1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
7
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12
13 namespace v8 {
14 namespace internal {
15
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kJSFunctionRegister = {Register::kCode_edi};
20 const Register kContextRegister = {Register::kCode_esi};
21 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
22 const Register kInterpreterRegisterFileRegister = {Register::kCode_edx};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
25 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
26 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
27 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
28 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
29
30 // Spill slots used by interpreter dispatch calling convention.
31 const int kInterpreterDispatchTableSpillSlot = -1;
32
33 // Convenience for platform-independent signatures. We do not normally
34 // distinguish memory operands from other operands on ia32.
35 typedef Operand MemOperand;
36
37 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
38 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
39 enum PointersToHereCheck {
40 kPointersToHereMaybeInteresting,
41 kPointersToHereAreAlwaysInteresting
42 };
43
44 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
45
46 #ifdef DEBUG
47 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
48 Register reg4 = no_reg, Register reg5 = no_reg,
49 Register reg6 = no_reg, Register reg7 = no_reg,
50 Register reg8 = no_reg);
51 #endif
52
53 // MacroAssembler implements a collection of frequently used macros.
54 class MacroAssembler: public Assembler {
55 public:
56 MacroAssembler(Isolate* isolate, void* buffer, int size,
57 CodeObjectRequired create_code_object);
58
59 void Load(Register dst, const Operand& src, Representation r);
60 void Store(Register src, const Operand& dst, Representation r);
61
62 // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)63 void Set(Register dst, int32_t x) {
64 if (x == 0) {
65 xor_(dst, dst);
66 } else {
67 mov(dst, Immediate(x));
68 }
69 }
Set(const Operand & dst,int32_t x)70 void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
71
72 // Operations on roots in the root-array.
73 void LoadRoot(Register destination, Heap::RootListIndex index);
74 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
75 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
76 // These methods can only be used with constant roots (i.e. non-writable
77 // and not in new space).
78 void CompareRoot(Register with, Heap::RootListIndex index);
79 void CompareRoot(const Operand& with, Heap::RootListIndex index);
80 void PushRoot(Heap::RootListIndex index);
81
82 // Compare the object in a register to a value and jump if they are equal.
83 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
84 Label::Distance if_equal_distance = Label::kFar) {
85 CompareRoot(with, index);
86 j(equal, if_equal, if_equal_distance);
87 }
88 void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
89 Label* if_equal,
90 Label::Distance if_equal_distance = Label::kFar) {
91 CompareRoot(with, index);
92 j(equal, if_equal, if_equal_distance);
93 }
94
95 // Compare the object in a register to a value and jump if they are not equal.
96 void JumpIfNotRoot(Register with, Heap::RootListIndex index,
97 Label* if_not_equal,
98 Label::Distance if_not_equal_distance = Label::kFar) {
99 CompareRoot(with, index);
100 j(not_equal, if_not_equal, if_not_equal_distance);
101 }
102 void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
103 Label* if_not_equal,
104 Label::Distance if_not_equal_distance = Label::kFar) {
105 CompareRoot(with, index);
106 j(not_equal, if_not_equal, if_not_equal_distance);
107 }
108
109 // ---------------------------------------------------------------------------
110 // GC Support
111 enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
112
113 // Record in the remembered set the fact that we have a pointer to new space
114 // at the address pointed to by the addr register. Only works if addr is not
115 // in new space.
116 void RememberedSetHelper(Register object, // Used for debug code.
117 Register addr, Register scratch,
118 SaveFPRegsMode save_fp,
119 RememberedSetFinalAction and_then);
120
121 void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
122 Label* condition_met,
123 Label::Distance condition_met_distance = Label::kFar);
124
125 void CheckPageFlagForMap(
126 Handle<Map> map, int mask, Condition cc, Label* condition_met,
127 Label::Distance condition_met_distance = Label::kFar);
128
129 // Check if object is in new space. Jumps if the object is not in new space.
130 // The register scratch can be object itself, but scratch will be clobbered.
131 void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
132 Label::Distance distance = Label::kFar) {
133 InNewSpace(object, scratch, zero, branch, distance);
134 }
135
136 // Check if object is in new space. Jumps if the object is in new space.
137 // The register scratch can be object itself, but it will be clobbered.
138 void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
139 Label::Distance distance = Label::kFar) {
140 InNewSpace(object, scratch, not_zero, branch, distance);
141 }
142
143 // Check if an object has a given incremental marking color. Also uses ecx!
144 void HasColor(Register object, Register scratch0, Register scratch1,
145 Label* has_color, Label::Distance has_color_distance,
146 int first_bit, int second_bit);
147
148 void JumpIfBlack(Register object, Register scratch0, Register scratch1,
149 Label* on_black,
150 Label::Distance on_black_distance = Label::kFar);
151
152 // Checks the color of an object. If the object is white we jump to the
153 // incremental marker.
154 void JumpIfWhite(Register value, Register scratch1, Register scratch2,
155 Label* value_is_white, Label::Distance distance);
156
157 // Notify the garbage collector that we wrote a pointer into an object.
158 // |object| is the object being stored into, |value| is the object being
159 // stored. value and scratch registers are clobbered by the operation.
160 // The offset is the offset from the start of the object, not the offset from
161 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
162 void RecordWriteField(
163 Register object, int offset, Register value, Register scratch,
164 SaveFPRegsMode save_fp,
165 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
166 SmiCheck smi_check = INLINE_SMI_CHECK,
167 PointersToHereCheck pointers_to_here_check_for_value =
168 kPointersToHereMaybeInteresting);
169
170 // As above, but the offset has the tag presubtracted. For use with
171 // Operand(reg, off).
172 void RecordWriteContextSlot(
173 Register context, int offset, Register value, Register scratch,
174 SaveFPRegsMode save_fp,
175 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
176 SmiCheck smi_check = INLINE_SMI_CHECK,
177 PointersToHereCheck pointers_to_here_check_for_value =
178 kPointersToHereMaybeInteresting) {
179 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
180 remembered_set_action, smi_check,
181 pointers_to_here_check_for_value);
182 }
183
184 // Notify the garbage collector that we wrote a pointer into a fixed array.
185 // |array| is the array being stored into, |value| is the
186 // object being stored. |index| is the array index represented as a
187 // Smi. All registers are clobbered by the operation RecordWriteArray
188 // filters out smis so it does not update the write barrier if the
189 // value is a smi.
190 void RecordWriteArray(
191 Register array, Register value, Register index, SaveFPRegsMode save_fp,
192 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
193 SmiCheck smi_check = INLINE_SMI_CHECK,
194 PointersToHereCheck pointers_to_here_check_for_value =
195 kPointersToHereMaybeInteresting);
196
197 // For page containing |object| mark region covering |address|
198 // dirty. |object| is the object being stored into, |value| is the
199 // object being stored. The address and value registers are clobbered by the
200 // operation. RecordWrite filters out smis so it does not update the
201 // write barrier if the value is a smi.
202 void RecordWrite(
203 Register object, Register address, Register value, SaveFPRegsMode save_fp,
204 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
205 SmiCheck smi_check = INLINE_SMI_CHECK,
206 PointersToHereCheck pointers_to_here_check_for_value =
207 kPointersToHereMaybeInteresting);
208
209 // For page containing |object| mark the region covering the object's map
210 // dirty. |object| is the object being stored into, |map| is the Map object
211 // that was stored.
212 void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
213 Register scratch2, SaveFPRegsMode save_fp);
214
215 // ---------------------------------------------------------------------------
216 // Debugger Support
217
218 void DebugBreak();
219
220 // Generates function and stub prologue code.
221 void StubPrologue();
222 void Prologue(bool code_pre_aging);
223
224 // Enter specific kind of exit frame. Expects the number of
225 // arguments in register eax and sets up the number of arguments in
226 // register edi and the pointer to the first argument in register
227 // esi.
228 void EnterExitFrame(bool save_doubles);
229
230 void EnterApiExitFrame(int argc);
231
232 // Leave the current exit frame. Expects the return value in
233 // register eax:edx (untouched) and the pointer to the first
234 // argument in register esi (if pop_arguments == true).
235 void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
236
237 // Leave the current exit frame. Expects the return value in
238 // register eax (untouched).
239 void LeaveApiExitFrame(bool restore_context);
240
241 // Find the function context up the context chain.
242 void LoadContext(Register dst, int context_chain_length);
243
244 // Load the global proxy from the current context.
245 void LoadGlobalProxy(Register dst);
246
247 // Conditionally load the cached Array transitioned map of type
248 // transitioned_kind from the native context if the map in register
249 // map_in_out is the cached Array map in the native context of
250 // expected_kind.
251 void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
252 ElementsKind transitioned_kind,
253 Register map_in_out,
254 Register scratch,
255 Label* no_map_match);
256
257 // Load the global function with the given index.
258 void LoadGlobalFunction(int index, Register function);
259
260 // Load the initial map from the global function. The registers
261 // function and map can be the same.
262 void LoadGlobalFunctionInitialMap(Register function, Register map);
263
264 // Push and pop the registers that can hold pointers.
PushSafepointRegisters()265 void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()266 void PopSafepointRegisters() { popad(); }
267 // Store the value in register/immediate src in the safepoint
268 // register stack slot for register dst.
269 void StoreToSafepointRegisterSlot(Register dst, Register src);
270 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
271 void LoadFromSafepointRegisterSlot(Register dst, Register src);
272
273 void LoadHeapObject(Register result, Handle<HeapObject> object);
274 void CmpHeapObject(Register reg, Handle<HeapObject> object);
275 void PushHeapObject(Handle<HeapObject> object);
276
LoadObject(Register result,Handle<Object> object)277 void LoadObject(Register result, Handle<Object> object) {
278 AllowDeferredHandleDereference heap_object_check;
279 if (object->IsHeapObject()) {
280 LoadHeapObject(result, Handle<HeapObject>::cast(object));
281 } else {
282 Move(result, Immediate(object));
283 }
284 }
285
CmpObject(Register reg,Handle<Object> object)286 void CmpObject(Register reg, Handle<Object> object) {
287 AllowDeferredHandleDereference heap_object_check;
288 if (object->IsHeapObject()) {
289 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
290 } else {
291 cmp(reg, Immediate(object));
292 }
293 }
294
295 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
296 void GetWeakValue(Register value, Handle<WeakCell> cell);
297 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
298
299 // ---------------------------------------------------------------------------
300 // JavaScript invokes
301
302 // Invoke the JavaScript function code by either calling or jumping.
303
304 void InvokeFunctionCode(Register function, Register new_target,
305 const ParameterCount& expected,
306 const ParameterCount& actual, InvokeFlag flag,
307 const CallWrapper& call_wrapper);
308
309 void FloodFunctionIfStepping(Register fun, Register new_target,
310 const ParameterCount& expected,
311 const ParameterCount& actual);
312
313 // Invoke the JavaScript function in the given register. Changes the
314 // current context to the context in the function before invoking.
315 void InvokeFunction(Register function, Register new_target,
316 const ParameterCount& actual, InvokeFlag flag,
317 const CallWrapper& call_wrapper);
318
319 void InvokeFunction(Register function, const ParameterCount& expected,
320 const ParameterCount& actual, InvokeFlag flag,
321 const CallWrapper& call_wrapper);
322
323 void InvokeFunction(Handle<JSFunction> function,
324 const ParameterCount& expected,
325 const ParameterCount& actual, InvokeFlag flag,
326 const CallWrapper& call_wrapper);
327
328 // Invoke specified builtin JavaScript function.
329 void InvokeBuiltin(int native_context_index, InvokeFlag flag,
330 const CallWrapper& call_wrapper = NullCallWrapper());
331
332 // Store the function for the given builtin in the target register.
333 void GetBuiltinFunction(Register target, int native_context_index);
334
335
336 // Expression support
337 // Support for constant splitting.
338 bool IsUnsafeImmediate(const Immediate& x);
339 void SafeMove(Register dst, const Immediate& x);
340 void SafePush(const Immediate& x);
341
342 // Compare object type for heap object.
343 // Incoming register is heap_object and outgoing register is map.
344 void CmpObjectType(Register heap_object, InstanceType type, Register map);
345
346 // Compare instance type for map.
347 void CmpInstanceType(Register map, InstanceType type);
348
349 // Check if a map for a JSObject indicates that the object has fast elements.
350 // Jump to the specified label if it does not.
351 void CheckFastElements(Register map, Label* fail,
352 Label::Distance distance = Label::kFar);
353
354 // Check if a map for a JSObject indicates that the object can have both smi
355 // and HeapObject elements. Jump to the specified label if it does not.
356 void CheckFastObjectElements(Register map, Label* fail,
357 Label::Distance distance = Label::kFar);
358
359 // Check if a map for a JSObject indicates that the object has fast smi only
360 // elements. Jump to the specified label if it does not.
361 void CheckFastSmiElements(Register map, Label* fail,
362 Label::Distance distance = Label::kFar);
363
364 // Check to see if maybe_number can be stored as a double in
365 // FastDoubleElements. If it can, store it at the index specified by key in
366 // the FastDoubleElements array elements, otherwise jump to fail.
367 void StoreNumberToDoubleElements(Register maybe_number, Register elements,
368 Register key, Register scratch, Label* fail,
369 int offset = 0);
370
371 // Compare an object's map with the specified map.
372 void CompareMap(Register obj, Handle<Map> map);
373
374 // Check if the map of an object is equal to a specified map and branch to
375 // label if not. Skip the smi check if not required (object is known to be a
376 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
377 // against maps that are ElementsKind transition maps of the specified map.
378 void CheckMap(Register obj, Handle<Map> map, Label* fail,
379 SmiCheckType smi_check_type);
380
381 // Check if the map of an object is equal to a specified weak map and branch
382 // to a specified target if equal. Skip the smi check if not required
383 // (object is known to be a heap object)
384 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
385 Handle<WeakCell> cell, Handle<Code> success,
386 SmiCheckType smi_check_type);
387
388 // Check if the object in register heap_object is a string. Afterwards the
389 // register map contains the object map and the register instance_type
390 // contains the instance_type. The registers map and instance_type can be the
391 // same in which case it contains the instance type afterwards. Either of the
392 // registers map and instance_type can be the same as heap_object.
393 Condition IsObjectStringType(Register heap_object, Register map,
394 Register instance_type);
395
396 // Check if the object in register heap_object is a name. Afterwards the
397 // register map contains the object map and the register instance_type
398 // contains the instance_type. The registers map and instance_type can be the
399 // same in which case it contains the instance type afterwards. Either of the
400 // registers map and instance_type can be the same as heap_object.
401 Condition IsObjectNameType(Register heap_object, Register map,
402 Register instance_type);
403
404 // FCmp is similar to integer cmp, but requires unsigned
405 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
406 void FCmp();
407 void FXamMinusZero();
408 void FXamSign();
409 void X87CheckIA();
410 void X87SetRC(int rc);
411 void X87SetFPUCW(int cw);
412
413 void ClampUint8(Register reg);
414 void ClampTOSToUint8(Register result_reg);
415
416 void SlowTruncateToI(Register result_reg, Register input_reg,
417 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
418
419 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
420 void TruncateX87TOSToI(Register result_reg);
421
422 void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
423 Label* lost_precision, Label* is_nan, Label* minus_zero,
424 Label::Distance dst = Label::kFar);
425
426 // Smi tagging support.
SmiTag(Register reg)427 void SmiTag(Register reg) {
428 STATIC_ASSERT(kSmiTag == 0);
429 STATIC_ASSERT(kSmiTagSize == 1);
430 add(reg, reg);
431 }
SmiUntag(Register reg)432 void SmiUntag(Register reg) {
433 sar(reg, kSmiTagSize);
434 }
435
436 // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)437 void SmiUntag(Register reg, Label* is_smi) {
438 STATIC_ASSERT(kSmiTagSize == 1);
439 sar(reg, kSmiTagSize);
440 STATIC_ASSERT(kSmiTag == 0);
441 j(not_carry, is_smi);
442 }
443
LoadUint32NoSSE2(Register src)444 void LoadUint32NoSSE2(Register src) {
445 LoadUint32NoSSE2(Operand(src));
446 }
447 void LoadUint32NoSSE2(const Operand& src);
448
449 // Jump the register contains a smi.
450 inline void JumpIfSmi(Register value, Label* smi_label,
451 Label::Distance distance = Label::kFar) {
452 test(value, Immediate(kSmiTagMask));
453 j(zero, smi_label, distance);
454 }
455 // Jump if the operand is a smi.
456 inline void JumpIfSmi(Operand value, Label* smi_label,
457 Label::Distance distance = Label::kFar) {
458 test(value, Immediate(kSmiTagMask));
459 j(zero, smi_label, distance);
460 }
461 // Jump if register contain a non-smi.
462 inline void JumpIfNotSmi(Register value, Label* not_smi_label,
463 Label::Distance distance = Label::kFar) {
464 test(value, Immediate(kSmiTagMask));
465 j(not_zero, not_smi_label, distance);
466 }
467
468 void LoadInstanceDescriptors(Register map, Register descriptors);
469 void EnumLength(Register dst, Register map);
470 void NumberOfOwnDescriptors(Register dst, Register map);
471 void LoadAccessor(Register dst, Register holder, int accessor_index,
472 AccessorComponent accessor);
473
474 template<typename Field>
DecodeField(Register reg)475 void DecodeField(Register reg) {
476 static const int shift = Field::kShift;
477 static const int mask = Field::kMask >> Field::kShift;
478 if (shift != 0) {
479 sar(reg, shift);
480 }
481 and_(reg, Immediate(mask));
482 }
483
484 template<typename Field>
DecodeFieldToSmi(Register reg)485 void DecodeFieldToSmi(Register reg) {
486 static const int shift = Field::kShift;
487 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
488 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
489 STATIC_ASSERT(kSmiTag == 0);
490 if (shift < kSmiTagSize) {
491 shl(reg, kSmiTagSize - shift);
492 } else if (shift > kSmiTagSize) {
493 sar(reg, shift - kSmiTagSize);
494 }
495 and_(reg, Immediate(mask));
496 }
497
498 // Abort execution if argument is not a number, enabled via --debug-code.
499 void AssertNumber(Register object);
500
501 // Abort execution if argument is not a smi, enabled via --debug-code.
502 void AssertSmi(Register object);
503
504 // Abort execution if argument is a smi, enabled via --debug-code.
505 void AssertNotSmi(Register object);
506
507 // Abort execution if argument is not a string, enabled via --debug-code.
508 void AssertString(Register object);
509
510 // Abort execution if argument is not a name, enabled via --debug-code.
511 void AssertName(Register object);
512
513 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
514 void AssertFunction(Register object);
515
516 // Abort execution if argument is not a JSBoundFunction,
517 // enabled via --debug-code.
518 void AssertBoundFunction(Register object);
519
520 // Abort execution if argument is not undefined or an AllocationSite, enabled
521 // via --debug-code.
522 void AssertUndefinedOrAllocationSite(Register object);
523
524 // ---------------------------------------------------------------------------
525 // Exception handling
526
527 // Push a new stack handler and link it into stack handler chain.
528 void PushStackHandler();
529
530 // Unlink the stack handler on top of the stack from the stack handler chain.
531 void PopStackHandler();
532
533 // ---------------------------------------------------------------------------
534 // Inline caching support
535
536 // Generate code for checking access rights - used for security checks
537 // on access to global objects across environments. The holder register
538 // is left untouched, but the scratch register is clobbered.
539 void CheckAccessGlobalProxy(Register holder_reg, Register scratch1,
540 Register scratch2, Label* miss);
541
542 void GetNumberHash(Register r0, Register scratch);
543
544 void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
545 Register r0, Register r1, Register r2,
546 Register result);
547
548 // ---------------------------------------------------------------------------
549 // Allocation support
550
551 // Allocate an object in new space or old space. If the given space
552 // is exhausted control continues at the gc_required label. The allocated
553 // object is returned in result and end of the new object is returned in
554 // result_end. The register scratch can be passed as no_reg in which case
555 // an additional object reference will be added to the reloc info. The
556 // returned pointers in result and result_end have not yet been tagged as
557 // heap objects. If result_contains_top_on_entry is true the content of
558 // result is known to be the allocation top on entry (could be result_end
559 // from a previous call). If result_contains_top_on_entry is true scratch
560 // should be no_reg as it is never used.
561 void Allocate(int object_size, Register result, Register result_end,
562 Register scratch, Label* gc_required, AllocationFlags flags);
563
564 void Allocate(int header_size, ScaleFactor element_size,
565 Register element_count, RegisterValueType element_count_type,
566 Register result, Register result_end, Register scratch,
567 Label* gc_required, AllocationFlags flags);
568
569 void Allocate(Register object_size, Register result, Register result_end,
570 Register scratch, Label* gc_required, AllocationFlags flags);
571
572 // Allocate a heap number in new space with undefined value. The
573 // register scratch2 can be passed as no_reg; the others must be
574 // valid registers. Returns tagged pointer in result register, or
575 // jumps to gc_required if new space is full.
576 void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
577 Label* gc_required, MutableMode mode = IMMUTABLE);
578
579 // Allocate a sequential string. All the header fields of the string object
580 // are initialized.
581 void AllocateTwoByteString(Register result, Register length,
582 Register scratch1, Register scratch2,
583 Register scratch3, Label* gc_required);
584 void AllocateOneByteString(Register result, Register length,
585 Register scratch1, Register scratch2,
586 Register scratch3, Label* gc_required);
587 void AllocateOneByteString(Register result, int length, Register scratch1,
588 Register scratch2, Label* gc_required);
589
590 // Allocate a raw cons string object. Only the map field of the result is
591 // initialized.
592 void AllocateTwoByteConsString(Register result, Register scratch1,
593 Register scratch2, Label* gc_required);
594 void AllocateOneByteConsString(Register result, Register scratch1,
595 Register scratch2, Label* gc_required);
596
597 // Allocate a raw sliced string object. Only the map field of the result is
598 // initialized.
599 void AllocateTwoByteSlicedString(Register result, Register scratch1,
600 Register scratch2, Label* gc_required);
601 void AllocateOneByteSlicedString(Register result, Register scratch1,
602 Register scratch2, Label* gc_required);
603
604 // Allocate and initialize a JSValue wrapper with the specified {constructor}
605 // and {value}.
606 void AllocateJSValue(Register result, Register constructor, Register value,
607 Register scratch, Label* gc_required);
608
609 // Copy memory, byte-by-byte, from source to destination. Not optimized for
610 // long or aligned copies.
611 // The contents of index and scratch are destroyed.
612 void CopyBytes(Register source, Register destination, Register length,
613 Register scratch);
614
615 // Initialize fields with filler values. Fields starting at |current_address|
616 // not including |end_address| are overwritten with the value in |filler|. At
617 // the end the loop, |current_address| takes the value of |end_address|.
618 void InitializeFieldsWithFiller(Register current_address,
619 Register end_address, Register filler);
620
621 // ---------------------------------------------------------------------------
622 // Support functions.
623
624 // Check a boolean-bit of a Smi field.
625 void BooleanBitTest(Register object, int field_offset, int bit_index);
626
627 // Check if result is zero and op is negative.
628 void NegativeZeroTest(Register result, Register op, Label* then_label);
629
630 // Check if result is zero and any of op1 and op2 are negative.
631 // Register scratch is destroyed, and it must be different from op2.
632 void NegativeZeroTest(Register result, Register op1, Register op2,
633 Register scratch, Label* then_label);
634
635 // Machine code version of Map::GetConstructor().
636 // |temp| holds |result|'s map when done.
637 void GetMapConstructor(Register result, Register map, Register temp);
638
639 // Try to get function prototype of a function and puts the value in
640 // the result register. Checks that the function really is a
641 // function and jumps to the miss label if the fast checks fail. The
642 // function register will be untouched; the other registers may be
643 // clobbered.
644 void TryGetFunctionPrototype(Register function, Register result,
645 Register scratch, Label* miss);
646
647 // Picks out an array index from the hash field.
648 // Register use:
649 // hash - holds the index's hash. Clobbered.
650 // index - holds the overwritten index on exit.
651 void IndexFromHash(Register hash, Register index);
652
653 // ---------------------------------------------------------------------------
654 // Runtime calls
655
656 // Call a code stub. Generate the code if necessary.
657 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
658
659 // Tail call a code stub (jump). Generate the code if necessary.
660 void TailCallStub(CodeStub* stub);
661
662 // Return from a code stub after popping its arguments.
663 void StubReturn(int argc);
664
665 // Call a runtime routine.
666 void CallRuntime(const Runtime::Function* f, int num_arguments,
667 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)668 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
669 const Runtime::Function* function = Runtime::FunctionForId(fid);
670 CallRuntime(function, function->nargs, kSaveFPRegs);
671 }
672
673 // Convenience function: Same as above, but takes the fid instead.
674 void CallRuntime(Runtime::FunctionId fid,
675 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
676 const Runtime::Function* function = Runtime::FunctionForId(fid);
677 CallRuntime(function, function->nargs, save_doubles);
678 }
679
680 // Convenience function: Same as above, but takes the fid instead.
681 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
682 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
683 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
684 }
685
686 // Convenience function: call an external reference.
687 void CallExternalReference(ExternalReference ref, int num_arguments);
688
689 // Convenience function: tail call a runtime routine (jump).
690 void TailCallRuntime(Runtime::FunctionId fid);
691
692 // Before calling a C-function from generated code, align arguments on stack.
693 // After aligning the frame, arguments must be stored in esp[0], esp[4],
694 // etc., not pushed. The argument count assumes all arguments are word sized.
695 // Some compilers/platforms require the stack to be aligned when calling
696 // C++ code.
697 // Needs a scratch register to do some arithmetic. This register will be
698 // trashed.
699 void PrepareCallCFunction(int num_arguments, Register scratch);
700
701 // Calls a C function and cleans up the space for arguments allocated
702 // by PrepareCallCFunction. The called function is not allowed to trigger a
703 // garbage collection, since that might move the code and invalidate the
704 // return address (unless this is somehow accounted for by the called
705 // function).
706 void CallCFunction(ExternalReference function, int num_arguments);
707 void CallCFunction(Register function, int num_arguments);
708
709 // Jump to a runtime routine.
710 void JumpToExternalReference(const ExternalReference& ext);
711
712 // ---------------------------------------------------------------------------
713 // Utilities
714
715 void Ret();
716
717 // Return and drop arguments from stack, where the number of arguments
718 // may be bigger than 2^16 - 1. Requires a scratch register.
719 void Ret(int bytes_dropped, Register scratch);
720
721 // Emit code to discard a non-negative number of pointer-sized elements
722 // from the stack, clobbering only the esp register.
723 void Drop(int element_count);
724
Call(Label * target)725 void Call(Label* target) { call(target); }
Call(Handle<Code> target,RelocInfo::Mode rmode)726 void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
Jump(Handle<Code> target,RelocInfo::Mode rmode)727 void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)728 void Push(Register src) { push(src); }
Push(const Operand & src)729 void Push(const Operand& src) { push(src); }
Push(Immediate value)730 void Push(Immediate value) { push(value); }
Pop(Register dst)731 void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)732 void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)733 void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)734 void PopReturnAddressTo(Register dst) { pop(dst); }
735
Lzcnt(Register dst,Register src)736 void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
737 void Lzcnt(Register dst, const Operand& src);
738
Tzcnt(Register dst,Register src)739 void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
740 void Tzcnt(Register dst, const Operand& src);
741
Popcnt(Register dst,Register src)742 void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
743 void Popcnt(Register dst, const Operand& src);
744
745 // Emit call to the code we are currently generating.
CallSelf()746 void CallSelf() {
747 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
748 call(self, RelocInfo::CODE_TARGET);
749 }
750
751 // Move if the registers are not identical.
752 void Move(Register target, Register source);
753
754 // Move a constant into a destination using the most efficient encoding.
755 void Move(Register dst, const Immediate& x);
756 void Move(const Operand& dst, const Immediate& x);
757
Move(Register dst,Smi * source)758 void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
759
760 // Push a handle value.
Push(Handle<Object> handle)761 void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)762 void Push(Smi* smi) { Push(Immediate(smi)); }
763
CodeObject()764 Handle<Object> CodeObject() {
765 DCHECK(!code_object_.is_null());
766 return code_object_;
767 }
768
769 // Insert code to verify that the x87 stack has the specified depth (0-7)
770 void VerifyX87StackDepth(uint32_t depth);
771
772 // Emit code for a truncating division by a constant. The dividend register is
773 // unchanged, the result is in edx, and eax gets clobbered.
774 void TruncatingDiv(Register dividend, int32_t divisor);
775
776 // ---------------------------------------------------------------------------
777 // StatsCounter support
778
779 void SetCounter(StatsCounter* counter, int value);
780 void IncrementCounter(StatsCounter* counter, int value);
781 void DecrementCounter(StatsCounter* counter, int value);
782 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
783 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
784
785 // ---------------------------------------------------------------------------
786 // Debugging
787
788 // Calls Abort(msg) if the condition cc is not satisfied.
789 // Use --debug_code to enable.
790 void Assert(Condition cc, BailoutReason reason);
791
792 void AssertFastElements(Register elements);
793
794 // Like Assert(), but always enabled.
795 void Check(Condition cc, BailoutReason reason);
796
797 // Print a message to stdout and abort execution.
798 void Abort(BailoutReason reason);
799
800 // Check that the stack is aligned.
801 void CheckStackAlignment();
802
803 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)804 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()805 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)806 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()807 bool has_frame() { return has_frame_; }
808 inline bool AllowThisStubCall(CodeStub* stub);
809
810 // ---------------------------------------------------------------------------
811 // String utilities.
812
813 // Check whether the instance type represents a flat one-byte string. Jump to
814 // the label if not. If the instance type can be scratched specify same
815 // register for both instance type and scratch.
816 void JumpIfInstanceTypeIsNotSequentialOneByte(
817 Register instance_type, Register scratch,
818 Label* on_not_flat_one_byte_string);
819
820 // Checks if both objects are sequential one-byte strings, and jumps to label
821 // if either is not.
822 void JumpIfNotBothSequentialOneByteStrings(
823 Register object1, Register object2, Register scratch1, Register scratch2,
824 Label* on_not_flat_one_byte_strings);
825
826 // Checks if the given register or operand is a unique name
827 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
828 Label::Distance distance = Label::kFar) {
829 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
830 }
831
832 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
833 Label::Distance distance = Label::kFar);
834
835 void EmitSeqStringSetCharCheck(Register string, Register index,
836 Register value, uint32_t encoding_mask);
837
SafepointRegisterStackIndex(Register reg)838 static int SafepointRegisterStackIndex(Register reg) {
839 return SafepointRegisterStackIndex(reg.code());
840 }
841
842 // Load the type feedback vector from a JavaScript frame.
843 void EmitLoadTypeFeedbackVector(Register vector);
844
845 // Activation support.
846 void EnterFrame(StackFrame::Type type);
847 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
848 void LeaveFrame(StackFrame::Type type);
849
850 // Expects object in eax and returns map with validated enum cache
851 // in eax. Assumes that any other register can be used as a scratch.
852 void CheckEnumCache(Label* call_runtime);
853
854 // AllocationMemento support. Arrays may have an associated
855 // AllocationMemento object that can be checked for in order to pretransition
856 // to another type.
857 // On entry, receiver_reg should point to the array object.
858 // scratch_reg gets clobbered.
859 // If allocation info is present, conditional code is set to equal.
860 void TestJSArrayForAllocationMemento(Register receiver_reg,
861 Register scratch_reg,
862 Label* no_memento_found);
863
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)864 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
865 Register scratch_reg,
866 Label* memento_found) {
867 Label no_memento_found;
868 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
869 &no_memento_found);
870 j(equal, memento_found);
871 bind(&no_memento_found);
872 }
873
874 // Jumps to found label if a prototype map has dictionary elements.
875 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
876 Register scratch1, Label* found);
877
878 private:
879 bool generating_stub_;
880 bool has_frame_;
881 // This handle will be patched with the code object on installation.
882 Handle<Object> code_object_;
883
884 // Helper functions for generating invokes.
885 void InvokePrologue(const ParameterCount& expected,
886 const ParameterCount& actual, Label* done,
887 bool* definitely_mismatches, InvokeFlag flag,
888 Label::Distance done_distance,
889 const CallWrapper& call_wrapper);
890
891 void EnterExitFramePrologue();
892 void EnterExitFrameEpilogue(int argc, bool save_doubles);
893
894 void LeaveExitFrameEpilogue(bool restore_context);
895
896 // Allocation support helpers.
897 void LoadAllocationTopHelper(Register result, Register scratch,
898 AllocationFlags flags);
899
900 void UpdateAllocationTopHelper(Register result_end, Register scratch,
901 AllocationFlags flags);
902
903 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
904 void InNewSpace(Register object, Register scratch, Condition cc,
905 Label* condition_met,
906 Label::Distance condition_met_distance = Label::kFar);
907
908 // Helper for finding the mark bits for an address. Afterwards, the
909 // bitmap register points at the word with the mark bits and the mask
910 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
911 // unchanged.
912 inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
913 Register mask_reg);
914
915 // Compute memory operands for safepoint stack slots.
916 Operand SafepointRegisterSlot(Register reg);
917 static int SafepointRegisterStackIndex(int reg_code);
918
919 // Needs access to SafepointRegisterStackIndex for compiled frame
920 // traversal.
921 friend class StandardFrame;
922 };
923
924 // The code patcher is used to patch (typically) small parts of code e.g. for
925 // debugging and other types of instrumentation. When using the code patcher
926 // the exact number of bytes specified must be emitted. Is not legal to emit
927 // relocation information. If any of these constraints are violated it causes
928 // an assertion.
929 class CodePatcher {
930 public:
931 CodePatcher(Isolate* isolate, byte* address, int size);
932 ~CodePatcher();
933
934 // Macro assembler to emit code.
masm()935 MacroAssembler* masm() { return &masm_; }
936
937 private:
938 byte* address_; // The address of the code being patched.
939 int size_; // Number of bytes of the expected patch size.
940 MacroAssembler masm_; // Macro assembler used to generate the code.
941 };
942
943 // -----------------------------------------------------------------------------
944 // Static helper functions.
945
946 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)947 inline Operand FieldOperand(Register object, int offset) {
948 return Operand(object, offset - kHeapObjectTag);
949 }
950
951 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)952 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
953 int offset) {
954 return Operand(object, index, scale, offset - kHeapObjectTag);
955 }
956
957 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
958 int additional_offset = 0) {
959 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
960 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
961 }
962
ContextOperand(Register context,int index)963 inline Operand ContextOperand(Register context, int index) {
964 return Operand(context, Context::SlotOffset(index));
965 }
966
ContextOperand(Register context,Register index)967 inline Operand ContextOperand(Register context, Register index) {
968 return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
969 }
970
NativeContextOperand()971 inline Operand NativeContextOperand() {
972 return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
973 }
974
975 #ifdef GENERATED_CODE_COVERAGE
976 extern void LogGeneratedCodeCoverage(const char* file_line);
977 #define CODE_COVERAGE_STRINGIFY(x) #x
978 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
979 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
980 #define ACCESS_MASM(masm) { \
981 byte* ia32_coverage_function = \
982 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
983 masm->pushfd(); \
984 masm->pushad(); \
985 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
986 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
987 masm->pop(eax); \
988 masm->popad(); \
989 masm->popfd(); \
990 } \
991 masm->
992 #else
993 #define ACCESS_MASM(masm) masm->
994 #endif
995
996 } // namespace internal
997 } // namespace v8
998
999 #endif // V8_X87_MACRO_ASSEMBLER_X87_H_
1000