1 //===--- HexagonEarlyIfConv.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a Hexagon-specific if-conversion pass that runs on the
11 // SSA form.
12 // In SSA it is not straightforward to represent instructions that condi-
13 // tionally define registers, since a conditionally-defined register may
14 // only be used under the same condition on which the definition was based.
15 // To avoid complications of this nature, this patch will only generate
16 // predicated stores, and speculate other instructions from the "if-conver-
17 // ted" block.
18 // The code will recognize CFG patterns where a block with a conditional
19 // branch "splits" into a "true block" and a "false block". Either of these
20 // could be omitted (in case of a triangle, for example).
21 // If after conversion of the side block(s) the CFG allows it, the resul-
22 // ting blocks may be merged. If the "join" block contained PHI nodes, they
23 // will be replaced with MUX (or MUX-like) instructions to maintain the
24 // semantics of the PHI.
25 //
26 // Example:
27 //
28 // %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
29 // %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
30 // J2_jumpt %vreg41<kill>, <BB#5>, %PC<imp-def,dead>
31 // J2_jump <BB#4>, %PC<imp-def,dead>
32 // Successors according to CFG: BB#4(62) BB#5(62)
33 //
34 // BB#4: derived from LLVM BB %if.then
35 // Predecessors according to CFG: BB#3
36 // %vreg11<def> = A2_addp %vreg6, %vreg10
37 // S2_storerd_io %vreg32, 16, %vreg11
38 // Successors according to CFG: BB#5
39 //
40 // BB#5: derived from LLVM BB %if.end
41 // Predecessors according to CFG: BB#3 BB#4
42 // %vreg12<def> = PHI %vreg6, <BB#3>, %vreg11, <BB#4>
43 // %vreg13<def> = A2_addp %vreg7, %vreg12
44 // %vreg42<def> = C2_cmpeqi %vreg9, 10
45 // J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
46 // J2_jump <BB#6>, %PC<imp-def,dead>
47 // Successors according to CFG: BB#6(4) BB#3(124)
48 //
49 // would become:
50 //
51 // %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
52 // %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
53 // spec-> %vreg11<def> = A2_addp %vreg6, %vreg10
54 // pred-> S2_pstorerdf_io %vreg41, %vreg32, 16, %vreg11
55 // %vreg46<def> = MUX64_rr %vreg41, %vreg6, %vreg11
56 // %vreg13<def> = A2_addp %vreg7, %vreg46
57 // %vreg42<def> = C2_cmpeqi %vreg9, 10
58 // J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
59 // J2_jump <BB#6>, %PC<imp-def,dead>
60 // Successors according to CFG: BB#6 BB#3
61
62 #define DEBUG_TYPE "hexagon-eif"
63
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/SetVector.h"
66 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
67 #include "llvm/CodeGen/MachineDominators.h"
68 #include "llvm/CodeGen/MachineFunctionPass.h"
69 #include "llvm/CodeGen/MachineInstrBuilder.h"
70 #include "llvm/CodeGen/MachineLoopInfo.h"
71 #include "llvm/CodeGen/MachineRegisterInfo.h"
72 #include "llvm/CodeGen/Passes.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Target/TargetInstrInfo.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "HexagonTargetMachine.h"
79
80 #include <functional>
81 #include <set>
82 #include <vector>
83
84 using namespace llvm;
85
86 namespace llvm {
87 FunctionPass *createHexagonEarlyIfConversion();
88 void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
89 }
90
91 namespace {
92 cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
93 cl::init(false), cl::desc("Enable branch probability info"));
94 cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
95 cl::desc("Size limit in Hexagon early if-conversion"));
96
97 struct PrintMB {
PrintMB__anonb3cfc6390111::PrintMB98 PrintMB(const MachineBasicBlock *B) : MB(B) {}
99 const MachineBasicBlock *MB;
100 };
operator <<(raw_ostream & OS,const PrintMB & P)101 raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
102 if (!P.MB)
103 return OS << "<none>";
104 return OS << '#' << P.MB->getNumber();
105 }
106
107 struct FlowPattern {
FlowPattern__anonb3cfc6390111::FlowPattern108 FlowPattern() : SplitB(0), TrueB(0), FalseB(0), JoinB(0), PredR(0) {}
FlowPattern__anonb3cfc6390111::FlowPattern109 FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
110 MachineBasicBlock *FB, MachineBasicBlock *JB)
111 : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
112
113 MachineBasicBlock *SplitB;
114 MachineBasicBlock *TrueB, *FalseB, *JoinB;
115 unsigned PredR;
116 };
117 struct PrintFP {
PrintFP__anonb3cfc6390111::PrintFP118 PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
119 : FP(P), TRI(T) {}
120 const FlowPattern &FP;
121 const TargetRegisterInfo &TRI;
122 friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
123 };
124 raw_ostream &operator<<(raw_ostream &OS,
125 const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const PrintFP & P)126 raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
127 OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
128 << ", PredR:" << PrintReg(P.FP.PredR, &P.TRI)
129 << ", TrueB:" << PrintMB(P.FP.TrueB) << ", FalseB:"
130 << PrintMB(P.FP.FalseB)
131 << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
132 return OS;
133 }
134
135 class HexagonEarlyIfConversion : public MachineFunctionPass {
136 public:
137 static char ID;
HexagonEarlyIfConversion()138 HexagonEarlyIfConversion() : MachineFunctionPass(ID),
139 TII(0), TRI(0), MFN(0), MRI(0), MDT(0), MLI(0) {
140 initializeHexagonEarlyIfConversionPass(*PassRegistry::getPassRegistry());
141 }
getPassName() const142 const char *getPassName() const override {
143 return "Hexagon early if conversion";
144 }
getAnalysisUsage(AnalysisUsage & AU) const145 void getAnalysisUsage(AnalysisUsage &AU) const override {
146 AU.addRequired<MachineBranchProbabilityInfo>();
147 AU.addRequired<MachineDominatorTree>();
148 AU.addPreserved<MachineDominatorTree>();
149 AU.addRequired<MachineLoopInfo>();
150 MachineFunctionPass::getAnalysisUsage(AU);
151 }
152 bool runOnMachineFunction(MachineFunction &MF) override;
153
154 private:
155 typedef DenseSet<MachineBasicBlock*> BlockSetType;
156
157 bool isPreheader(const MachineBasicBlock *B) const;
158 bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
159 FlowPattern &FP);
160 bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
161 bool visitLoop(MachineLoop *L);
162
163 bool hasEHLabel(const MachineBasicBlock *B) const;
164 bool hasUncondBranch(const MachineBasicBlock *B) const;
165 bool isValidCandidate(const MachineBasicBlock *B) const;
166 bool usesUndefVReg(const MachineInstr *MI) const;
167 bool isValid(const FlowPattern &FP) const;
168 unsigned countPredicateDefs(const MachineBasicBlock *B) const;
169 unsigned computePhiCost(MachineBasicBlock *B) const;
170 bool isProfitable(const FlowPattern &FP) const;
171 bool isPredicableStore(const MachineInstr *MI) const;
172 bool isSafeToSpeculate(const MachineInstr *MI) const;
173
174 unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
175 void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
176 MachineInstr *MI, unsigned PredR, bool IfTrue);
177 void predicateBlockNB(MachineBasicBlock *ToB,
178 MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
179 unsigned PredR, bool IfTrue);
180
181 void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
182 void convert(const FlowPattern &FP);
183
184 void removeBlock(MachineBasicBlock *B);
185 void eliminatePhis(MachineBasicBlock *B);
186 void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB);
187 void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
188 void simplifyFlowGraph(const FlowPattern &FP);
189
190 const TargetInstrInfo *TII;
191 const TargetRegisterInfo *TRI;
192 MachineFunction *MFN;
193 MachineRegisterInfo *MRI;
194 MachineDominatorTree *MDT;
195 MachineLoopInfo *MLI;
196 BlockSetType Deleted;
197 const MachineBranchProbabilityInfo *MBPI;
198 };
199
200 char HexagonEarlyIfConversion::ID = 0;
201 }
202
203 INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-eif",
204 "Hexagon early if conversion", false, false)
205
isPreheader(const MachineBasicBlock * B) const206 bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
207 if (B->succ_size() != 1)
208 return false;
209 MachineBasicBlock *SB = *B->succ_begin();
210 MachineLoop *L = MLI->getLoopFor(SB);
211 return L && SB == L->getHeader();
212 }
213
214
matchFlowPattern(MachineBasicBlock * B,MachineLoop * L,FlowPattern & FP)215 bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
216 MachineLoop *L, FlowPattern &FP) {
217 DEBUG(dbgs() << "Checking flow pattern at BB#" << B->getNumber() << "\n");
218
219 // Interested only in conditional branches, no .new, no new-value, etc.
220 // Check the terminators directly, it's easier than handling all responses
221 // from AnalyzeBranch.
222 MachineBasicBlock *TB = 0, *FB = 0;
223 MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
224 if (T1I == B->end())
225 return false;
226 unsigned Opc = T1I->getOpcode();
227 if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
228 return false;
229 unsigned PredR = T1I->getOperand(0).getReg();
230
231 // Get the layout successor, or 0 if B does not have one.
232 MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
233 MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : 0;
234
235 MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
236 MachineBasicBlock::const_iterator T2I = std::next(T1I);
237 // The second terminator should be an unconditional branch.
238 assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
239 MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
240 : T2I->getOperand(0).getMBB();
241 if (T1B == T2B) {
242 // XXX merge if T1B == NextB, or convert branch to unconditional.
243 // mark as diamond with both sides equal?
244 return false;
245 }
246 // Loop could be null for both.
247 if (MLI->getLoopFor(T1B) != L || MLI->getLoopFor(T2B) != L)
248 return false;
249
250 // Record the true/false blocks in such a way that "true" means "if (PredR)",
251 // and "false" means "if (!PredR)".
252 if (Opc == Hexagon::J2_jumpt)
253 TB = T1B, FB = T2B;
254 else
255 TB = T2B, FB = T1B;
256
257 if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
258 return false;
259
260 // Detect triangle first. In case of a triangle, one of the blocks TB/FB
261 // can fall through into the other, in other words, it will be executed
262 // in both cases. We only want to predicate the block that is executed
263 // conditionally.
264 unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
265 unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
266
267 // A block is predicable if it has one predecessor (it must be B), and
268 // it has a single successor. In fact, the block has to end either with
269 // an unconditional branch (which can be predicated), or with a fall-
270 // through.
271 bool TOk = (TNP == 1) && (TNS == 1);
272 bool FOk = (FNP == 1) && (FNS == 1);
273
274 // If neither is predicable, there is nothing interesting.
275 if (!TOk && !FOk)
276 return false;
277
278 MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : 0;
279 MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : 0;
280 MachineBasicBlock *JB = 0;
281
282 if (TOk) {
283 if (FOk) {
284 if (TSB == FSB)
285 JB = TSB;
286 // Diamond: "if (P) then TB; else FB;".
287 } else {
288 // TOk && !FOk
289 if (TSB == FB) {
290 JB = FB;
291 FB = 0;
292 }
293 }
294 } else {
295 // !TOk && FOk (at least one must be true by now).
296 if (FSB == TB) {
297 JB = TB;
298 TB = 0;
299 }
300 }
301 // Don't try to predicate loop preheaders.
302 if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
303 DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
304 << " is a loop preheader. Skipping.\n");
305 return false;
306 }
307
308 FP = FlowPattern(B, PredR, TB, FB, JB);
309 DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
310 return true;
311 }
312
313
314 // KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that
315 // contains EH_LABEL.
hasEHLabel(const MachineBasicBlock * B) const316 bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
317 for (auto &I : *B)
318 if (I.isEHLabel())
319 return true;
320 return false;
321 }
322
323
324 // KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize
325 // that a block can never fall-through.
hasUncondBranch(const MachineBasicBlock * B) const326 bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
327 const {
328 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
329 while (I != E) {
330 if (I->isBarrier())
331 return true;
332 ++I;
333 }
334 return false;
335 }
336
337
isValidCandidate(const MachineBasicBlock * B) const338 bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
339 const {
340 if (!B)
341 return true;
342 if (B->isEHPad() || B->hasAddressTaken())
343 return false;
344 if (B->succ_size() == 0)
345 return false;
346
347 for (auto &MI : *B) {
348 if (MI.isDebugValue())
349 continue;
350 if (MI.isConditionalBranch())
351 return false;
352 unsigned Opc = MI.getOpcode();
353 bool IsJMP = (Opc == Hexagon::J2_jump);
354 if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
355 return false;
356 // Look for predicate registers defined by this instruction. It's ok
357 // to speculate such an instruction, but the predicate register cannot
358 // be used outside of this block (or else it won't be possible to
359 // update the use of it after predication). PHI uses will be updated
360 // to use a result of a MUX, and a MUX cannot be created for predicate
361 // registers.
362 for (ConstMIOperands MO(&MI); MO.isValid(); ++MO) {
363 if (!MO->isReg() || !MO->isDef())
364 continue;
365 unsigned R = MO->getReg();
366 if (!TargetRegisterInfo::isVirtualRegister(R))
367 continue;
368 if (MRI->getRegClass(R) != &Hexagon::PredRegsRegClass)
369 continue;
370 for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
371 if (U->getParent()->isPHI())
372 return false;
373 }
374 }
375 return true;
376 }
377
378
usesUndefVReg(const MachineInstr * MI) const379 bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
380 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
381 if (!MO->isReg() || !MO->isUse())
382 continue;
383 unsigned R = MO->getReg();
384 if (!TargetRegisterInfo::isVirtualRegister(R))
385 continue;
386 const MachineInstr *DefI = MRI->getVRegDef(R);
387 // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
388 assert(DefI && "Expecting a reaching def in MRI");
389 if (DefI->isImplicitDef())
390 return true;
391 }
392 return false;
393 }
394
395
isValid(const FlowPattern & FP) const396 bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
397 if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition
398 return false;
399 if (FP.TrueB && !isValidCandidate(FP.TrueB))
400 return false;
401 if (FP.FalseB && !isValidCandidate(FP.FalseB))
402 return false;
403 // Check the PHIs in the join block. If any of them use a register
404 // that is defined as IMPLICIT_DEF, do not convert this. This can
405 // legitimately happen if one side of the split never executes, but
406 // the compiler is unable to prove it. That side may then seem to
407 // provide an "undef" value to the join block, however it will never
408 // execute at run-time. If we convert this case, the "undef" will
409 // be used in a MUX instruction, and that may seem like actually
410 // using an undefined value to other optimizations. This could lead
411 // to trouble further down the optimization stream, cause assertions
412 // to fail, etc.
413 if (FP.JoinB) {
414 const MachineBasicBlock &B = *FP.JoinB;
415 for (auto &MI : B) {
416 if (!MI.isPHI())
417 break;
418 if (usesUndefVReg(&MI))
419 return false;
420 unsigned DefR = MI.getOperand(0).getReg();
421 const TargetRegisterClass *RC = MRI->getRegClass(DefR);
422 if (RC == &Hexagon::PredRegsRegClass)
423 return false;
424 }
425 }
426 return true;
427 }
428
429
computePhiCost(MachineBasicBlock * B) const430 unsigned HexagonEarlyIfConversion::computePhiCost(MachineBasicBlock *B) const {
431 assert(B->pred_size() <= 2);
432 if (B->pred_size() < 2)
433 return 0;
434
435 unsigned Cost = 0;
436 MachineBasicBlock::const_iterator I, E = B->getFirstNonPHI();
437 for (I = B->begin(); I != E; ++I) {
438 const MachineOperand &RO1 = I->getOperand(1);
439 const MachineOperand &RO3 = I->getOperand(3);
440 assert(RO1.isReg() && RO3.isReg());
441 // Must have a MUX if the phi uses a subregister.
442 if (RO1.getSubReg() != 0 || RO3.getSubReg() != 0) {
443 Cost++;
444 continue;
445 }
446 MachineInstr *Def1 = MRI->getVRegDef(RO1.getReg());
447 MachineInstr *Def3 = MRI->getVRegDef(RO3.getReg());
448 if (!TII->isPredicable(Def1) || !TII->isPredicable(Def3))
449 Cost++;
450 }
451 return Cost;
452 }
453
454
countPredicateDefs(const MachineBasicBlock * B) const455 unsigned HexagonEarlyIfConversion::countPredicateDefs(
456 const MachineBasicBlock *B) const {
457 unsigned PredDefs = 0;
458 for (auto &MI : *B) {
459 for (ConstMIOperands MO(&MI); MO.isValid(); ++MO) {
460 if (!MO->isReg() || !MO->isDef())
461 continue;
462 unsigned R = MO->getReg();
463 if (!TargetRegisterInfo::isVirtualRegister(R))
464 continue;
465 if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass)
466 PredDefs++;
467 }
468 }
469 return PredDefs;
470 }
471
472
isProfitable(const FlowPattern & FP) const473 bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
474 if (FP.TrueB && FP.FalseB) {
475
476 // Do not IfCovert if the branch is one sided.
477 if (MBPI) {
478 BranchProbability Prob(9, 10);
479 if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
480 return false;
481 if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
482 return false;
483 }
484
485 // If both sides are predicable, convert them if they join, and the
486 // join block has no other predecessors.
487 MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
488 MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
489 if (TSB != FSB)
490 return false;
491 if (TSB->pred_size() != 2)
492 return false;
493 }
494
495 // Calculate the total size of the predicated blocks.
496 // Assume instruction counts without branches to be the approximation of
497 // the code size. If the predicated blocks are smaller than a packet size,
498 // approximate the spare room in the packet that could be filled with the
499 // predicated/speculated instructions.
500 unsigned TS = 0, FS = 0, Spare = 0;
501 if (FP.TrueB) {
502 TS = std::distance(FP.TrueB->begin(), FP.TrueB->getFirstTerminator());
503 if (TS < HEXAGON_PACKET_SIZE)
504 Spare += HEXAGON_PACKET_SIZE-TS;
505 }
506 if (FP.FalseB) {
507 FS = std::distance(FP.FalseB->begin(), FP.FalseB->getFirstTerminator());
508 if (FS < HEXAGON_PACKET_SIZE)
509 Spare += HEXAGON_PACKET_SIZE-TS;
510 }
511 unsigned TotalIn = TS+FS;
512 DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: "
513 << TotalIn << ", spare room: " << Spare << "\n");
514 if (TotalIn >= SizeLimit+Spare)
515 return false;
516
517 // Count the number of PHI nodes that will need to be updated (converted
518 // to MUX). Those can be later converted to predicated instructions, so
519 // they aren't always adding extra cost.
520 // KLUDGE: Also, count the number of predicate register definitions in
521 // each block. The scheduler may increase the pressure of these and cause
522 // expensive spills (e.g. bitmnp01).
523 unsigned TotalPh = 0;
524 unsigned PredDefs = countPredicateDefs(FP.SplitB);
525 if (FP.JoinB) {
526 TotalPh = computePhiCost(FP.JoinB);
527 PredDefs += countPredicateDefs(FP.JoinB);
528 } else {
529 if (FP.TrueB && FP.TrueB->succ_size() > 0) {
530 MachineBasicBlock *SB = *FP.TrueB->succ_begin();
531 TotalPh += computePhiCost(SB);
532 PredDefs += countPredicateDefs(SB);
533 }
534 if (FP.FalseB && FP.FalseB->succ_size() > 0) {
535 MachineBasicBlock *SB = *FP.FalseB->succ_begin();
536 TotalPh += computePhiCost(SB);
537 PredDefs += countPredicateDefs(SB);
538 }
539 }
540 DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
541 << TotalPh << "\n");
542 if (TotalIn+TotalPh >= SizeLimit+Spare)
543 return false;
544
545 DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n");
546 if (PredDefs > 4)
547 return false;
548
549 return true;
550 }
551
552
visitBlock(MachineBasicBlock * B,MachineLoop * L)553 bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
554 MachineLoop *L) {
555 bool Changed = false;
556
557 // Visit all dominated blocks from the same loop first, then process B.
558 MachineDomTreeNode *N = MDT->getNode(B);
559 typedef GraphTraits<MachineDomTreeNode*> GTN;
560 // We will change CFG/DT during this traversal, so take precautions to
561 // avoid problems related to invalidated iterators. In fact, processing
562 // a child C of B cannot cause another child to be removed, but it can
563 // cause a new child to be added (which was a child of C before C itself
564 // was removed. This new child C, however, would have been processed
565 // prior to processing B, so there is no need to process it again.
566 // Simply keep a list of children of B, and traverse that list.
567 typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
568 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
569 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
570 MachineBasicBlock *SB = (*I)->getBlock();
571 if (!Deleted.count(SB))
572 Changed |= visitBlock(SB, L);
573 }
574 // When walking down the dominator tree, we want to traverse through
575 // blocks from nested (other) loops, because they can dominate blocks
576 // that are in L. Skip the non-L blocks only after the tree traversal.
577 if (MLI->getLoopFor(B) != L)
578 return Changed;
579
580 FlowPattern FP;
581 if (!matchFlowPattern(B, L, FP))
582 return Changed;
583
584 if (!isValid(FP)) {
585 DEBUG(dbgs() << "Conversion is not valid\n");
586 return Changed;
587 }
588 if (!isProfitable(FP)) {
589 DEBUG(dbgs() << "Conversion is not profitable\n");
590 return Changed;
591 }
592
593 convert(FP);
594 simplifyFlowGraph(FP);
595 return true;
596 }
597
598
visitLoop(MachineLoop * L)599 bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
600 MachineBasicBlock *HB = L ? L->getHeader() : 0;
601 DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
602 : dbgs() << "Visiting function") << "\n");
603 bool Changed = false;
604 if (L) {
605 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
606 Changed |= visitLoop(*I);
607 }
608
609 MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
610 Changed |= visitBlock(L ? HB : EntryB, L);
611 return Changed;
612 }
613
614
isPredicableStore(const MachineInstr * MI) const615 bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
616 const {
617 // Exclude post-increment stores. Those return a value, so we cannot
618 // predicate them.
619 unsigned Opc = MI->getOpcode();
620 using namespace Hexagon;
621 switch (Opc) {
622 // Store byte:
623 case S2_storerb_io: case S4_storerb_rr:
624 case S2_storerbabs: case S4_storeirb_io: case S2_storerbgp:
625 // Store halfword:
626 case S2_storerh_io: case S4_storerh_rr:
627 case S2_storerhabs: case S4_storeirh_io: case S2_storerhgp:
628 // Store upper halfword:
629 case S2_storerf_io: case S4_storerf_rr:
630 case S2_storerfabs: case S2_storerfgp:
631 // Store word:
632 case S2_storeri_io: case S4_storeri_rr:
633 case S2_storeriabs: case S4_storeiri_io: case S2_storerigp:
634 // Store doubleword:
635 case S2_storerd_io: case S4_storerd_rr:
636 case S2_storerdabs: case S2_storerdgp:
637 return true;
638 }
639 return false;
640 }
641
642
isSafeToSpeculate(const MachineInstr * MI) const643 bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
644 const {
645 if (MI->mayLoad() || MI->mayStore())
646 return false;
647 if (MI->isCall() || MI->isBarrier() || MI->isBranch())
648 return false;
649 if (MI->hasUnmodeledSideEffects())
650 return false;
651
652 return true;
653 }
654
655
getCondStoreOpcode(unsigned Opc,bool IfTrue) const656 unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
657 bool IfTrue) const {
658 // Exclude post-increment stores.
659 using namespace Hexagon;
660 switch (Opc) {
661 case S2_storerb_io:
662 return IfTrue ? S2_pstorerbt_io : S2_pstorerbf_io;
663 case S4_storerb_rr:
664 return IfTrue ? S4_pstorerbt_rr : S4_pstorerbf_rr;
665 case S2_storerbabs:
666 case S2_storerbgp:
667 return IfTrue ? S4_pstorerbt_abs : S4_pstorerbf_abs;
668 case S4_storeirb_io:
669 return IfTrue ? S4_storeirbt_io : S4_storeirbf_io;
670 case S2_storerh_io:
671 return IfTrue ? S2_pstorerht_io : S2_pstorerhf_io;
672 case S4_storerh_rr:
673 return IfTrue ? S4_pstorerht_rr : S4_pstorerhf_rr;
674 case S2_storerhabs:
675 case S2_storerhgp:
676 return IfTrue ? S4_pstorerht_abs : S4_pstorerhf_abs;
677 case S2_storerf_io:
678 return IfTrue ? S2_pstorerft_io : S2_pstorerff_io;
679 case S4_storerf_rr:
680 return IfTrue ? S4_pstorerft_rr : S4_pstorerff_rr;
681 case S2_storerfabs:
682 case S2_storerfgp:
683 return IfTrue ? S4_pstorerft_abs : S4_pstorerff_abs;
684 case S4_storeirh_io:
685 return IfTrue ? S4_storeirht_io : S4_storeirhf_io;
686 case S2_storeri_io:
687 return IfTrue ? S2_pstorerit_io : S2_pstorerif_io;
688 case S4_storeri_rr:
689 return IfTrue ? S4_pstorerit_rr : S4_pstorerif_rr;
690 case S2_storeriabs:
691 case S2_storerigp:
692 return IfTrue ? S4_pstorerit_abs : S4_pstorerif_abs;
693 case S4_storeiri_io:
694 return IfTrue ? S4_storeirit_io : S4_storeirif_io;
695 case S2_storerd_io:
696 return IfTrue ? S2_pstorerdt_io : S2_pstorerdf_io;
697 case S4_storerd_rr:
698 return IfTrue ? S4_pstorerdt_rr : S4_pstorerdf_rr;
699 case S2_storerdabs:
700 case S2_storerdgp:
701 return IfTrue ? S4_pstorerdt_abs : S4_pstorerdf_abs;
702 }
703 llvm_unreachable("Unexpected opcode");
704 return 0;
705 }
706
707
predicateInstr(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineInstr * MI,unsigned PredR,bool IfTrue)708 void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
709 MachineBasicBlock::iterator At, MachineInstr *MI,
710 unsigned PredR, bool IfTrue) {
711 DebugLoc DL;
712 if (At != ToB->end())
713 DL = At->getDebugLoc();
714 else if (!ToB->empty())
715 DL = ToB->back().getDebugLoc();
716
717 unsigned Opc = MI->getOpcode();
718
719 if (isPredicableStore(MI)) {
720 unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
721 assert(COpc);
722 MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, TII->get(COpc))
723 .addReg(PredR);
724 for (MIOperands MO(MI); MO.isValid(); ++MO)
725 MIB.addOperand(*MO);
726
727 // Set memory references.
728 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
729 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
730 MIB.setMemRefs(MMOBegin, MMOEnd);
731
732 MI->eraseFromParent();
733 return;
734 }
735
736 if (Opc == Hexagon::J2_jump) {
737 MachineBasicBlock *TB = MI->getOperand(0).getMBB();
738 const MCInstrDesc &D = TII->get(IfTrue ? Hexagon::J2_jumpt
739 : Hexagon::J2_jumpf);
740 BuildMI(*ToB, At, DL, D)
741 .addReg(PredR)
742 .addMBB(TB);
743 MI->eraseFromParent();
744 return;
745 }
746
747 // Print the offending instruction unconditionally as we are about to
748 // abort.
749 dbgs() << *MI;
750 llvm_unreachable("Unexpected instruction");
751 }
752
753
754 // Predicate/speculate non-branch instructions from FromB into block ToB.
755 // Leave the branches alone, they will be handled later. Btw, at this point
756 // FromB should have at most one branch, and it should be unconditional.
predicateBlockNB(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineBasicBlock * FromB,unsigned PredR,bool IfTrue)757 void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
758 MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
759 unsigned PredR, bool IfTrue) {
760 DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
761 MachineBasicBlock::iterator End = FromB->getFirstTerminator();
762 MachineBasicBlock::iterator I, NextI;
763
764 for (I = FromB->begin(); I != End; I = NextI) {
765 assert(!I->isPHI());
766 NextI = std::next(I);
767 if (isSafeToSpeculate(&*I))
768 ToB->splice(At, FromB, I);
769 else
770 predicateInstr(ToB, At, &*I, PredR, IfTrue);
771 }
772 }
773
774
updatePhiNodes(MachineBasicBlock * WhereB,const FlowPattern & FP)775 void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
776 const FlowPattern &FP) {
777 // Visit all PHI nodes in the WhereB block and generate MUX instructions
778 // in the split block. Update the PHI nodes with the values of the MUX.
779 auto NonPHI = WhereB->getFirstNonPHI();
780 for (auto I = WhereB->begin(); I != NonPHI; ++I) {
781 MachineInstr *PN = &*I;
782 // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
783 unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
784 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
785 const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
786 if (BO.getMBB() == FP.SplitB)
787 SR = RO.getReg(), SSR = RO.getSubReg();
788 else if (BO.getMBB() == FP.TrueB)
789 TR = RO.getReg(), TSR = RO.getSubReg();
790 else if (BO.getMBB() == FP.FalseB)
791 FR = RO.getReg(), FSR = RO.getSubReg();
792 else
793 continue;
794 PN->RemoveOperand(i+1);
795 PN->RemoveOperand(i);
796 }
797 if (TR == 0)
798 TR = SR, TSR = SSR;
799 else if (FR == 0)
800 FR = SR, FSR = SSR;
801 assert(TR && FR);
802
803 using namespace Hexagon;
804 unsigned DR = PN->getOperand(0).getReg();
805 const TargetRegisterClass *RC = MRI->getRegClass(DR);
806 const MCInstrDesc &D = RC == &IntRegsRegClass ? TII->get(C2_mux)
807 : TII->get(MUX64_rr);
808
809 MachineBasicBlock::iterator MuxAt = FP.SplitB->getFirstTerminator();
810 DebugLoc DL;
811 if (MuxAt != FP.SplitB->end())
812 DL = MuxAt->getDebugLoc();
813 unsigned MuxR = MRI->createVirtualRegister(RC);
814 BuildMI(*FP.SplitB, MuxAt, DL, D, MuxR)
815 .addReg(FP.PredR)
816 .addReg(TR, 0, TSR)
817 .addReg(FR, 0, FSR);
818
819 PN->addOperand(MachineOperand::CreateReg(MuxR, false));
820 PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
821 }
822 }
823
824
convert(const FlowPattern & FP)825 void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
826 MachineBasicBlock *TSB = 0, *FSB = 0;
827 MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
828 assert(OldTI != FP.SplitB->end());
829 DebugLoc DL = OldTI->getDebugLoc();
830
831 if (FP.TrueB) {
832 TSB = *FP.TrueB->succ_begin();
833 predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
834 }
835 if (FP.FalseB) {
836 FSB = *FP.FalseB->succ_begin();
837 MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
838 predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
839 }
840
841 // Regenerate new terminators in the split block and update the successors.
842 // First, remember any information that may be needed later and remove the
843 // existing terminators/successors from the split block.
844 MachineBasicBlock *SSB = 0;
845 FP.SplitB->erase(OldTI, FP.SplitB->end());
846 while (FP.SplitB->succ_size() > 0) {
847 MachineBasicBlock *T = *FP.SplitB->succ_begin();
848 // It's possible that the split block had a successor that is not a pre-
849 // dicated block. This could only happen if there was only one block to
850 // be predicated. Example:
851 // split_b:
852 // if (p) jump true_b
853 // jump unrelated2_b
854 // unrelated1_b:
855 // ...
856 // unrelated2_b: ; can have other predecessors, so it's not "false_b"
857 // jump other_b
858 // true_b: ; only reachable from split_b, can be predicated
859 // ...
860 //
861 // Find this successor (SSB) if it exists.
862 if (T != FP.TrueB && T != FP.FalseB) {
863 assert(!SSB);
864 SSB = T;
865 }
866 FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
867 }
868
869 // Insert new branches and update the successors of the split block. This
870 // may create unconditional branches to the layout successor, etc., but
871 // that will be cleaned up later. For now, make sure that correct code is
872 // generated.
873 if (FP.JoinB) {
874 assert(!SSB || SSB == FP.JoinB);
875 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
876 .addMBB(FP.JoinB);
877 FP.SplitB->addSuccessor(FP.JoinB);
878 } else {
879 bool HasBranch = false;
880 if (TSB) {
881 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jumpt))
882 .addReg(FP.PredR)
883 .addMBB(TSB);
884 FP.SplitB->addSuccessor(TSB);
885 HasBranch = true;
886 }
887 if (FSB) {
888 const MCInstrDesc &D = HasBranch ? TII->get(Hexagon::J2_jump)
889 : TII->get(Hexagon::J2_jumpf);
890 MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
891 if (!HasBranch)
892 MIB.addReg(FP.PredR);
893 MIB.addMBB(FSB);
894 FP.SplitB->addSuccessor(FSB);
895 }
896 if (SSB) {
897 // This cannot happen if both TSB and FSB are set. [TF]SB are the
898 // successor blocks of the TrueB and FalseB (or null of the TrueB
899 // or FalseB block is null). SSB is the potential successor block
900 // of the SplitB that is neither TrueB nor FalseB.
901 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
902 .addMBB(SSB);
903 FP.SplitB->addSuccessor(SSB);
904 }
905 }
906
907 // What is left to do is to update the PHI nodes that could have entries
908 // referring to predicated blocks.
909 if (FP.JoinB) {
910 updatePhiNodes(FP.JoinB, FP);
911 } else {
912 if (TSB)
913 updatePhiNodes(TSB, FP);
914 if (FSB)
915 updatePhiNodes(FSB, FP);
916 // Nothing to update in SSB, since SSB's predecessors haven't changed.
917 }
918 }
919
920
removeBlock(MachineBasicBlock * B)921 void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
922 DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
923
924 // Transfer the immediate dominator information from B to its descendants.
925 MachineDomTreeNode *N = MDT->getNode(B);
926 MachineDomTreeNode *IDN = N->getIDom();
927 if (IDN) {
928 MachineBasicBlock *IDB = IDN->getBlock();
929 typedef GraphTraits<MachineDomTreeNode*> GTN;
930 typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
931 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
932 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
933 MachineBasicBlock *SB = (*I)->getBlock();
934 MDT->changeImmediateDominator(SB, IDB);
935 }
936 }
937
938 while (B->succ_size() > 0)
939 B->removeSuccessor(B->succ_begin());
940
941 for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
942 (*I)->removeSuccessor(B, true);
943
944 Deleted.insert(B);
945 MDT->eraseNode(B);
946 MFN->erase(B->getIterator());
947 }
948
949
eliminatePhis(MachineBasicBlock * B)950 void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
951 DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
952 MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
953 for (I = B->begin(); I != NonPHI; I = NextI) {
954 NextI = std::next(I);
955 MachineInstr *PN = &*I;
956 assert(PN->getNumOperands() == 3 && "Invalid phi node");
957 MachineOperand &UO = PN->getOperand(1);
958 unsigned UseR = UO.getReg(), UseSR = UO.getSubReg();
959 unsigned DefR = PN->getOperand(0).getReg();
960 unsigned NewR = UseR;
961 if (UseSR) {
962 // MRI.replaceVregUsesWith does not allow to update the subregister,
963 // so instead of doing the use-iteration here, create a copy into a
964 // "non-subregistered" register.
965 DebugLoc DL = PN->getDebugLoc();
966 const TargetRegisterClass *RC = MRI->getRegClass(DefR);
967 NewR = MRI->createVirtualRegister(RC);
968 NonPHI = BuildMI(*B, NonPHI, DL, TII->get(TargetOpcode::COPY), NewR)
969 .addReg(UseR, 0, UseSR);
970 }
971 MRI->replaceRegWith(DefR, NewR);
972 B->erase(I);
973 }
974 }
975
976
replacePhiEdges(MachineBasicBlock * OldB,MachineBasicBlock * NewB)977 void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
978 MachineBasicBlock *NewB) {
979 for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
980 MachineBasicBlock *SB = *I;
981 MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
982 for (P = SB->begin(); P != N; ++P) {
983 MachineInstr *PN = &*P;
984 for (MIOperands MO(PN); MO.isValid(); ++MO)
985 if (MO->isMBB() && MO->getMBB() == OldB)
986 MO->setMBB(NewB);
987 }
988 }
989 }
990
991
mergeBlocks(MachineBasicBlock * PredB,MachineBasicBlock * SuccB)992 void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
993 MachineBasicBlock *SuccB) {
994 DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
995 << PrintMB(SuccB) << "\n");
996 bool TermOk = hasUncondBranch(SuccB);
997 eliminatePhis(SuccB);
998 TII->RemoveBranch(*PredB);
999 PredB->removeSuccessor(SuccB);
1000 PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
1001 MachineBasicBlock::succ_iterator I, E = SuccB->succ_end();
1002 for (I = SuccB->succ_begin(); I != E; ++I)
1003 PredB->addSuccessor(*I);
1004 PredB->normalizeSuccProbs();
1005 replacePhiEdges(SuccB, PredB);
1006 removeBlock(SuccB);
1007 if (!TermOk)
1008 PredB->updateTerminator();
1009 }
1010
1011
simplifyFlowGraph(const FlowPattern & FP)1012 void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
1013 if (FP.TrueB)
1014 removeBlock(FP.TrueB);
1015 if (FP.FalseB)
1016 removeBlock(FP.FalseB);
1017
1018 FP.SplitB->updateTerminator();
1019 if (FP.SplitB->succ_size() != 1)
1020 return;
1021
1022 MachineBasicBlock *SB = *FP.SplitB->succ_begin();
1023 if (SB->pred_size() != 1)
1024 return;
1025
1026 // By now, the split block has only one successor (SB), and SB has only
1027 // one predecessor. We can try to merge them. We will need to update ter-
1028 // minators in FP.Split+SB, and that requires working AnalyzeBranch, which
1029 // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
1030 // with an unconditional branch, we won't need to touch the terminators.
1031 if (!hasEHLabel(SB) || hasUncondBranch(SB))
1032 mergeBlocks(FP.SplitB, SB);
1033 }
1034
1035
runOnMachineFunction(MachineFunction & MF)1036 bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
1037 auto &ST = MF.getSubtarget();
1038 TII = ST.getInstrInfo();
1039 TRI = ST.getRegisterInfo();
1040 MFN = &MF;
1041 MRI = &MF.getRegInfo();
1042 MDT = &getAnalysis<MachineDominatorTree>();
1043 MLI = &getAnalysis<MachineLoopInfo>();
1044 MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
1045 nullptr;
1046
1047 Deleted.clear();
1048 bool Changed = false;
1049
1050 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
1051 Changed |= visitLoop(*I);
1052 Changed |= visitLoop(0);
1053
1054 return Changed;
1055 }
1056
1057 //===----------------------------------------------------------------------===//
1058 // Public Constructor Functions
1059 //===----------------------------------------------------------------------===//
createHexagonEarlyIfConversion()1060 FunctionPass *llvm::createHexagonEarlyIfConversion() {
1061 return new HexagonEarlyIfConversion();
1062 }
1063
1064