• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kJSFunctionRegister = {Register::kCode_edi};
20 const Register kContextRegister = {Register::kCode_esi};
21 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
22 const Register kInterpreterRegisterFileRegister = {Register::kCode_edx};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
25 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
26 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
27 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
28 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
29 
30 // Spill slots used by interpreter dispatch calling convention.
31 const int kInterpreterDispatchTableSpillSlot = -1;
32 
33 // Convenience for platform-independent signatures.  We do not normally
34 // distinguish memory operands from other operands on ia32.
35 typedef Operand MemOperand;
36 
37 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
38 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
39 enum PointersToHereCheck {
40   kPointersToHereMaybeInteresting,
41   kPointersToHereAreAlwaysInteresting
42 };
43 
44 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
45 
46 #ifdef DEBUG
47 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
48                 Register reg4 = no_reg, Register reg5 = no_reg,
49                 Register reg6 = no_reg, Register reg7 = no_reg,
50                 Register reg8 = no_reg);
51 #endif
52 
53 // MacroAssembler implements a collection of frequently used macros.
54 class MacroAssembler: public Assembler {
55  public:
56   MacroAssembler(Isolate* isolate, void* buffer, int size,
57                  CodeObjectRequired create_code_object);
58 
59   void Load(Register dst, const Operand& src, Representation r);
60   void Store(Register src, const Operand& dst, Representation r);
61 
62   // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)63   void Set(Register dst, int32_t x) {
64     if (x == 0) {
65       xor_(dst, dst);
66     } else {
67       mov(dst, Immediate(x));
68     }
69   }
Set(const Operand & dst,int32_t x)70   void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
71 
72   // Operations on roots in the root-array.
73   void LoadRoot(Register destination, Heap::RootListIndex index);
74   void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
75   void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
76   // These methods can only be used with constant roots (i.e. non-writable
77   // and not in new space).
78   void CompareRoot(Register with, Heap::RootListIndex index);
79   void CompareRoot(const Operand& with, Heap::RootListIndex index);
80   void PushRoot(Heap::RootListIndex index);
81 
82   // Compare the object in a register to a value and jump if they are equal.
83   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
84                   Label::Distance if_equal_distance = Label::kFar) {
85     CompareRoot(with, index);
86     j(equal, if_equal, if_equal_distance);
87   }
88   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
89                   Label* if_equal,
90                   Label::Distance if_equal_distance = Label::kFar) {
91     CompareRoot(with, index);
92     j(equal, if_equal, if_equal_distance);
93   }
94 
95   // Compare the object in a register to a value and jump if they are not equal.
96   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
97                      Label* if_not_equal,
98                      Label::Distance if_not_equal_distance = Label::kFar) {
99     CompareRoot(with, index);
100     j(not_equal, if_not_equal, if_not_equal_distance);
101   }
102   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
103                      Label* if_not_equal,
104                      Label::Distance if_not_equal_distance = Label::kFar) {
105     CompareRoot(with, index);
106     j(not_equal, if_not_equal, if_not_equal_distance);
107   }
108 
109   // ---------------------------------------------------------------------------
110   // GC Support
111   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
112 
113   // Record in the remembered set the fact that we have a pointer to new space
114   // at the address pointed to by the addr register.  Only works if addr is not
115   // in new space.
116   void RememberedSetHelper(Register object,  // Used for debug code.
117                            Register addr, Register scratch,
118                            SaveFPRegsMode save_fp,
119                            RememberedSetFinalAction and_then);
120 
121   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
122                      Label* condition_met,
123                      Label::Distance condition_met_distance = Label::kFar);
124 
125   void CheckPageFlagForMap(
126       Handle<Map> map, int mask, Condition cc, Label* condition_met,
127       Label::Distance condition_met_distance = Label::kFar);
128 
129   // Check if object is in new space.  Jumps if the object is not in new space.
130   // The register scratch can be object itself, but scratch will be clobbered.
131   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
132                            Label::Distance distance = Label::kFar) {
133     InNewSpace(object, scratch, zero, branch, distance);
134   }
135 
136   // Check if object is in new space.  Jumps if the object is in new space.
137   // The register scratch can be object itself, but it will be clobbered.
138   void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
139                         Label::Distance distance = Label::kFar) {
140     InNewSpace(object, scratch, not_zero, branch, distance);
141   }
142 
143   // Check if an object has a given incremental marking color.  Also uses ecx!
144   void HasColor(Register object, Register scratch0, Register scratch1,
145                 Label* has_color, Label::Distance has_color_distance,
146                 int first_bit, int second_bit);
147 
148   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
149                    Label* on_black,
150                    Label::Distance on_black_distance = Label::kFar);
151 
152   // Checks the color of an object.  If the object is white we jump to the
153   // incremental marker.
154   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
155                    Label* value_is_white, Label::Distance distance);
156 
157   // Notify the garbage collector that we wrote a pointer into an object.
158   // |object| is the object being stored into, |value| is the object being
159   // stored.  value and scratch registers are clobbered by the operation.
160   // The offset is the offset from the start of the object, not the offset from
161   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
162   void RecordWriteField(
163       Register object, int offset, Register value, Register scratch,
164       SaveFPRegsMode save_fp,
165       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
166       SmiCheck smi_check = INLINE_SMI_CHECK,
167       PointersToHereCheck pointers_to_here_check_for_value =
168           kPointersToHereMaybeInteresting);
169 
170   // As above, but the offset has the tag presubtracted.  For use with
171   // Operand(reg, off).
172   void RecordWriteContextSlot(
173       Register context, int offset, Register value, Register scratch,
174       SaveFPRegsMode save_fp,
175       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
176       SmiCheck smi_check = INLINE_SMI_CHECK,
177       PointersToHereCheck pointers_to_here_check_for_value =
178           kPointersToHereMaybeInteresting) {
179     RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
180                      remembered_set_action, smi_check,
181                      pointers_to_here_check_for_value);
182   }
183 
184   // Notify the garbage collector that we wrote a pointer into a fixed array.
185   // |array| is the array being stored into, |value| is the
186   // object being stored.  |index| is the array index represented as a
187   // Smi. All registers are clobbered by the operation RecordWriteArray
188   // filters out smis so it does not update the write barrier if the
189   // value is a smi.
190   void RecordWriteArray(
191       Register array, Register value, Register index, SaveFPRegsMode save_fp,
192       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
193       SmiCheck smi_check = INLINE_SMI_CHECK,
194       PointersToHereCheck pointers_to_here_check_for_value =
195           kPointersToHereMaybeInteresting);
196 
197   // For page containing |object| mark region covering |address|
198   // dirty. |object| is the object being stored into, |value| is the
199   // object being stored. The address and value registers are clobbered by the
200   // operation. RecordWrite filters out smis so it does not update the
201   // write barrier if the value is a smi.
202   void RecordWrite(
203       Register object, Register address, Register value, SaveFPRegsMode save_fp,
204       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
205       SmiCheck smi_check = INLINE_SMI_CHECK,
206       PointersToHereCheck pointers_to_here_check_for_value =
207           kPointersToHereMaybeInteresting);
208 
209   // For page containing |object| mark the region covering the object's map
210   // dirty. |object| is the object being stored into, |map| is the Map object
211   // that was stored.
212   void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
213                          Register scratch2, SaveFPRegsMode save_fp);
214 
215   // ---------------------------------------------------------------------------
216   // Debugger Support
217 
218   void DebugBreak();
219 
220   // Generates function and stub prologue code.
221   void StubPrologue();
222   void Prologue(bool code_pre_aging);
223 
224   // Enter specific kind of exit frame. Expects the number of
225   // arguments in register eax and sets up the number of arguments in
226   // register edi and the pointer to the first argument in register
227   // esi.
228   void EnterExitFrame(bool save_doubles);
229 
230   void EnterApiExitFrame(int argc);
231 
232   // Leave the current exit frame. Expects the return value in
233   // register eax:edx (untouched) and the pointer to the first
234   // argument in register esi (if pop_arguments == true).
235   void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
236 
237   // Leave the current exit frame. Expects the return value in
238   // register eax (untouched).
239   void LeaveApiExitFrame(bool restore_context);
240 
241   // Find the function context up the context chain.
242   void LoadContext(Register dst, int context_chain_length);
243 
244   // Load the global proxy from the current context.
245   void LoadGlobalProxy(Register dst);
246 
247   // Conditionally load the cached Array transitioned map of type
248   // transitioned_kind from the native context if the map in register
249   // map_in_out is the cached Array map in the native context of
250   // expected_kind.
251   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
252                                            ElementsKind transitioned_kind,
253                                            Register map_in_out,
254                                            Register scratch,
255                                            Label* no_map_match);
256 
257   // Load the global function with the given index.
258   void LoadGlobalFunction(int index, Register function);
259 
260   // Load the initial map from the global function. The registers
261   // function and map can be the same.
262   void LoadGlobalFunctionInitialMap(Register function, Register map);
263 
264   // Push and pop the registers that can hold pointers.
PushSafepointRegisters()265   void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()266   void PopSafepointRegisters() { popad(); }
267   // Store the value in register/immediate src in the safepoint
268   // register stack slot for register dst.
269   void StoreToSafepointRegisterSlot(Register dst, Register src);
270   void StoreToSafepointRegisterSlot(Register dst, Immediate src);
271   void LoadFromSafepointRegisterSlot(Register dst, Register src);
272 
273   void LoadHeapObject(Register result, Handle<HeapObject> object);
274   void CmpHeapObject(Register reg, Handle<HeapObject> object);
275   void PushHeapObject(Handle<HeapObject> object);
276 
LoadObject(Register result,Handle<Object> object)277   void LoadObject(Register result, Handle<Object> object) {
278     AllowDeferredHandleDereference heap_object_check;
279     if (object->IsHeapObject()) {
280       LoadHeapObject(result, Handle<HeapObject>::cast(object));
281     } else {
282       Move(result, Immediate(object));
283     }
284   }
285 
CmpObject(Register reg,Handle<Object> object)286   void CmpObject(Register reg, Handle<Object> object) {
287     AllowDeferredHandleDereference heap_object_check;
288     if (object->IsHeapObject()) {
289       CmpHeapObject(reg, Handle<HeapObject>::cast(object));
290     } else {
291       cmp(reg, Immediate(object));
292     }
293   }
294 
295   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
296   void GetWeakValue(Register value, Handle<WeakCell> cell);
297   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
298 
299   // ---------------------------------------------------------------------------
300   // JavaScript invokes
301 
302   // Invoke the JavaScript function code by either calling or jumping.
303 
304   void InvokeFunctionCode(Register function, Register new_target,
305                           const ParameterCount& expected,
306                           const ParameterCount& actual, InvokeFlag flag,
307                           const CallWrapper& call_wrapper);
308 
309   void FloodFunctionIfStepping(Register fun, Register new_target,
310                                const ParameterCount& expected,
311                                const ParameterCount& actual);
312 
313   // Invoke the JavaScript function in the given register. Changes the
314   // current context to the context in the function before invoking.
315   void InvokeFunction(Register function, Register new_target,
316                       const ParameterCount& actual, InvokeFlag flag,
317                       const CallWrapper& call_wrapper);
318 
319   void InvokeFunction(Register function, const ParameterCount& expected,
320                       const ParameterCount& actual, InvokeFlag flag,
321                       const CallWrapper& call_wrapper);
322 
323   void InvokeFunction(Handle<JSFunction> function,
324                       const ParameterCount& expected,
325                       const ParameterCount& actual, InvokeFlag flag,
326                       const CallWrapper& call_wrapper);
327 
328   // Invoke specified builtin JavaScript function.
329   void InvokeBuiltin(int native_context_index, InvokeFlag flag,
330                      const CallWrapper& call_wrapper = NullCallWrapper());
331 
332   // Store the function for the given builtin in the target register.
333   void GetBuiltinFunction(Register target, int native_context_index);
334 
335 
336   // Expression support
337   // Support for constant splitting.
338   bool IsUnsafeImmediate(const Immediate& x);
339   void SafeMove(Register dst, const Immediate& x);
340   void SafePush(const Immediate& x);
341 
342   // Compare object type for heap object.
343   // Incoming register is heap_object and outgoing register is map.
344   void CmpObjectType(Register heap_object, InstanceType type, Register map);
345 
346   // Compare instance type for map.
347   void CmpInstanceType(Register map, InstanceType type);
348 
349   // Check if a map for a JSObject indicates that the object has fast elements.
350   // Jump to the specified label if it does not.
351   void CheckFastElements(Register map, Label* fail,
352                          Label::Distance distance = Label::kFar);
353 
354   // Check if a map for a JSObject indicates that the object can have both smi
355   // and HeapObject elements.  Jump to the specified label if it does not.
356   void CheckFastObjectElements(Register map, Label* fail,
357                                Label::Distance distance = Label::kFar);
358 
359   // Check if a map for a JSObject indicates that the object has fast smi only
360   // elements.  Jump to the specified label if it does not.
361   void CheckFastSmiElements(Register map, Label* fail,
362                             Label::Distance distance = Label::kFar);
363 
364   // Check to see if maybe_number can be stored as a double in
365   // FastDoubleElements. If it can, store it at the index specified by key in
366   // the FastDoubleElements array elements, otherwise jump to fail.
367   void StoreNumberToDoubleElements(Register maybe_number, Register elements,
368                                    Register key, Register scratch, Label* fail,
369                                    int offset = 0);
370 
371   // Compare an object's map with the specified map.
372   void CompareMap(Register obj, Handle<Map> map);
373 
374   // Check if the map of an object is equal to a specified map and branch to
375   // label if not. Skip the smi check if not required (object is known to be a
376   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
377   // against maps that are ElementsKind transition maps of the specified map.
378   void CheckMap(Register obj, Handle<Map> map, Label* fail,
379                 SmiCheckType smi_check_type);
380 
381   // Check if the map of an object is equal to a specified weak map and branch
382   // to a specified target if equal. Skip the smi check if not required
383   // (object is known to be a heap object)
384   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
385                        Handle<WeakCell> cell, Handle<Code> success,
386                        SmiCheckType smi_check_type);
387 
388   // Check if the object in register heap_object is a string. Afterwards the
389   // register map contains the object map and the register instance_type
390   // contains the instance_type. The registers map and instance_type can be the
391   // same in which case it contains the instance type afterwards. Either of the
392   // registers map and instance_type can be the same as heap_object.
393   Condition IsObjectStringType(Register heap_object, Register map,
394                                Register instance_type);
395 
396   // Check if the object in register heap_object is a name. Afterwards the
397   // register map contains the object map and the register instance_type
398   // contains the instance_type. The registers map and instance_type can be the
399   // same in which case it contains the instance type afterwards. Either of the
400   // registers map and instance_type can be the same as heap_object.
401   Condition IsObjectNameType(Register heap_object, Register map,
402                              Register instance_type);
403 
404   // FCmp is similar to integer cmp, but requires unsigned
405   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
406   void FCmp();
407   void FXamMinusZero();
408   void FXamSign();
409   void X87CheckIA();
410   void X87SetRC(int rc);
411   void X87SetFPUCW(int cw);
412 
413   void ClampUint8(Register reg);
414   void ClampTOSToUint8(Register result_reg);
415 
416   void SlowTruncateToI(Register result_reg, Register input_reg,
417       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
418 
419   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
420   void TruncateX87TOSToI(Register result_reg);
421 
422   void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
423       Label* lost_precision, Label* is_nan, Label* minus_zero,
424       Label::Distance dst = Label::kFar);
425 
426   // Smi tagging support.
SmiTag(Register reg)427   void SmiTag(Register reg) {
428     STATIC_ASSERT(kSmiTag == 0);
429     STATIC_ASSERT(kSmiTagSize == 1);
430     add(reg, reg);
431   }
SmiUntag(Register reg)432   void SmiUntag(Register reg) {
433     sar(reg, kSmiTagSize);
434   }
435 
436   // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)437   void SmiUntag(Register reg, Label* is_smi) {
438     STATIC_ASSERT(kSmiTagSize == 1);
439     sar(reg, kSmiTagSize);
440     STATIC_ASSERT(kSmiTag == 0);
441     j(not_carry, is_smi);
442   }
443 
LoadUint32NoSSE2(Register src)444   void LoadUint32NoSSE2(Register src) {
445     LoadUint32NoSSE2(Operand(src));
446   }
447   void LoadUint32NoSSE2(const Operand& src);
448 
449   // Jump the register contains a smi.
450   inline void JumpIfSmi(Register value, Label* smi_label,
451                         Label::Distance distance = Label::kFar) {
452     test(value, Immediate(kSmiTagMask));
453     j(zero, smi_label, distance);
454   }
455   // Jump if the operand is a smi.
456   inline void JumpIfSmi(Operand value, Label* smi_label,
457                         Label::Distance distance = Label::kFar) {
458     test(value, Immediate(kSmiTagMask));
459     j(zero, smi_label, distance);
460   }
461   // Jump if register contain a non-smi.
462   inline void JumpIfNotSmi(Register value, Label* not_smi_label,
463                            Label::Distance distance = Label::kFar) {
464     test(value, Immediate(kSmiTagMask));
465     j(not_zero, not_smi_label, distance);
466   }
467 
468   void LoadInstanceDescriptors(Register map, Register descriptors);
469   void EnumLength(Register dst, Register map);
470   void NumberOfOwnDescriptors(Register dst, Register map);
471   void LoadAccessor(Register dst, Register holder, int accessor_index,
472                     AccessorComponent accessor);
473 
474   template<typename Field>
DecodeField(Register reg)475   void DecodeField(Register reg) {
476     static const int shift = Field::kShift;
477     static const int mask = Field::kMask >> Field::kShift;
478     if (shift != 0) {
479       sar(reg, shift);
480     }
481     and_(reg, Immediate(mask));
482   }
483 
484   template<typename Field>
DecodeFieldToSmi(Register reg)485   void DecodeFieldToSmi(Register reg) {
486     static const int shift = Field::kShift;
487     static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
488     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
489     STATIC_ASSERT(kSmiTag == 0);
490     if (shift < kSmiTagSize) {
491       shl(reg, kSmiTagSize - shift);
492     } else if (shift > kSmiTagSize) {
493       sar(reg, shift - kSmiTagSize);
494     }
495     and_(reg, Immediate(mask));
496   }
497 
498   // Abort execution if argument is not a number, enabled via --debug-code.
499   void AssertNumber(Register object);
500 
501   // Abort execution if argument is not a smi, enabled via --debug-code.
502   void AssertSmi(Register object);
503 
504   // Abort execution if argument is a smi, enabled via --debug-code.
505   void AssertNotSmi(Register object);
506 
507   // Abort execution if argument is not a string, enabled via --debug-code.
508   void AssertString(Register object);
509 
510   // Abort execution if argument is not a name, enabled via --debug-code.
511   void AssertName(Register object);
512 
513   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
514   void AssertFunction(Register object);
515 
516   // Abort execution if argument is not a JSBoundFunction,
517   // enabled via --debug-code.
518   void AssertBoundFunction(Register object);
519 
520   // Abort execution if argument is not undefined or an AllocationSite, enabled
521   // via --debug-code.
522   void AssertUndefinedOrAllocationSite(Register object);
523 
524   // ---------------------------------------------------------------------------
525   // Exception handling
526 
527   // Push a new stack handler and link it into stack handler chain.
528   void PushStackHandler();
529 
530   // Unlink the stack handler on top of the stack from the stack handler chain.
531   void PopStackHandler();
532 
533   // ---------------------------------------------------------------------------
534   // Inline caching support
535 
536   // Generate code for checking access rights - used for security checks
537   // on access to global objects across environments. The holder register
538   // is left untouched, but the scratch register is clobbered.
539   void CheckAccessGlobalProxy(Register holder_reg, Register scratch1,
540                               Register scratch2, Label* miss);
541 
542   void GetNumberHash(Register r0, Register scratch);
543 
544   void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
545                                 Register r0, Register r1, Register r2,
546                                 Register result);
547 
548   // ---------------------------------------------------------------------------
549   // Allocation support
550 
551   // Allocate an object in new space or old space. If the given space
552   // is exhausted control continues at the gc_required label. The allocated
553   // object is returned in result and end of the new object is returned in
554   // result_end. The register scratch can be passed as no_reg in which case
555   // an additional object reference will be added to the reloc info. The
556   // returned pointers in result and result_end have not yet been tagged as
557   // heap objects. If result_contains_top_on_entry is true the content of
558   // result is known to be the allocation top on entry (could be result_end
559   // from a previous call). If result_contains_top_on_entry is true scratch
560   // should be no_reg as it is never used.
561   void Allocate(int object_size, Register result, Register result_end,
562                 Register scratch, Label* gc_required, AllocationFlags flags);
563 
564   void Allocate(int header_size, ScaleFactor element_size,
565                 Register element_count, RegisterValueType element_count_type,
566                 Register result, Register result_end, Register scratch,
567                 Label* gc_required, AllocationFlags flags);
568 
569   void Allocate(Register object_size, Register result, Register result_end,
570                 Register scratch, Label* gc_required, AllocationFlags flags);
571 
572   // Allocate a heap number in new space with undefined value. The
573   // register scratch2 can be passed as no_reg; the others must be
574   // valid registers. Returns tagged pointer in result register, or
575   // jumps to gc_required if new space is full.
576   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
577                           Label* gc_required, MutableMode mode = IMMUTABLE);
578 
579   // Allocate a sequential string. All the header fields of the string object
580   // are initialized.
581   void AllocateTwoByteString(Register result, Register length,
582                              Register scratch1, Register scratch2,
583                              Register scratch3, Label* gc_required);
584   void AllocateOneByteString(Register result, Register length,
585                              Register scratch1, Register scratch2,
586                              Register scratch3, Label* gc_required);
587   void AllocateOneByteString(Register result, int length, Register scratch1,
588                              Register scratch2, Label* gc_required);
589 
590   // Allocate a raw cons string object. Only the map field of the result is
591   // initialized.
592   void AllocateTwoByteConsString(Register result, Register scratch1,
593                                  Register scratch2, Label* gc_required);
594   void AllocateOneByteConsString(Register result, Register scratch1,
595                                  Register scratch2, Label* gc_required);
596 
597   // Allocate a raw sliced string object. Only the map field of the result is
598   // initialized.
599   void AllocateTwoByteSlicedString(Register result, Register scratch1,
600                                    Register scratch2, Label* gc_required);
601   void AllocateOneByteSlicedString(Register result, Register scratch1,
602                                    Register scratch2, Label* gc_required);
603 
604   // Allocate and initialize a JSValue wrapper with the specified {constructor}
605   // and {value}.
606   void AllocateJSValue(Register result, Register constructor, Register value,
607                        Register scratch, Label* gc_required);
608 
609   // Copy memory, byte-by-byte, from source to destination.  Not optimized for
610   // long or aligned copies.
611   // The contents of index and scratch are destroyed.
612   void CopyBytes(Register source, Register destination, Register length,
613                  Register scratch);
614 
615   // Initialize fields with filler values.  Fields starting at |current_address|
616   // not including |end_address| are overwritten with the value in |filler|.  At
617   // the end the loop, |current_address| takes the value of |end_address|.
618   void InitializeFieldsWithFiller(Register current_address,
619                                   Register end_address, Register filler);
620 
621   // ---------------------------------------------------------------------------
622   // Support functions.
623 
624   // Check a boolean-bit of a Smi field.
625   void BooleanBitTest(Register object, int field_offset, int bit_index);
626 
627   // Check if result is zero and op is negative.
628   void NegativeZeroTest(Register result, Register op, Label* then_label);
629 
630   // Check if result is zero and any of op1 and op2 are negative.
631   // Register scratch is destroyed, and it must be different from op2.
632   void NegativeZeroTest(Register result, Register op1, Register op2,
633                         Register scratch, Label* then_label);
634 
635   // Machine code version of Map::GetConstructor().
636   // |temp| holds |result|'s map when done.
637   void GetMapConstructor(Register result, Register map, Register temp);
638 
639   // Try to get function prototype of a function and puts the value in
640   // the result register. Checks that the function really is a
641   // function and jumps to the miss label if the fast checks fail. The
642   // function register will be untouched; the other registers may be
643   // clobbered.
644   void TryGetFunctionPrototype(Register function, Register result,
645                                Register scratch, Label* miss);
646 
647   // Picks out an array index from the hash field.
648   // Register use:
649   //   hash - holds the index's hash. Clobbered.
650   //   index - holds the overwritten index on exit.
651   void IndexFromHash(Register hash, Register index);
652 
653   // ---------------------------------------------------------------------------
654   // Runtime calls
655 
656   // Call a code stub.  Generate the code if necessary.
657   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
658 
659   // Tail call a code stub (jump).  Generate the code if necessary.
660   void TailCallStub(CodeStub* stub);
661 
662   // Return from a code stub after popping its arguments.
663   void StubReturn(int argc);
664 
665   // Call a runtime routine.
666   void CallRuntime(const Runtime::Function* f, int num_arguments,
667                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)668   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
669     const Runtime::Function* function = Runtime::FunctionForId(fid);
670     CallRuntime(function, function->nargs, kSaveFPRegs);
671   }
672 
673   // Convenience function: Same as above, but takes the fid instead.
674   void CallRuntime(Runtime::FunctionId fid,
675                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
676     const Runtime::Function* function = Runtime::FunctionForId(fid);
677     CallRuntime(function, function->nargs, save_doubles);
678   }
679 
680   // Convenience function: Same as above, but takes the fid instead.
681   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
682                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
683     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
684   }
685 
686   // Convenience function: call an external reference.
687   void CallExternalReference(ExternalReference ref, int num_arguments);
688 
689   // Convenience function: tail call a runtime routine (jump).
690   void TailCallRuntime(Runtime::FunctionId fid);
691 
692   // Before calling a C-function from generated code, align arguments on stack.
693   // After aligning the frame, arguments must be stored in esp[0], esp[4],
694   // etc., not pushed. The argument count assumes all arguments are word sized.
695   // Some compilers/platforms require the stack to be aligned when calling
696   // C++ code.
697   // Needs a scratch register to do some arithmetic. This register will be
698   // trashed.
699   void PrepareCallCFunction(int num_arguments, Register scratch);
700 
701   // Calls a C function and cleans up the space for arguments allocated
702   // by PrepareCallCFunction. The called function is not allowed to trigger a
703   // garbage collection, since that might move the code and invalidate the
704   // return address (unless this is somehow accounted for by the called
705   // function).
706   void CallCFunction(ExternalReference function, int num_arguments);
707   void CallCFunction(Register function, int num_arguments);
708 
709   // Jump to a runtime routine.
710   void JumpToExternalReference(const ExternalReference& ext);
711 
712   // ---------------------------------------------------------------------------
713   // Utilities
714 
715   void Ret();
716 
717   // Return and drop arguments from stack, where the number of arguments
718   // may be bigger than 2^16 - 1.  Requires a scratch register.
719   void Ret(int bytes_dropped, Register scratch);
720 
721   // Emit code to discard a non-negative number of pointer-sized elements
722   // from the stack, clobbering only the esp register.
723   void Drop(int element_count);
724 
Call(Label * target)725   void Call(Label* target) { call(target); }
Call(Handle<Code> target,RelocInfo::Mode rmode)726   void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
Jump(Handle<Code> target,RelocInfo::Mode rmode)727   void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)728   void Push(Register src) { push(src); }
Push(const Operand & src)729   void Push(const Operand& src) { push(src); }
Push(Immediate value)730   void Push(Immediate value) { push(value); }
Pop(Register dst)731   void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)732   void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)733   void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)734   void PopReturnAddressTo(Register dst) { pop(dst); }
735 
Lzcnt(Register dst,Register src)736   void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
737   void Lzcnt(Register dst, const Operand& src);
738 
Tzcnt(Register dst,Register src)739   void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
740   void Tzcnt(Register dst, const Operand& src);
741 
Popcnt(Register dst,Register src)742   void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
743   void Popcnt(Register dst, const Operand& src);
744 
745   // Emit call to the code we are currently generating.
CallSelf()746   void CallSelf() {
747     Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
748     call(self, RelocInfo::CODE_TARGET);
749   }
750 
751   // Move if the registers are not identical.
752   void Move(Register target, Register source);
753 
754   // Move a constant into a destination using the most efficient encoding.
755   void Move(Register dst, const Immediate& x);
756   void Move(const Operand& dst, const Immediate& x);
757 
Move(Register dst,Smi * source)758   void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
759 
760   // Push a handle value.
Push(Handle<Object> handle)761   void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)762   void Push(Smi* smi) { Push(Immediate(smi)); }
763 
CodeObject()764   Handle<Object> CodeObject() {
765     DCHECK(!code_object_.is_null());
766     return code_object_;
767   }
768 
769   // Insert code to verify that the x87 stack has the specified depth (0-7)
770   void VerifyX87StackDepth(uint32_t depth);
771 
772   // Emit code for a truncating division by a constant. The dividend register is
773   // unchanged, the result is in edx, and eax gets clobbered.
774   void TruncatingDiv(Register dividend, int32_t divisor);
775 
776   // ---------------------------------------------------------------------------
777   // StatsCounter support
778 
779   void SetCounter(StatsCounter* counter, int value);
780   void IncrementCounter(StatsCounter* counter, int value);
781   void DecrementCounter(StatsCounter* counter, int value);
782   void IncrementCounter(Condition cc, StatsCounter* counter, int value);
783   void DecrementCounter(Condition cc, StatsCounter* counter, int value);
784 
785   // ---------------------------------------------------------------------------
786   // Debugging
787 
788   // Calls Abort(msg) if the condition cc is not satisfied.
789   // Use --debug_code to enable.
790   void Assert(Condition cc, BailoutReason reason);
791 
792   void AssertFastElements(Register elements);
793 
794   // Like Assert(), but always enabled.
795   void Check(Condition cc, BailoutReason reason);
796 
797   // Print a message to stdout and abort execution.
798   void Abort(BailoutReason reason);
799 
800   // Check that the stack is aligned.
801   void CheckStackAlignment();
802 
803   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)804   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()805   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)806   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()807   bool has_frame() { return has_frame_; }
808   inline bool AllowThisStubCall(CodeStub* stub);
809 
810   // ---------------------------------------------------------------------------
811   // String utilities.
812 
813   // Check whether the instance type represents a flat one-byte string. Jump to
814   // the label if not. If the instance type can be scratched specify same
815   // register for both instance type and scratch.
816   void JumpIfInstanceTypeIsNotSequentialOneByte(
817       Register instance_type, Register scratch,
818       Label* on_not_flat_one_byte_string);
819 
820   // Checks if both objects are sequential one-byte strings, and jumps to label
821   // if either is not.
822   void JumpIfNotBothSequentialOneByteStrings(
823       Register object1, Register object2, Register scratch1, Register scratch2,
824       Label* on_not_flat_one_byte_strings);
825 
826   // Checks if the given register or operand is a unique name
827   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
828                                        Label::Distance distance = Label::kFar) {
829     JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
830   }
831 
832   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
833                                        Label::Distance distance = Label::kFar);
834 
835   void EmitSeqStringSetCharCheck(Register string, Register index,
836                                  Register value, uint32_t encoding_mask);
837 
SafepointRegisterStackIndex(Register reg)838   static int SafepointRegisterStackIndex(Register reg) {
839     return SafepointRegisterStackIndex(reg.code());
840   }
841 
842   // Load the type feedback vector from a JavaScript frame.
843   void EmitLoadTypeFeedbackVector(Register vector);
844 
845   // Activation support.
846   void EnterFrame(StackFrame::Type type);
847   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
848   void LeaveFrame(StackFrame::Type type);
849 
850   // Expects object in eax and returns map with validated enum cache
851   // in eax.  Assumes that any other register can be used as a scratch.
852   void CheckEnumCache(Label* call_runtime);
853 
854   // AllocationMemento support. Arrays may have an associated
855   // AllocationMemento object that can be checked for in order to pretransition
856   // to another type.
857   // On entry, receiver_reg should point to the array object.
858   // scratch_reg gets clobbered.
859   // If allocation info is present, conditional code is set to equal.
860   void TestJSArrayForAllocationMemento(Register receiver_reg,
861                                        Register scratch_reg,
862                                        Label* no_memento_found);
863 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)864   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
865                                          Register scratch_reg,
866                                          Label* memento_found) {
867     Label no_memento_found;
868     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
869                                     &no_memento_found);
870     j(equal, memento_found);
871     bind(&no_memento_found);
872   }
873 
874   // Jumps to found label if a prototype map has dictionary elements.
875   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
876                                         Register scratch1, Label* found);
877 
878  private:
879   bool generating_stub_;
880   bool has_frame_;
881   // This handle will be patched with the code object on installation.
882   Handle<Object> code_object_;
883 
884   // Helper functions for generating invokes.
885   void InvokePrologue(const ParameterCount& expected,
886                       const ParameterCount& actual, Label* done,
887                       bool* definitely_mismatches, InvokeFlag flag,
888                       Label::Distance done_distance,
889                       const CallWrapper& call_wrapper);
890 
891   void EnterExitFramePrologue();
892   void EnterExitFrameEpilogue(int argc, bool save_doubles);
893 
894   void LeaveExitFrameEpilogue(bool restore_context);
895 
896   // Allocation support helpers.
897   void LoadAllocationTopHelper(Register result, Register scratch,
898                                AllocationFlags flags);
899 
900   void UpdateAllocationTopHelper(Register result_end, Register scratch,
901                                  AllocationFlags flags);
902 
903   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
904   void InNewSpace(Register object, Register scratch, Condition cc,
905                   Label* condition_met,
906                   Label::Distance condition_met_distance = Label::kFar);
907 
908   // Helper for finding the mark bits for an address.  Afterwards, the
909   // bitmap register points at the word with the mark bits and the mask
910   // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
911   // unchanged.
912   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
913                           Register mask_reg);
914 
915   // Compute memory operands for safepoint stack slots.
916   Operand SafepointRegisterSlot(Register reg);
917   static int SafepointRegisterStackIndex(int reg_code);
918 
919   // Needs access to SafepointRegisterStackIndex for compiled frame
920   // traversal.
921   friend class StandardFrame;
922 };
923 
924 // The code patcher is used to patch (typically) small parts of code e.g. for
925 // debugging and other types of instrumentation. When using the code patcher
926 // the exact number of bytes specified must be emitted. Is not legal to emit
927 // relocation information. If any of these constraints are violated it causes
928 // an assertion.
929 class CodePatcher {
930  public:
931   CodePatcher(Isolate* isolate, byte* address, int size);
932   ~CodePatcher();
933 
934   // Macro assembler to emit code.
masm()935   MacroAssembler* masm() { return &masm_; }
936 
937  private:
938   byte* address_;        // The address of the code being patched.
939   int size_;             // Number of bytes of the expected patch size.
940   MacroAssembler masm_;  // Macro assembler used to generate the code.
941 };
942 
943 // -----------------------------------------------------------------------------
944 // Static helper functions.
945 
946 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)947 inline Operand FieldOperand(Register object, int offset) {
948   return Operand(object, offset - kHeapObjectTag);
949 }
950 
951 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)952 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
953                             int offset) {
954   return Operand(object, index, scale, offset - kHeapObjectTag);
955 }
956 
957 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
958                                         int additional_offset = 0) {
959   int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
960   return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
961 }
962 
ContextOperand(Register context,int index)963 inline Operand ContextOperand(Register context, int index) {
964   return Operand(context, Context::SlotOffset(index));
965 }
966 
ContextOperand(Register context,Register index)967 inline Operand ContextOperand(Register context, Register index) {
968   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
969 }
970 
NativeContextOperand()971 inline Operand NativeContextOperand() {
972   return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
973 }
974 
975 #ifdef GENERATED_CODE_COVERAGE
976 extern void LogGeneratedCodeCoverage(const char* file_line);
977 #define CODE_COVERAGE_STRINGIFY(x) #x
978 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
979 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
980 #define ACCESS_MASM(masm) {                                               \
981     byte* ia32_coverage_function =                                        \
982         reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
983     masm->pushfd();                                                       \
984     masm->pushad();                                                       \
985     masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
986     masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
987     masm->pop(eax);                                                       \
988     masm->popad();                                                        \
989     masm->popfd();                                                        \
990   }                                                                       \
991   masm->
992 #else
993 #define ACCESS_MASM(masm) masm->
994 #endif
995 
996 }  // namespace internal
997 }  // namespace v8
998 
999 #endif  // V8_X87_MACRO_ASSEMBLER_X87_H_
1000