFSET);
513 
514     /* header CRC is calculated with this field cleared */
515     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, 0);
516     crc = sparse_crc32(0, gpt_header, gpt_header_size);
517     PUT_4_BYTES(gpt_header + HEADER_CRC_OFFSET, crc);
518 
519     if (blk_rw(fd, 1, gpt_header_offset, gpt_header, blk_size)) {
520         fprintf(stderr, "gpt_set_state: blk write failed\n");
521         goto error;
522     }
523     return 0;
524 error:
525     if(gpt_header)
526            free(gpt_header);
527     return -1;
528 }
529 
get_scsi_node_from_bootdevice(const char * bootdev_path,char * sg_node_path,size_t buf_size)530 int get_scsi_node_from_bootdevice(const char *bootdev_path,
531                 char *sg_node_path,
532                 size_t buf_size)
533 {
534         char sg_dir_path[PATH_MAX] = {0};
535         char real_path[PATH_MAX] = {0};
536         DIR *scsi_dir = NULL;
537         struct dirent *de;
538         int node_found = 0;
539         if (!bootdev_path || !sg_node_path) {
540                 fprintf(stderr, "%s : invalid argument\n",
541                                  __func__);
542                 goto error;
543         }
544         if (readlink(bootdev_path, real_path, sizeof(real_path) - 1) < 0) {
545                         fprintf(stderr, "failed to resolve link for %s(%s)\n",
546                                         bootdev_path,
547                                         strerror(errno));
548                         goto error;
549         }
550         if(strlen(real_path) < PATH_TRUNCATE_LOC + 1){
551             fprintf(stderr, "Unrecognized path :%s:\n",
552                            real_path);
553             goto error;
554         }
555         //For the safe side in case there are additional partitions on
556         //the XBL lun we truncate the name.
557         real_path[PATH_TRUNCATE_LOC] = '\0';
558         if(strlen(real_path) < LUN_NAME_START_LOC + 1){
559             fprintf(stderr, "Unrecognized truncated path :%s:\n",
560                            real_path);
561             goto error;
562         }
563         //This will give us /dev/block/sdb/device/scsi_generic
564         //which contains a file sgY whose name gives us the path
565         //to /dev/sgY which we return
566         snprintf(sg_dir_path, sizeof(sg_dir_path) - 1,
567                         "/sys/block/%s/device/scsi_generic",
568                         &real_path[LUN_NAME_START_LOC]);
569         scsi_dir = opendir(sg_dir_path);
570         if (!scsi_dir) {
571                 fprintf(stderr, "%s : Failed to open %s(%s)\n",
572                                 __func__,
573                                 sg_dir_path,
574                                 strerror(errno));
575                 goto error;
576         }
577         while((de = readdir(scsi_dir))) {
578                 if (de->d_name[0] == '.')
579                         continue;
580                 else if (!strncmp(de->d_name, "sg", 2)) {
581                           snprintf(sg_node_path,
582                                         buf_size -1,
583                                         "/dev/%s",
584                                         de->d_name);
585                           fprintf(stderr, "%s:scsi generic node is :%s:\n",
586                                           __func__,
587                                           sg_node_path);
588                           node_found = 1;
589                           break;
590                 }
591         }
592         if(!node_found) {
593                 fprintf(stderr,"%s: Unable to locate scsi generic node\n",
594                                __func__);
595                 goto error;
596         }
597         closedir(scsi_dir);
598         return 0;
599 error:
600         if (scsi_dir)
601                 closedir(scsi_dir);
602         return -1;
603 }
604 
set_boot_lun(char * sg_dev,uint8_t boot_lun_id)605 int set_boot_lun(char *sg_dev, uint8_t boot_lun_id)
606 {
607         int fd = -1;
608         int rc;
609         struct ufs_ioctl_query_data *data = NULL;
610         size_t ioctl_data_size = sizeof(struct ufs_ioctl_query_data) + UFS_ATTR_DATA_SIZE;
611 
612         data = (struct ufs_ioctl_query_data*)malloc(ioctl_data_size);
613         if (!data) {
614                 fprintf(stderr, "%s: Failed to alloc query data struct\n",
615                                 __func__);
616                 goto error;
617         }
618         memset(data, 0, ioctl_data_size);
619         data->opcode = UPIU_QUERY_OPCODE_WRITE_ATTR;
620         data->idn = QUERY_ATTR_IDN_BOOT_LU_EN;
621         data->buf_size = UFS_ATTR_DATA_SIZE;
622         data->buffer[0] = boot_lun_id;
623         fd = open(sg_dev, O_RDWR);
624         if (fd < 0) {
625                 fprintf(stderr, "%s: Failed to open %s(%s)\n",
626                                 __func__,
627                                 sg_dev,
628                                 strerror(errno));
629                 goto error;
630         }
631         rc = ioctl(fd, UFS_IOCTL_QUERY, data);
632         if (rc) {
633                 fprintf(stderr, "%s: UFS query ioctl failed(%s)\n",
634                                 __func__,
635                                 strerror(errno));
636                 goto error;
637         }
638         close(fd);
639         free(data);
640         return 0;
641 error:
642         if (fd >= 0)
643                 close(fd);
644         if (data)
645                 free(data);
646         return -1;
647 }
648 
649 //Swtich betwieen using either the primary or the backup
650 //boot LUN for boot. This is required since UFS boot partitions
651 //cannot have a backup GPT which is what we use for failsafe
652 //updates of the other 'critical' partitions. This function will
653 //not be invoked for emmc targets and on UFS targets is only required
654 //to be invoked for XBL.
655 //
656 //The algorithm to do this is as follows:
657 //- Find the real block device(eg: /dev/block/sdb) that corresponds
658 //  to the /dev/block/bootdevice/by-name/xbl(bak) symlink
659 //
660 //- Once we have the block device 'node' name(sdb in the above example)
661 //  use this node to to locate the scsi generic device that represents
662 //  it by checking the file /sys/block/sdb/device/scsi_generic/sgY
663 //
664 //- Once we locate sgY we call the query ioctl on /dev/sgy to switch
665 //the boot lun to either LUNA or LUNB
gpt_utils_set_xbl_boot_partition(enum boot_chain chain)666 int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
667 {
668         struct stat st;
669         ///sys/block/sdX/device/scsi_generic/
670         char sg_dev_node[PATH_MAX] = {0};
671         uint8_t boot_lun_id = 0;
672         const char *boot_dev = NULL;
673 
674         if (chain == BACKUP_BOOT) {
675                 boot_lun_id = BOOT_LUN_B_ID;
676                 if (!stat(XBL_BACKUP, &st))
677                         boot_dev = XBL_BACKUP;
678                 else if (!stat(XBL_AB_SECONDARY, &st))
679                         boot_dev = XBL_AB_SECONDARY;
680                 else {
681                         fprintf(stderr, "%s: Failed to locate secondary xbl\n",
682                                         __func__);
683                         goto error;
684                 }
685         } else if (chain == NORMAL_BOOT) {
686                 boot_lun_id = BOOT_LUN_A_ID;
687                 if (!stat(XBL_PRIMARY, &st))
688                         boot_dev = XBL_PRIMARY;
689                 else if (!stat(XBL_AB_PRIMARY, &st))
690                         boot_dev = XBL_AB_PRIMARY;
691                 else {
692                         fprintf(stderr, "%s: Failed to locate primary xbl\n",
693                                         __func__);
694                         goto error;
695                 }
696         } else {
697                 fprintf(stderr, "%s: Invalid boot chain id\n", __func__);
698                 goto error;
699         }
700         //We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
701         //the same time. If not the current configuration is invalid.
702         if((stat(XBL_PRIMARY, &st) ||
703                                 stat(XBL_BACKUP, &st)) &&
704                         (stat(XBL_AB_PRIMARY, &st) ||
705                          stat(XBL_AB_SECONDARY, &st))) {
706                 fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n",
707                                 __func__,
708                                 strerror(errno));
709                 goto error;
710         }
711         fprintf(stderr, "%s: setting %s lun as boot lun\n",
712                         __func__,
713                         boot_dev);
714         if (get_scsi_node_from_bootdevice(boot_dev,
715                                 sg_dev_node,
716                                 sizeof(sg_dev_node))) {
717                 fprintf(stderr, "%s: Failed to get scsi node path for xblbak\n",
718                                 __func__);
719                 goto error;
720         }
721         if (set_boot_lun(sg_dev_node, boot_lun_id)) {
722                 fprintf(stderr, "%s: Failed to set xblbak as boot partition\n",
723                                 __func__);
724                 goto error;
725         }
726         return 0;
727 error:
728         return -1;
729 }
730 
gpt_utils_is_ufs_device()731 int gpt_utils_is_ufs_device()
732 {
733     char bootdevice[PROPERTY_VALUE_MAX] = {0};
734     property_get("ro.boot.bootdevice", bootdevice, "N/A");
735     if (strlen(bootdevice) < strlen(".ufshc") + 1)
736         return 0;
737     return (!strncmp(&bootdevice[strlen(bootdevice) - strlen(".ufshc")],
738                             ".ufshc",
739                             sizeof(".ufshc")));
740 }
741 //dev_path is the path to the block device that contains the GPT image that
742 //needs to be updated. This would be the device which holds one or more critical
743 //boot partitions and their backups. In the case of EMMC this function would
744 //be invoked only once on /dev/block/mmcblk1 since it holds the GPT image
745 //containing all the partitions For UFS devices it could potentially be
746 //invoked multiple times, once for each LUN containing critical image(s) and
747 //their backups
prepare_partitions(enum boot_update_stage stage,const char * dev_path)748 int prepare_partitions(enum boot_update_stage stage, const char *dev_path)
749 {
750     int r = 0;
751     int fd = -1;
752     int is_ufs = gpt_utils_is_ufs_device();
753     enum gpt_state gpt_prim, gpt_second;
754     enum boot_update_stage internal_stage;
755     struct stat xbl_partition_stat;
756     struct stat ufs_dir_stat;
757 
758     if (!dev_path) {
759         fprintf(stderr, "%s: Invalid dev_path\n",
760                         __func__);
761         r = -1;
762         goto EXIT;
763     }
764     fd = open(dev_path, O_RDWR);
765     if (fd < 0) {
766         fprintf(stderr, "%s: Opening '%s' failed: %s\n",
767                         __func__,
768                        BLK_DEV_FILE,
769                        strerror(errno));
770         r = -1;
771         goto EXIT;
772     }
773     r = gpt_get_state(fd, PRIMARY_GPT, &gpt_prim) ||
774         gpt_get_state(fd, SECONDARY_GPT, &gpt_second);
775     if (r) {
776         fprintf(stderr, "%s: Getting GPT headers state failed\n",
777                         __func__);
778         goto EXIT;
779     }
780 
781     /* These 2 combinations are unexpected and unacceptable */
782     if (gpt_prim == GPT_BAD_CRC || gpt_second == GPT_BAD_CRC) {
783         fprintf(stderr, "%s: GPT headers CRC corruption detected, aborting\n",
784                         __func__);
785         r = -1;
786         goto EXIT;
787     }
788     if (gpt_prim == GPT_BAD_SIGNATURE && gpt_second == GPT_BAD_SIGNATURE) {
789         fprintf(stderr, "%s: Both GPT headers corrupted, aborting\n",
790                         __func__);
791         r = -1;
792         goto EXIT;
793     }
794 
795     /* Check internal update stage according GPT headers' state */
796     if (gpt_prim == GPT_OK && gpt_second == GPT_OK)
797         internal_stage = UPDATE_MAIN;
798     else if (gpt_prim == GPT_BAD_SIGNATURE)
799         internal_stage = UPDATE_BACKUP;
800     else if (gpt_second == GPT_BAD_SIGNATURE)
801         internal_stage = UPDATE_FINALIZE;
802     else {
803         fprintf(stderr, "%s: Abnormal GPTs state: primary (%d), secondary (%d), "
804                 "aborting\n", __func__, gpt_prim, gpt_second);
805         r = -1;
806         goto EXIT;
807     }
808 
809     /* Stage already set - ready for update, exitting */
810     if ((int) stage == (int) internal_stage - 1)
811         goto EXIT;
812     /* Unexpected stage given */
813     if (stage != internal_stage) {
814         r = -1;
815         goto EXIT;
816     }
817 
818     switch (stage) {
819     case UPDATE_MAIN:
820             if (is_ufs) {
821                 if(stat(XBL_PRIMARY, &xbl_partition_stat)||
822                                 stat(XBL_BACKUP, &xbl_partition_stat)){
823                         //Non fatal error. Just means this target does not
824                         //use XBL but relies on sbl whose update is handled
825                         //by the normal methods.
826                         fprintf(stderr, "%s: xbl part not found(%s).Assuming sbl in use\n",
827                                         __func__,
828                                         strerror(errno));
829                 } else {
830                         //Switch the boot lun so that backup boot LUN is used
831                         r = gpt_utils_set_xbl_boot_partition(BACKUP_BOOT);
832                         if(r){
833                                 fprintf(stderr, "%s: Failed to set xbl backup partition as boot\n",
834                                                 __func__);
835                                 goto EXIT;
836                         }
837                 }
838         }
839         //Fix up the backup GPT table so that it actually points to
840         //the backup copy of the boot critical images
841         fprintf(stderr, "%s: Preparing for primary partition update\n",
842                         __func__);
843         r = gpt2_set_boot_chain(fd, BACKUP_BOOT);
844         if (r) {
845             if (r < 0)
846                 fprintf(stderr,
847                                 "%s: Setting secondary GPT to backup boot failed\n",
848                                 __func__);
849             /* No backup partitions - do not corrupt GPT, do not flag error */
850             else
851                 r = 0;
852             goto EXIT;
853         }
854         //corrupt the primary GPT so that the backup(which now points to
855         //the backup boot partitions is used)
856         r = gpt_set_state(fd, PRIMARY_GPT, GPT_BAD_SIGNATURE);
857         if (r) {
858             fprintf(stderr, "%s: Corrupting primary GPT header failed\n",
859                             __func__);
860             goto EXIT;
861         }
862         break;
863     case UPDATE_BACKUP:
864         if (is_ufs) {
865                 if(stat(XBL_PRIMARY, &xbl_partition_stat)||
866                                 stat(XBL_BACKUP, &xbl_partition_stat)){
867                         //Non fatal error. Just means this target does not
868                         //use XBL but relies on sbl whose update is handled
869                         //by the normal methods.
870                         fprintf(stderr, "%s: xbl part not found(%s).Assuming sbl in use\n",
871                                         __func__,
872                                         strerror(errno));
873                 } else {
874                         //Switch the boot lun so that backup boot LUN is used
875                         r = gpt_utils_set_xbl_boot_partition(NORMAL_BOOT);
876                         if(r) {
877                                 fprintf(stderr, "%s: Failed to set xbl backup partition as boot\n",
878                                                 __func__);
879                                 goto EXIT;
880                         }
881                 }
882         }
883         //Fix the primary GPT header so that is used
884         fprintf(stderr, "%s: Preparing for backup partition update\n",
885                         __func__);
886         r = gpt_set_state(fd, PRIMARY_GPT, GPT_OK);
887         if (r) {
888             fprintf(stderr, "%s: Fixing primary GPT header failed\n",
889                              __func__);
890             goto EXIT;
891         }
892         //Corrupt the scondary GPT header
893         r = gpt_set_state(fd, SECONDARY_GPT, GPT_BAD_SIGNATURE);
894         if (r) {
895             fprintf(stderr, "%s: Corrupting secondary GPT header failed\n",
896                             __func__);
897             goto EXIT;
898         }
899         break;
900     case UPDATE_FINALIZE:
901         //Undo the changes we had made in the UPDATE_MAIN stage so that the
902         //primary/backup GPT headers once again point to the same set of
903         //partitions
904         fprintf(stderr, "%s: Finalizing partitions\n",
905                         __func__);
906         r = gpt2_set_boot_chain(fd, NORMAL_BOOT);
907         if (r < 0) {
908             fprintf(stderr, "%s: Setting secondary GPT to normal boot failed\n",
909                             __func__);
910             goto EXIT;
911         }
912 
913         r = gpt_set_state(fd, SECONDARY_GPT, GPT_OK);
914         if (r) {
915             fprintf(stderr, "%s: Fixing secondary GPT header failed\n",
916                             __func__);
917             goto EXIT;
918         }
919         break;
920     default:;
921     }
922 
923 EXIT:
924     if (fd >= 0) {
925        fsync(fd);
926        close(fd);
927     }
928     return r;
929 }
930 
add_lun_to_update_list(char * lun_path,struct update_data * dat)931 int add_lun_to_update_list(char *lun_path, struct update_data *dat)
932 {
933         uint32_t i = 0;
934         struct stat st;
935         if (!lun_path || !dat){
936                 fprintf(stderr, "%s: Invalid data",
937                                 __func__);
938                 return -1;
939         }
940         if (stat(lun_path, &st)) {
941                 fprintf(stderr, "%s: Unable to access %s. Skipping adding to list",
942                                 __func__,
943                                 lun_path);
944                 return -1;
945         }
946         if (dat->num_valid_entries == 0) {
947                 fprintf(stderr, "%s: Copying %s into lun_list[%d]\n",
948                                 __func__,
949                                 lun_path,
950                                 i);
951                 strlcpy(dat->lun_list[0], lun_path,
952                                 PATH_MAX * sizeof(char));
953                 dat->num_valid_entries = 1;
954         } else {
955                 for (i = 0; (i < dat->num_valid_entries) &&
956                                 (dat->num_valid_entries < MAX_LUNS - 1); i++) {
957                         //Check if the current LUN is not already part
958                         //of the lun list
959                         if (!strncmp(lun_path,dat->lun_list[i],
960                                                 strlen(dat->lun_list[i]))) {
961                                 //LUN already in list..Return
962                                 return 0;
963                         }
964                 }
965                 fprintf(stderr, "%s: Copying %s into lun_list[%d]\n",
966                                 __func__,
967                                 lun_path,
968                                 dat->num_valid_entries);
969                 //Add LUN path lun list
970                 strlcpy(dat->lun_list[dat->num_valid_entries], lun_path,
971                                 PATH_MAX * sizeof(char));
972                 dat->num_valid_entries++;
973         }
974         return 0;
975 }
976 
prepare_boot_update(enum boot_update_stage stage)977 int prepare_boot_update(enum boot_update_stage stage)
978 {
979         int r, fd;
980         int is_ufs = gpt_utils_is_ufs_device();
981         struct stat ufs_dir_stat;
982         struct update_data data;
983         int rcode = 0;
984         uint32_t i = 0;
985         int is_error = 0;
986         const char ptn_swap_list[][MAX_GPT_NAME_SIZE] = { PTN_SWAP_LIST };
987         //Holds /dev/block/bootdevice/by-name/*bak entry
988         char buf[PATH_MAX] = {0};
989         //Holds the resolved path of the symlink stored in buf
990         char real_path[PATH_MAX] = {0};
991 
992         if (!is_ufs) {
993                 //emmc device. Just pass in path to mmcblk0
994                 return prepare_partitions(stage, BLK_DEV_FILE);
995         } else {
996                 //Now we need to find the list of LUNs over
997                 //which the boot critical images are spread
998                 //and set them up for failsafe updates.To do
999                 //this we find out where the symlinks for the
1000                 //each of the paths under
1001                 ///dev/block/bootdevice/by-name/PTN_SWAP_LIST
1002                 //actually point to.
1003                 fprintf(stderr, "%s: Running on a UFS device\n",
1004                                 __func__);
1005                 memset(&data, '\0', sizeof(struct update_data));
1006                 for (i=0; i < ARRAY_SIZE(ptn_swap_list); i++) {
1007                         //XBL on UFS does not follow the convention
1008                         //of being loaded based on well known GUID'S.
1009                         //We take care of switching the UFS boot LUN
1010                         //explicitly later on.
1011                         if (!strncmp(ptn_swap_list[i],
1012                                                 PTN_XBL,
1013                                                 strlen(PTN_XBL)))
1014                                 continue;
1015                         snprintf(buf, sizeof(buf),
1016                                         "%s/%sbak",
1017                                         BOOT_DEV_DIR,
1018                                         ptn_swap_list[i]);
1019                         if (stat(buf, &ufs_dir_stat)) {
1020                                 continue;
1021                         }
1022                         if (readlink(buf, real_path, sizeof(real_path) - 1) < 0)
1023                         {
1024                                 fprintf(stderr, "%s: readlink error. Skipping %s",
1025                                                 __func__,
1026                                                 strerror(errno));
1027                         } else {
1028                               if(strlen(real_path) < PATH_TRUNCATE_LOC + 1){
1029                                     fprintf(stderr, "Unknown path.Skipping :%s:\n",
1030                                                 real_path);
1031                                 } else {
1032                                     real_path[PATH_TRUNCATE_LOC] = '\0';
1033                                     add_lun_to_update_list(real_path, &data);
1034                                 }
1035                         }
1036                         memset(buf, '\0', sizeof(buf));
1037                         memset(real_path, '\0', sizeof(real_path));
1038                 }
1039                 for (i=0; i < data.num_valid_entries; i++) {
1040                         fprintf(stderr, "%s: Preparing %s for update stage %d\n",
1041                                         __func__,
1042                                         data.lun_list[i],
1043                                         stage);
1044                         rcode = prepare_partitions(stage, data.lun_list[i]);
1045                         if (rcode != 0)
1046                         {
1047                                 fprintf(stderr, "%s: Failed to prepare %s.Continuing..\n",
1048                                                 __func__,
1049                                                 data.lun_list[i]);
1050                                 is_error = 1;
1051                         }
1052                 }
1053         }
1054         if (is_error)
1055                 return -1;
1056         return 0;
1057 }
1058 
1059 //Given a parttion name(eg: rpm) get the path to the block device that
1060 //represents the GPT disk the partition resides on. In the case of emmc it
1061 //would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look
1062 //through the /dev/block/bootdevice/by-name/ tree for partname, and resolve
1063 //the path to the LUN from there.
get_dev_path_from_partition_name(const char * partname,char * buf,size_t buflen)1064 static int get_dev_path_from_partition_name(const char *partname,
1065                 char *buf,
1066                 size_t buflen)
1067 {
1068         struct stat st;
1069         char path[PATH_MAX] = {0};
1070         if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) {
1071                 ALOGE("%s: Invalid argument", __func__);
1072                 goto error;
1073         }
1074         if (gpt_utils_is_ufs_device()) {
1075                 //Need to find the lun that holds partition partname
1076                 snprintf(path, sizeof(path),
1077                                 "%s/%s",
1078                                 BOOT_DEV_DIR,
1079                                 partname);
1080                 if (stat(path, &st)) {
1081                         goto error;
1082                 }
1083                 if (readlink(path, buf, buflen) < 0)
1084                 {
1085                         goto error;
1086                 } else {
1087                         buf[PATH_TRUNCATE_LOC] = '\0';
1088                 }
1089         } else {
1090                 snprintf(buf, buflen, "/dev/mmcblk0");
1091         }
1092         return 0;
1093 
1094 error:
1095         return -1;
1096 }
1097 
gpt_utils_get_partition_map(vector<string> & ptn_list,map<string,vector<string>> & partition_map)1098 int gpt_utils_get_partition_map(vector<string>& ptn_list,
1099                 map<string, vector<string>>& partition_map) {
1100         char devpath[PATH_MAX] = {'\0'};
1101         map<string, vector<string>>::iterator it;
1102         if (ptn_list.size() < 1) {
1103                 fprintf(stderr, "%s: Invalid ptn list\n", __func__);
1104                 return -1;
1105         }
1106         //Go through the passed in list
1107         for (uint32_t i = 0; i < ptn_list.size(); i++)
1108         {
1109                 //Key in the map is the path to the device that holds the
1110                 //partition
1111                 if (get_dev_path_from_partition_name(ptn_list[i].c_str(),
1112                                 devpath,
1113                                 sizeof(devpath))) {
1114                         //Not necessarily an error. The partition may just
1115                         //not be present.
1116                         continue;
1117                 }
1118                 string path = devpath;
1119                 it = partition_map.find(path);
1120                 if (it != partition_map.end()) {
1121                         it->second.push_back(ptn_list[i]);
1122                 } else {
1123                         vector<string> str_vec;
1124                         str_vec.push_back( ptn_list[i]);
1125                         partition_map.insert(pair<string, vector<string>>
1126                                         (path, str_vec));
1127                 }
1128                 memset(devpath, '\0', sizeof(devpath));
1129         }
1130         return 0;
1131 }
1132 
1133 //Get the block size of the disk represented by decsriptor fd
gpt_get_block_size(int fd)1134 static uint32_t gpt_get_block_size(int fd)
1135 {
1136         uint32_t block_size = 0;
1137         if (fd < 0) {
1138                 ALOGE("%s: invalid descriptor",
1139                                 __func__);
1140                 goto error;
1141         }
1142         if (ioctl(fd, BLKSSZGET, &block_size) != 0) {
1143                 ALOGE("%s: Failed to get GPT dev block size : %s",
1144                                 __func__,
1145                                 strerror(errno));
1146                 goto error;
1147         }
1148         return block_size;
1149 error:
1150         return 0;
1151 }
1152 
1153 //Write the GPT header present in the passed in buffer back to the
1154 //disk represented by fd
gpt_set_header(uint8_t * gpt_header,int fd,enum gpt_instance instance)1155 static int gpt_set_header(uint8_t *gpt_header, int fd,
1156                 enum gpt_instance instance)
1157 {
1158         uint32_t block_size = 0;
1159         off_t gpt_header_offset = 0;
1160         if (!gpt_header || fd < 0) {
1161                 ALOGE("%s: Invalid arguments",
1162                                 __func__);
1163                 goto error;
1164         }
1165         block_size = gpt_get_block_size(fd);
1166         ALOGI("%s: Block size is : %d", __func__, block_size);
1167         if (block_size == 0) {
1168                 ALOGE("%s: Failed to get block size", __func__);
1169                 goto error;
1170         }
1171         if (instance == PRIMARY_GPT)
1172                 gpt_header_offset = block_size;
1173         else
1174                 gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size;
1175         if (gpt_header_offset <= 0) {
1176                 ALOGE("%s: Failed to get gpt header offset",__func__);
1177                 goto error;
1178         }
1179         ALOGI("%s: Writing back header to offset %ld", __func__,
1180                 gpt_header_offset);
1181         if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) {
1182                 ALOGE("%s: Failed to write back GPT header", __func__);
1183                 goto error;
1184         }
1185         return 0;
1186 error:
1187         return -1;
1188 }
1189 
1190 //Read out the GPT header for the disk that contains the partition partname
gpt_get_header(const char * partname,enum gpt_instance instance)1191 static uint8_t* gpt_get_header(const char *partname, enum gpt_instance instance)
1192 {
1193         uint8_t* hdr = NULL;
1194         char devpath[PATH_MAX] = {0};
1195         int64_t hdr_offset = 0;
1196         uint32_t block_size = 0;
1197         int fd = -1;
1198         if (!partname) {
1199                 ALOGE("%s: Invalid partition name", __func__);
1200                 goto error;
1201         }
1202         if (get_dev_path_from_partition_name(partname, devpath, sizeof(devpath))
1203                         != 0) {
1204                 ALOGE("%s: Failed to resolve path for %s",
1205                                 __func__,
1206                                 partname);
1207                 goto error;
1208         }
1209         fd = open(devpath, O_RDWR);
1210         if (fd < 0) {
1211                 ALOGE("%s: Failed to open %s : %s",
1212                                 __func__,
1213                                 devpath,
1214                                 strerror(errno));
1215                 goto error;
1216         }
1217         block_size = gpt_get_block_size(fd);
1218         if (block_size == 0)
1219         {
1220                 ALOGE("%s: Failed to get gpt block size for %s",
1221                                 __func__,
1222                                 partname);
1223                 goto error;
1224         }
1225 
1226         hdr = (uint8_t*)malloc(block_size);
1227         if (!hdr) {
1228                 ALOGE("%s: Failed to allocate memory for gpt header",
1229                                 __func__);
1230         }
1231         if (instance == PRIMARY_GPT)
1232                 hdr_offset = block_size;
1233         else {
1234                 hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
1235         }
1236         if (hdr_offset < 0) {
1237                 ALOGE("%s: Failed to get gpt header offset",
1238                                 __func__);
1239                 goto error;
1240         }
1241         if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
1242                 ALOGE("%s: Failed to read GPT header from device",
1243                                 __func__);
1244                 goto error;
1245         }
1246         close(fd);
1247         return hdr;
1248 error:
1249         if (fd >= 0)
1250                 close(fd);
1251         if (hdr)
1252                 free(hdr);
1253         return NULL;
1254 }
1255 
1256 //Returns the partition entry array based on the
1257 //passed in buffer which contains the gpt header.
1258 //The fd here is the descriptor for the 'disk' which
1259 //holds the partition
gpt_get_pentry_arr(uint8_t * hdr,int fd)1260 static uint8_t* gpt_get_pentry_arr(uint8_t *hdr, int fd)
1261 {
1262         uint64_t pentries_start = 0;
1263         uint32_t pentry_size = 0;
1264         uint32_t block_size = 0;
1265         uint32_t pentries_arr_size = 0;
1266         uint8_t *pentry_arr = NULL;
1267         int rc = 0;
1268         if (!hdr) {
1269                 ALOGE("%s: Invalid header", __func__);
1270                 goto error;
1271         }
1272         if (fd < 0) {
1273                 ALOGE("%s: Invalid fd", __func__);
1274                 goto error;
1275         }
1276         block_size = gpt_get_block_size(fd);
1277         if (!block_size) {
1278                 ALOGE("%s: Failed to get gpt block size for",
1279                                 __func__);
1280                 goto error;
1281         }
1282         pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
1283         pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
1284         pentries_arr_size =
1285                 GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
1286         pentry_arr = (uint8_t*)calloc(1, pentries_arr_size);
1287         if (!pentry_arr) {
1288                 ALOGE("%s: Failed to allocate memory for partition array",
1289                                 __func__);
1290                 goto error;
1291         }
1292         rc = blk_rw(fd, 0,
1293                         pentries_start,
1294                         pentry_arr,
1295                         pentries_arr_size);
1296         if (rc) {
1297                 ALOGE("%s: Failed to read partition entry array",
1298                                 __func__);
1299                 goto error;
1300         }
1301         return pentry_arr;
1302 error:
1303         if (pentry_arr)
1304                 free(pentry_arr);
1305         return NULL;
1306 }
1307 
gpt_set_pentry_arr(uint8_t * hdr,int fd,uint8_t * arr)1308 static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t* arr)
1309 {
1310         uint32_t block_size = 0;
1311         uint64_t pentries_start = 0;
1312         uint32_t pentry_size = 0;
1313         uint32_t pentries_arr_size = 0;
1314         int rc = 0;
1315         if (!hdr || fd < 0 || !arr) {
1316                 ALOGE("%s: Invalid argument", __func__);
1317                 goto error;
1318         }
1319         block_size = gpt_get_block_size(fd);
1320         if (!block_size) {
1321                 ALOGE("%s: Failed to get gpt block size for",
1322                                 __func__);
1323                 goto error;
1324         }
1325         ALOGI("%s : Block size is %d", __func__, block_size);
1326         pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
1327         pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
1328         pentries_arr_size =
1329                 GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
1330         ALOGI("%s: Writing partition entry array of size %d to offset %" PRIu64,
1331                         __func__,
1332                         pentries_arr_size,
1333                         pentries_start);
1334         rc = blk_rw(fd, 1,
1335                         pentries_start,
1336                         arr,
1337                         pentries_arr_size);
1338         if (rc) {
1339                 ALOGE("%s: Failed to read partition entry array",
1340                                 __func__);
1341                 goto error;
1342         }
1343         return 0;
1344 error:
1345         return -1;
1346 }
1347 
1348 
1349 
1350 //Allocate a handle used by calls to the "gpt_disk" api's
gpt_disk_alloc()1351 struct gpt_disk * gpt_disk_alloc()
1352 {
1353         struct gpt_disk *disk;
1354         disk = (struct gpt_disk *)malloc(sizeof(struct gpt_disk));
1355         if (!disk) {
1356                 ALOGE("%s: Failed to allocate memory", __func__);
1357                 goto end;
1358         }
1359         memset(disk, 0, sizeof(struct gpt_disk));
1360 end:
1361         return disk;
1362 }
1363 
1364 //Free previously allocated/initialized handle
gpt_disk_free(struct gpt_disk * disk)1365 void gpt_disk_free(struct gpt_disk *disk)
1366 {
1367         if (!disk)
1368                 return;
1369         if (disk->hdr)
1370                 free(disk->hdr);
1371         if (disk->hdr_bak)
1372                 free(disk->hdr_bak);
1373         if (disk->pentry_arr)
1374                 free(disk->pentry_arr);
1375         if (disk->pentry_arr_bak)
1376                 free(disk->pentry_arr_bak);
1377         free(disk);
1378         return;
1379 }
1380 
1381 //fills up the passed in gpt_disk struct with information about the
1382 //disk represented by path dev. Returns 0 on success and -1 on error.
gpt_disk_get_disk_info(const char * dev,struct gpt_disk * dsk)1383 int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *dsk)
1384 {
1385         struct gpt_disk *disk = NULL;
1386         int fd = -1;
1387         uint32_t gpt_header_size = 0;
1388 
1389         if (!dsk || !dev) {
1390                 ALOGE("%s: Invalid arguments", __func__);
1391                 goto error;
1392         }
1393         disk = dsk;
1394         disk->hdr = gpt_get_header(dev, PRIMARY_GPT);
1395         if (!disk->hdr) {
1396                 ALOGE("%s: Failed to get primary header", __func__);
1397                 goto error;
1398         }
1399         gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
1400         disk->hdr_crc = sparse_crc32(0, disk->hdr, gpt_header_size);
1401         disk->hdr_bak = gpt_get_header(dev, PRIMARY_GPT);
1402         if (!disk->hdr_bak) {
1403                 ALOGE("%s: Failed to get backup header", __func__);
1404                 goto error;
1405         }
1406         disk->hdr_bak_crc = sparse_crc32(0, disk->hdr_bak, gpt_header_size);
1407 
1408         //Descriptor for the block device. We will use this for further
1409         //modifications to the partition table
1410         if (get_dev_path_from_partition_name(dev,
1411                                 disk->devpath,
1412                                 sizeof(disk->devpath)) != 0) {
1413                 ALOGE("%s: Failed to resolve path for %s",
1414                                 __func__,
1415                                 dev);
1416                 goto error;
1417         }
1418         fd = open(disk->devpath, O_RDWR);
1419         if (fd < 0) {
1420                 ALOGE("%s: Failed to open %s: %s",
1421                                 __func__,
1422                                 disk->devpath,
1423                                 strerror(errno));
1424                 goto error;
1425         }
1426         disk->pentry_arr = gpt_get_pentry_arr(disk->hdr, fd);
1427         if (!disk->pentry_arr) {
1428                 ALOGE("%s: Failed to obtain partition entry array",
1429                                 __func__);
1430                 goto error;
1431         }
1432         disk->pentry_arr_bak = gpt_get_pentry_arr(disk->hdr_bak, fd);
1433         if (!disk->pentry_arr_bak) {
1434                 ALOGE("%s: Failed to obtain backup partition entry array",
1435                                 __func__);
1436                 goto error;
1437         }
1438         disk->pentry_size = GET_4_BYTES(disk->hdr + PENTRY_SIZE_OFFSET);
1439         disk->pentry_arr_size =
1440                 GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) *
1441                 disk->pentry_size;
1442         disk->pentry_arr_crc = GET_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET);
1443         disk->pentry_arr_bak_crc = GET_4_BYTES(disk->hdr_bak +
1444                         PARTITION_CRC_OFFSET);
1445         disk->block_size = gpt_get_block_size(fd);
1446         close(fd);
1447         disk->is_initialized = GPT_DISK_INIT_MAGIC;
1448         return 0;
1449 error:
1450         if (fd >= 0)
1451                 close(fd);
1452         return -1;
1453 }
1454 
1455 //Get pointer to partition entry from a allocated gpt_disk structure
gpt_disk_get_pentry(struct gpt_disk * disk,const char * partname,enum gpt_instance instance)1456 uint8_t* gpt_disk_get_pentry(struct gpt_disk *disk,
1457                 const char *partname,
1458                 enum gpt_instance instance)
1459 {
1460         uint8_t *ptn_arr = NULL;
1461         if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) {
1462                 ALOGE("%s: Invalid argument",__func__);
1463                 goto error;
1464         }
1465         ptn_arr = (instance == PRIMARY_GPT) ?
1466                 disk->pentry_arr : disk->pentry_arr_bak;
1467         return (gpt_pentry_seek(partname, ptn_arr,
1468                         ptn_arr + disk->pentry_arr_size ,
1469                         disk->pentry_size));
1470 error:
1471         return NULL;
1472 }
1473 
1474 //Update CRC values for the various components of the gpt_disk
1475 //structure. This function should be called after any of the fields
1476 //have been updated before the structure contents are written back to
1477 //disk.
gpt_disk_update_crc(struct gpt_disk * disk)1478 int gpt_disk_update_crc(struct gpt_disk *disk)
1479 {
1480         uint32_t gpt_header_size = 0;
1481         if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
1482                 ALOGE("%s: invalid argument", __func__);
1483                 goto error;
1484         }
1485         //Recalculate the CRC of the primary partiton array
1486         disk->pentry_arr_crc = sparse_crc32(0,
1487                         disk->pentry_arr,
1488                         disk->pentry_arr_size);
1489         //Recalculate the CRC of the backup partition array
1490         disk->pentry_arr_bak_crc = sparse_crc32(0,
1491                         disk->pentry_arr_bak,
1492                         disk->pentry_arr_size);
1493         //Update the partition CRC value in the primary GPT header
1494         PUT_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET, disk->pentry_arr_crc);
1495         //Update the partition CRC value in the backup GPT header
1496         PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET,
1497                         disk->pentry_arr_bak_crc);
1498         //Update the CRC value of the primary header
1499         gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
1500         //Header CRC is calculated with its own CRC field set to 0
1501         PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, 0);
1502         PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, 0);
1503         disk->hdr_crc = sparse_crc32(0, disk->hdr, gpt_header_size);
1504         disk->hdr_bak_crc = sparse_crc32(0, disk->hdr_bak, gpt_header_size);
1505         PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, disk->hdr_crc);
1506         PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, disk->hdr_bak_crc);
1507         return 0;
1508 error:
1509         return -1;
1510 }
1511 
1512 //Write the contents of struct gpt_disk back to the actual disk
gpt_disk_commit(struct gpt_disk * disk)1513 int gpt_disk_commit(struct gpt_disk *disk)
1514 {
1515         int fd = -1;
1516         if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)){
1517                 ALOGE("%s: Invalid args", __func__);
1518                 goto error;
1519         }
1520         fd = open(disk->devpath, O_RDWR);
1521         if (fd < 0) {
1522                 ALOGE("%s: Failed to open %s: %s",
1523                                 __func__,
1524                                 disk->devpath,
1525                                 strerror(errno));
1526                 goto error;
1527         }
1528         ALOGI("%s: Writing back primary GPT header", __func__);
1529         //Write the primary header
1530         if(gpt_set_header(disk->hdr, fd, PRIMARY_GPT) != 0) {
1531                 ALOGE("%s: Failed to update primary GPT header",
1532                                 __func__);
1533                 goto error;
1534         }
1535         ALOGI("%s: Writing back primary partition array", __func__);
1536         //Write back the primary partition array
1537         if (gpt_set_pentry_arr(disk->hdr, fd, disk->pentry_arr)) {
1538                 ALOGE("%s: Failed to write primary GPT partition arr",
1539                                 __func__);
1540                 goto error;
1541         }
1542         close(fd);
1543         return 0;
1544 error:
1545         if (fd >= 0)
1546                 close(fd);
1547         return -1;
1548 }
1549