• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Test Math.sin and Math.cos.
29
30// Flags: --allow-natives-syntax
31
32assertEquals("-Infinity", String(1/Math.sin(-0)));
33assertEquals(1, Math.cos(-0));
34assertEquals("-Infinity", String(1/Math.tan(-0)));
35
36// Assert that minus zero does not cause deopt.
37function no_deopt_on_minus_zero(x) {
38  return Math.sin(x) + Math.cos(x) + Math.tan(x);
39}
40
41no_deopt_on_minus_zero(1);
42no_deopt_on_minus_zero(1);
43%OptimizeFunctionOnNextCall(no_deopt_on_minus_zero);
44no_deopt_on_minus_zero(-0);
45assertOptimized(no_deopt_on_minus_zero);
46
47
48function sinTest() {
49  assertEquals(0, Math.sin(0));
50  assertEquals(1, Math.sin(Math.PI / 2));
51}
52
53function cosTest() {
54  assertEquals(1, Math.cos(0));
55  assertEquals(-1, Math.cos(Math.PI));
56}
57
58sinTest();
59cosTest();
60
61// By accident, the slow case for sine and cosine were both sine at
62// some point.  This is a regression test for that issue.
63var x = Math.pow(2, 30);
64assertTrue(Math.sin(x) != Math.cos(x));
65
66// Ensure that sine and log are not the same.
67x = 0.5;
68assertTrue(Math.sin(x) != Math.log(x));
69
70// Test against approximation by series.
71var factorial = [1];
72var accuracy = 50;
73for (var i = 1; i < accuracy; i++) {
74  factorial[i] = factorial[i-1] * i;
75}
76
77// We sum up in the reverse order for higher precision, as we expect the terms
78// to grow smaller for x reasonably close to 0.
79function precision_sum(array) {
80  var result = 0;
81  while (array.length > 0) {
82    result += array.pop();
83  }
84  return result;
85}
86
87function sin(x) {
88  var sign = 1;
89  var x2 = x*x;
90  var terms = [];
91  for (var i = 1; i < accuracy; i += 2) {
92    terms.push(sign * x / factorial[i]);
93    x *= x2;
94    sign *= -1;
95  }
96  return precision_sum(terms);
97}
98
99function cos(x) {
100  var sign = -1;
101  var x2 = x*x;
102  x = x2;
103  var terms = [1];
104  for (var i = 2; i < accuracy; i += 2) {
105    terms.push(sign * x / factorial[i]);
106    x *= x2;
107    sign *= -1;
108  }
109  return precision_sum(terms);
110}
111
112function abs_error(fun, ref, x) {
113  return Math.abs(ref(x) - fun(x));
114}
115
116var test_inputs = [];
117for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257);
118var epsilon = 0.0000001;
119
120test_inputs.push(0);
121test_inputs.push(0 + epsilon);
122test_inputs.push(0 - epsilon);
123test_inputs.push(Math.PI/2);
124test_inputs.push(Math.PI/2 + epsilon);
125test_inputs.push(Math.PI/2 - epsilon);
126test_inputs.push(Math.PI);
127test_inputs.push(Math.PI + epsilon);
128test_inputs.push(Math.PI - epsilon);
129test_inputs.push(- 2*Math.PI);
130test_inputs.push(- 2*Math.PI + epsilon);
131test_inputs.push(- 2*Math.PI - epsilon);
132
133var squares = [];
134for (var i = 0; i < test_inputs.length; i++) {
135  var x = test_inputs[i];
136  var err_sin = abs_error(Math.sin, sin, x);
137  var err_cos = abs_error(Math.cos, cos, x)
138  assertEqualsDelta(0, err_sin, 1E-13);
139  assertEqualsDelta(0, err_cos, 1E-13);
140  squares.push(err_sin*err_sin + err_cos*err_cos);
141}
142
143// Sum squares up by adding them pairwise, to avoid losing precision.
144while (squares.length > 1) {
145  var reduced = [];
146  if (squares.length % 2 == 1) reduced.push(squares.pop());
147  // Remaining number of elements is even.
148  while(squares.length > 1) reduced.push(squares.pop() + squares.pop());
149  squares = reduced;
150}
151
152var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2);
153assertEqualsDelta(0, err_rms, 1E-14);
154
155assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } }));
156assertEquals(0, Math.sin("0x00000"));
157assertEquals(1, Math.cos("0x00000"));
158assertTrue(isNaN(Math.sin(Infinity)));
159assertTrue(isNaN(Math.cos("-Infinity")));
160assertTrue(Math.tan(Math.PI/2) > 1e16);
161assertTrue(Math.tan(-Math.PI/2) < -1e16);
162assertEquals("-Infinity", String(1/Math.sin("-0")));
163
164// Assert that the remainder after division by pi is reasonably precise.
165function assertError(expected, x, epsilon) {
166  assertTrue(Math.abs(x - expected) < epsilon);
167}
168
169assertEqualsDelta(0.9367521275331447,  Math.cos(1e06),  1e-15);
170assertEqualsDelta(0.8731196226768560,  Math.cos(1e10),  1e-08);
171assertEqualsDelta(0.9367521275331447,  Math.cos(-1e06), 1e-15);
172assertEqualsDelta(0.8731196226768560,  Math.cos(-1e10), 1e-08);
173assertEqualsDelta(-0.3499935021712929, Math.sin(1e06),  1e-15);
174assertEqualsDelta(-0.4875060250875106, Math.sin(1e10),  1e-08);
175assertEqualsDelta(0.3499935021712929,  Math.sin(-1e06), 1e-15);
176assertEqualsDelta(0.4875060250875106,  Math.sin(-1e10), 1e-08);
177assertEqualsDelta(0.7796880066069787,  Math.sin(1e16),  1e-05);
178assertEqualsDelta(-0.6261681981330861, Math.cos(1e16),  1e-05);
179
180// Assert that remainder calculation terminates.
181for (var i = -1024; i < 1024; i++) {
182  assertFalse(isNaN(Math.sin(Math.pow(2, i))));
183}
184
185assertFalse(isNaN(Math.cos(1.57079632679489700)));
186assertFalse(isNaN(Math.cos(-1e-100)));
187assertFalse(isNaN(Math.cos(-1e-323)));
188
189// Tests for specific values expected from the fdlibm implementation.
190
191var two_32 = Math.pow(2, -32);
192var two_28 = Math.pow(2, -28);
193
194// Tests for Math.sin for |x| < pi/4
195assertEquals(Infinity, 1/Math.sin(+0.0));
196assertEquals(-Infinity, 1/Math.sin(-0.0));
197// sin(x) = x for x < 2^-27
198assertEquals(two_32, Math.sin(two_32));
199assertEquals(-two_32, Math.sin(-two_32));
200// sin(pi/8) = sqrt(sqrt(2)-1)/2^(3/4)
201assertEquals(0.3826834323650898, Math.sin(Math.PI/8));
202assertEquals(-0.3826834323650898, -Math.sin(Math.PI/8));
203
204// Tests for Math.cos for |x| < pi/4
205// cos(x) = 1 for |x| < 2^-27
206assertEquals(1, Math.cos(two_32));
207assertEquals(1, Math.cos(-two_32));
208// Test KERNELCOS for |x| < 0.3.
209// cos(pi/20) = sqrt(sqrt(2)*sqrt(sqrt(5)+5)+4)/2^(3/2)
210assertEquals(0.9876883405951378, Math.cos(Math.PI/20));
211// Test KERNELCOS for x ~= 0.78125
212assertEquals(0.7100335477927638, Math.cos(0.7812504768371582));
213assertEquals(0.7100338835660797, Math.cos(0.78125));
214// Test KERNELCOS for |x| > 0.3.
215// cos(pi/8) = sqrt(sqrt(2)+1)/2^(3/4)
216assertEquals(0.9238795325112867, Math.cos(Math.PI/8));
217// Test KERNELTAN for |x| < 0.67434.
218assertEquals(0.9238795325112867, Math.cos(-Math.PI/8));
219
220// Tests for Math.tan for |x| < pi/4
221assertEquals(Infinity, 1/Math.tan(0.0));
222assertEquals(-Infinity, 1/Math.tan(-0.0));
223// tan(x) = x for |x| < 2^-28
224assertEquals(two_32, Math.tan(two_32));
225assertEquals(-two_32, Math.tan(-two_32));
226// Test KERNELTAN for |x| > 0.67434.
227assertEquals(0.8211418015898941, Math.tan(11/16));
228assertEquals(-0.8211418015898941, Math.tan(-11/16));
229assertEquals(0.41421356237309503, Math.tan(Math.PI / 8));
230// crbug/427468
231assertEquals(0.7993357819992383, Math.tan(0.6743358));
232
233// Tests for Math.sin.
234assertEquals(0.479425538604203, Math.sin(0.5));
235assertEquals(-0.479425538604203, Math.sin(-0.5));
236assertEquals(1, Math.sin(Math.PI/2));
237assertEquals(-1, Math.sin(-Math.PI/2));
238// Test that Math.sin(Math.PI) != 0 since Math.PI is not exact.
239assertEquals(1.2246467991473532e-16, Math.sin(Math.PI));
240assertEquals(-7.047032979958965e-14, Math.sin(2200*Math.PI));
241// Test Math.sin for various phases.
242assertEquals(-0.7071067811865477, Math.sin(7/4 * Math.PI));
243assertEquals(0.7071067811865474, Math.sin(9/4 * Math.PI));
244assertEquals(0.7071067811865483, Math.sin(11/4 * Math.PI));
245assertEquals(-0.7071067811865479, Math.sin(13/4 * Math.PI));
246assertEquals(-3.2103381051568376e-11, Math.sin(1048576/4 * Math.PI));
247
248// Tests for Math.cos.
249assertEquals(1, Math.cos(two_28));
250// Cover different code paths in KERNELCOS.
251assertEquals(0.9689124217106447, Math.cos(0.25));
252assertEquals(0.8775825618903728, Math.cos(0.5));
253assertEquals(0.7073882691671998, Math.cos(0.785));
254// Test that Math.cos(Math.PI/2) != 0 since Math.PI is not exact.
255assertEquals(6.123233995736766e-17, Math.cos(Math.PI/2));
256// Test Math.cos for various phases.
257assertEquals(0.7071067811865474, Math.cos(7/4 * Math.PI));
258assertEquals(0.7071067811865477, Math.cos(9/4 * Math.PI));
259assertEquals(-0.7071067811865467, Math.cos(11/4 * Math.PI));
260assertEquals(-0.7071067811865471, Math.cos(13/4 * Math.PI));
261assertEquals(0.9367521275331447, Math.cos(1000000));
262assertEquals(-3.435757038074824e-12, Math.cos(1048575/2 * Math.PI));
263
264// Tests for Math.tan.
265assertEquals(two_28, Math.tan(two_28));
266// Test that  Math.tan(Math.PI/2) != Infinity since Math.PI is not exact.
267assertEquals(1.633123935319537e16, Math.tan(Math.PI/2));
268// Cover different code paths in KERNELTAN (tangent and cotangent)
269assertEquals(0.5463024898437905, Math.tan(0.5));
270assertEquals(2.0000000000000027, Math.tan(1.107148717794091));
271assertEquals(-1.0000000000000004, Math.tan(7/4*Math.PI));
272assertEquals(0.9999999999999994, Math.tan(9/4*Math.PI));
273assertEquals(-6.420676210313675e-11, Math.tan(1048576/2*Math.PI));
274assertEquals(2.910566692924059e11, Math.tan(1048575/2*Math.PI));
275
276// Test Hayne-Panek reduction.
277assertEquals(0.377820109360752e0, Math.sin(Math.pow(2, 120)));
278assertEquals(-0.9258790228548379e0, Math.cos(Math.pow(2, 120)));
279assertEquals(-0.40806638884180424e0, Math.tan(Math.pow(2, 120)));
280assertEquals(-0.377820109360752e0, Math.sin(-Math.pow(2, 120)));
281assertEquals(-0.9258790228548379e0, Math.cos(-Math.pow(2, 120)));
282assertEquals(0.40806638884180424e0, Math.tan(-Math.pow(2, 120)));
283