page.title=Data Binding Library page.metaDescription=The Data Binding Library enables you to write declarative layouts. page.tags="databinding", "layouts" @jd:body
This document explains how to use the Data Binding Library to write declarative layouts and minimize the glue code necessary to bind your application logic and layouts.
The Data Binding Library offers both flexibility and broad compatibility — it's a support library, so you can use it with all Android platform versions back to Android 2.1 (API level 7+).
To use data binding, Android Plugin for Gradle 1.5.0-alpha1 or higher is required. See how to update the Android Plugin for Gradle.
To get started with Data Binding, download the library from the Support repository in the Android SDK manager.
To configure your app to use data binding, add the dataBinding
element to your build.gradle
file in the app module.
Use the following code snippet to configure data binding:
android { .... dataBinding { enabled = true } }
If you have an app module that depends on a library which uses data binding,
your app module must configure data binding in its build.gradle
file as well.
Also, make sure you are using a compatible version of Android Studio. Android Studio 1.3 and later provides support for data binding as described in Android Studio Support for Data Binding.
Data-binding layout files are slightly different and start with a root tag of layout followed by a data element and a view root element. This view element is what your root would be in a non-binding layout file. A sample file looks like this:
<?xml version="1.0" encoding="utf-8"?> <layout xmlns:android="http://schemas.android.com/apk/res/android"> <data> <variable name="user" type="com.example.User"/> </data> <LinearLayout android:orientation="vertical" android:layout_width="match_parent" android:layout_height="match_parent"> <TextView android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="@{user.firstName}"/> <TextView android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="@{user.lastName}"/> </LinearLayout> </layout>
The user variable within data describes a property that may be used within this layout.
<variable name="user" type="com.example.User"/>
Expressions within the layout are written in the attribute properties using
the "@{}
" syntax. Here, the TextView's text is set to
the firstName property of user:
<TextView android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="@{user.firstName}"/>
Let's assume for now that you have a plain-old Java object (POJO) for User:
public class User { public final String firstName; public final String lastName; public User(String firstName, String lastName) { this.firstName = firstName; this.lastName = lastName; } }
This type of object has data that never changes. It is common in applications to have data that is read once and never changes thereafter. It is also possible to use a JavaBeans objects:
public class User { private final String firstName; private final String lastName; public User(String firstName, String lastName) { this.firstName = firstName; this.lastName = lastName; } public String getFirstName() { return this.firstName; } public String getLastName() { return this.lastName; } }
From the perspective of data binding, these two classes are equivalent. The
expression @{user.firstName}
used
for the TextView's android:text
attribute will
access the firstName
field in the former class
and the getFirstName()
method in the latter class.
Alternatively, it will also be resolved to firstName()
if that
method exists.
By default, a Binding class will be generated based on the name of the layout
file, converting it to Pascal case and suffixing "Binding" to it. The above
layout file was main_activity.xml
so the generate class was
MainActivityBinding
. This class holds all the bindings from the
layout properties (e.g. the user
variable) to the layout's Views
and knows how to assign values for the binding expressions.The easiest means
for creating the bindings is to do it while inflating:
@Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); MainActivityBinding binding = DataBindingUtil.setContentView(this, R.layout.main_activity); User user = new User("Test", "User"); binding.setUser(user); }
You're done! Run the application and you'll see Test User in the UI. Alternatively, you can get the view via:
MainActivityBinding binding = MainActivityBinding.inflate(getLayoutInflater());
If you are using data binding items inside a ListView or RecyclerView adapter, you may prefer to use:
ListItemBinding binding = ListItemBinding.inflate(layoutInflater, viewGroup, false); //or ListItemBinding binding = DataBindingUtil.inflate(layoutInflater, R.layout.list_item, viewGroup, false);
Data Binding allows you to write expressions handling events that are dispatched from the views (e.g. onClick).
Event attribute names are governed by the name of the listener method with a few exceptions.
For example, {@link android.view.View.OnLongClickListener} has a method {@link android.view.View.OnLongClickListener#onLongClick onLongClick()},
so the attribute for this event is android:onLongClick
.
There are two ways to handle an event.
Events can be bound to handler methods directly, similar to the way
android:onClick
can be assigned to a method in an Activity.
One major advantage compared to the {@code View#onClick} attribute is that the expression
is processed at compile time, so if the method does not exist or its signature is not
correct, you receive a compile time error.
The major difference between Method References and Listener Bindings is that the actual listener implementation is created when the data is bound, not when the event is triggered. If you prefer to evaluate the expression when the event happens, you should use listener binding.
To assign an event to its handler, use a normal binding expression, with the value being the method name to call. For example, if your data object has two methods:
public class MyHandlers { public void onClickFriend(View view) { ... } }
The binding expression can assign the click listener for a View:
<?xml version="1.0" encoding="utf-8"?> <layout xmlns:android="http://schemas.android.com/apk/res/android"> <data> <variable name="handlers" type="com.example.Handlers"/> <variable name="user" type="com.example.User"/> </data> <LinearLayout android:orientation="vertical" android:layout_width="match_parent" android:layout_height="match_parent"> <TextView android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="@{user.firstName}" android:onClick="@{handlers::onClickFriend}"/> </LinearLayout> </layout>
Note that the signature of the method in the expression must exactly match the signature of the method in the Listener object.
Listener Bindings are binding expressions that run when an event happens. They are similar to method references, but they let you run arbitrary data binding expressions. This feature is available with Android Gradle Plugin for Gradle version 2.0 and later.
In method references, the parameters of the method must match the parameters of the event listener. In Listener Bindings, only your return value must match the expected return value of the listener (unless it is expecting void). For example, you can have a presenter class that has the following method:
public class Presenter { public void onSaveClick(Task task){} }Then you can bind the click event to your class as follows:
<?xml version="1.0" encoding="utf-8"?> <layout xmlns:android="http://schemas.android.com/apk/res/android"> <data> <variable name="task" type="com.android.example.Task" /> <variable name="presenter" type="com.android.example.Presenter" /> </data> <LinearLayout android:layout_width="match_parent" android:layout_height="match_parent"> <Button android:layout_width="wrap_content" android:layout_height="wrap_content" android:onClick="@{() -> presenter.onSaveClick(task)}" /> </LinearLayout> </layout>
Listeners are represented by lambda expressions that are allowed only as root elements of your expressions. When a callback is used in an expression, Data Binding automatically creates the necessary listener and registers for the event. When the view fires the event, Data Binding evaluates the given expression. As in regular binding expressions, you still get the null and thread safety of Data Binding while these listener expressions are being evaluated.
Note that in the example above, we haven't defined the {@code view} parameter that is passed into {@link android.view.View.OnClickListener#onClick(android.view.View view)}. Listener bindings provide two choices for listener parameters: you can either ignore all parameters to the method or name all of them. If you prefer to name the parameters, you can use them in your expression. For example, the expression above could be written as:
android:onClick="@{(view) -> presenter.onSaveClick(task)}"Or if you wanted to use the parameter in the expression, it could work as follows:
public class Presenter { public void onSaveClick(View view, Task task){} }
android:onClick="@{(theView) -> presenter.onSaveClick(theView, task)}"You can use a lambda expression with more than one parameter:
public class Presenter { public void onCompletedChanged(Task task, boolean completed){} }
<CheckBox android:layout_width="wrap_content" android:layout_height="wrap_content" android:onCheckedChanged="@{(cb, isChecked) -> presenter.completeChanged(task, isChecked)}" />
If the event you are listening to returns a value whose type is not {@code void}, your expressions must return the same type of value as well. For example, if you want to listen for the long click event, your expression should return {@code boolean}.
public class Presenter { public boolean onLongClick(View view, Task task){} }
android:onLongClick="@{(theView) -> presenter.onLongClick(theView, task)}"
If the expression cannot be evaluated due to {@code null} objects, Data Binding returns the default Java value for that type. For example, {@code null} for reference types, {@code 0} for {@code int}, {@code false} for {@code boolean}, etc.
If you need to use an expression with a predicate (e.g. ternary), you can use {@code void} as a symbol.
android:onClick="@{(v) -> v.isVisible() ? doSomething() : void}"
Some specialized click event handlers exist and they need an attribute other than
android:onClick
to avoid a conflict. The following attributes have been created
to avoid such conflicts:
Class | Listener Setter | Attribute |
---|---|---|
{@link android.widget.SearchView} | {@link android.widget.SearchView#setOnSearchClickListener} | android:onSearchClick |
{@link android.widget.ZoomControls} | {@link android.widget.ZoomControls#setOnZoomInClickListener} | android:onZoomIn |
{@link android.widget.ZoomControls} | {@link android.widget.ZoomControls#setOnZoomOutClickListener} | android:onZoomOut |
Zero or more import
elements may be used inside
the data
element. These allow easy reference to
classes inside your layout file, just like in Java.
<data> <import type="android.view.View"/> </data>
Now, View may be used within your binding expression:
<TextView android:text="@{user.lastName}" android:layout_width="wrap_content" android:layout_height="wrap_content" android:visibility="@{user.isAdult ? View.VISIBLE : View.GONE}"/>
When there are class name conflicts, one of the classes may be renamed to an "alias:"
<import type="android.view.View"/> <import type="com.example.real.estate.View" alias="Vista"/>
Now, Vista
may be used to reference the
com.example.real.estate.View
and
View
may be used to reference
android.view.View
within the layout file. Imported types may be
used as type references in variables and expressions:
<data> <import type="com.example.User"/> <import type="java.util.List"/> <variable name="user" type="User"/> <variable name="userList" type="List<User>"/> </data>
Note: Android Studio does not yet handle imports so the autocomplete for imported variables may not work in your IDE. Your application will still compile fine and you can work around the IDE issue by using fully qualified names in your variable definitions.
<TextView android:text="@{((User)(user.connection)).lastName}" android:layout_width="wrap_content" android:layout_height="wrap_content"/>
Imported types may also be used when referencing static fields and methods in expressions:
<data> <import type="com.example.MyStringUtils"/> <variable name="user" type="com.example.User"/> </data> … <TextView android:text="@{MyStringUtils.capitalize(user.lastName)}" android:layout_width="wrap_content" android:layout_height="wrap_content"/>
Just as in Java, java.lang.*
is imported automatically.
Any number of variable
elements may be used
inside the data
element. Each
variable
element describes a property that may
be set on the layout to be used in binding expressions within the layout
file.
<data> <import type="android.graphics.drawable.Drawable"/> <variable name="user" type="com.example.User"/> <variable name="image" type="Drawable"/> <variable name="note" type="String"/> </data>
The variable types are inspected at compile time, so if a variable implements {@link android.databinding.Observable} or is an observable collection, that should be reflected in the type. If the variable is a base class or interface that does not implement the Observable* interface, the variables will not be observed!
When there are different layout files for various configurations (e.g. landscape or portrait), the variables will be combined. There must not be conflicting variable definitions between these layout files.
The generated binding class will have a setter and getter for each of the
described variables. The variables will take the default Java values until
the setter is called — null
for reference types,
0
for int
, false
for
boolean
, etc.
A special variable named context
is generated for use in binding
expressions as needed. The value for context
is the
Context
from the root View's {@link android.view.View#getContext}.
The context
variable will be overridden by an explicit variable
declaration with that name.
By default, a Binding class is generated based on the name of the layout
file, starting it with upper-case, removing underscores ( _ ) and
capitalizing the following letter and then suffixing "Binding". This class
will be placed in a databinding package under the module package. For
example, the layout file contact_item.xml
will generate
ContactItemBinding
. If the module package is
com.example.my.app
, then it will be placed in
com.example.my.app.databinding
.
Binding classes may be renamed or placed in different packages by adjusting
the class
attribute of the
data
element. For example:
<data class="ContactItem"> ... </data>
This generates the binding class as ContactItem
in the
databinding package in the module package. If the class should be generated
in a different package within the module package, it may be prefixed with
".":
<data class=".ContactItem"> ... </data>
In this case, ContactItem
is generated in the module package
directly. Any package may be used if the full package is provided:
<data class="com.example.ContactItem"> ... </data>
Variables may be passed into an included layout's binding from the containing layout by using the application namespace and the variable name in an attribute:
<?xml version="1.0" encoding="utf-8"?> <layout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:bind="http://schemas.android.com/apk/res-auto"> <data> <variable name="user" type="com.example.User"/> </data> <LinearLayout android:orientation="vertical" android:layout_width="match_parent" android:layout_height="match_parent"> <include layout="@layout/name" bind:user="@{user}"/> <include layout="@layout/contact" bind:user="@{user}"/> </LinearLayout> </layout>
Here, there must be a user
variable in both the
name.xml
and contact.xml
layout files.
Data binding does not support include as a direct child of a merge element. For example, the following layout is not supported:
<?xml version="1.0" encoding="utf-8"?> <layout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:bind="http://schemas.android.com/apk/res-auto"> <data> <variable name="user" type="com.example.User"/> </data> <merge> <include layout="@layout/name" bind:user="@{user}"/> <include layout="@layout/contact" bind:user="@{user}"/> </merge> </layout>
The expression language looks a lot like a Java expression. These are the same:
+ - / * %
+
&& ||
& | ^
+ - ! ~
>> >>> <<
== > < >= <=
instanceof
()
null
[]
?:
Examples:
android:text="@{String.valueOf(index + 1)}" android:visibility="@{age < 13 ? View.GONE : View.VISIBLE}" android:transitionName='@{"image_" + id}'
A few operations are missing from the expression syntax that you can use in Java.
this
super
new
The null coalescing operator (??
) chooses the
left operand if it is not null or the right if it is null.
android:text="@{user.displayName ?? user.lastName}"
This is functionally equivalent to:
android:text="@{user.displayName != null ? user.displayName : user.lastName}"
The first was already discussed in the Writing your first data binding expressions above: short form JavaBean references. When an expression references a property on a class, it uses the same format for fields, getters, and ObservableFields.
android:text="@{user.lastName}"
Generated data binding code automatically checks for nulls and avoid null
pointer exceptions. For example, in the expression
@{user.name}
, if user
is null,
user.name
will be assigned its default value (null). If you were
referencing user.age
, where age is an int
, then it
would default to 0.
Common collections: arrays, lists, sparse lists, and maps, may be accessed
using the []
operator for convenience.
<data> <import type="android.util.SparseArray"/> <import type="java.util.Map"/> <import type="java.util.List"/> <variable name="list" type="List<String>"/> <variable name="sparse" type="SparseArray<String>"/> <variable name="map" type="Map<String, String>"/> <variable name="index" type="int"/> <variable name="key" type="String"/> </data> … android:text="@{list[index]}" … android:text="@{sparse[index]}" … android:text="@{map[key]}"
When using single quotes around the attribute value, it is easy to use double quotes in the expression:
android:text='@{map["firstName"]}'
It is also possible to use double quotes to surround the attribute value. When doing so, String literals should either use the ' or back quote (`).
android:text="@{map[`firstName`}" android:text="@{map['firstName']}"
It is possible to access resources as part of expressions using the normal syntax:
android:padding="@{large? @dimen/largePadding : @dimen/smallPadding}"
Format strings and plurals may be evaluated by providing parameters:
android:text="@{@string/nameFormat(firstName, lastName)}" android:text="@{@plurals/banana(bananaCount)}"
When a plural takes multiple parameters, all parameters should be passed:
Have an orange Have %d oranges android:text="@{@plurals/orange(orangeCount, orangeCount)}"
Some resources require explicit type evaluation.
Type | Normal Reference | Expression Reference |
---|---|---|
String[] | @array | @stringArray |
int[] | @array | @intArray |
TypedArray | @array | @typedArray |
Animator | @animator | @animator |
StateListAnimator | @animator | @stateListAnimator |
color int
|
@color | @color |
ColorStateList | @color | @colorStateList |
Any plain old Java object (POJO) may be used for data binding, but modifying a POJO will not cause the UI to update. The real power of data binding can be used by giving your data objects the ability to notify when data changes. There are three different data change notification mechanisms, Observable objects, observable fields, and observable collections.
When one of these observable data object is bound to the UI and a property of the data object changes, the UI will be updated automatically.
A class implementing the {@link android.databinding.Observable} interface will allow the binding to attach a single listener to a bound object to listen for changes of all properties on that object.
The {@link android.databinding.Observable} interface has a mechanism to add and remove listeners, but notifying is up to the developer. To make development easier, a base class, {@link android.databinding.BaseObservable}, was created to implement the listener registration mechanism. The data class implementer is still responsible for notifying when the properties change. This is done by assigning a {@link android.databinding.Bindable} annotation to the getter and notifying in the setter.
private static class User extends BaseObservable { private String firstName; private String lastName; @Bindable public String getFirstName() { return this.firstName; } @Bindable public String getLastName() { return this.lastName; } public void setFirstName(String firstName) { this.firstName = firstName; notifyPropertyChanged(BR.firstName); } public void setLastName(String lastName) { this.lastName = lastName; notifyPropertyChanged(BR.lastName); } }
The {@link android.databinding.Bindable} annotation generates an entry in the BR class file during compilation. The BR class file will be generated in the module package. If the base class for data classes cannot be changed, the {@link android.databinding.Observable} interface may be implemented using the convenient {@link android.databinding.PropertyChangeRegistry} to store and notify listeners efficiently.
A little work is involved in creating {@link android.databinding.Observable} classes, so
developers who want to save time or have few properties may use
{@link android.databinding.ObservableField} and its siblings
{@link android.databinding.ObservableBoolean},
{@link android.databinding.ObservableByte},
{@link android.databinding.ObservableChar},
{@link android.databinding.ObservableShort},
{@link android.databinding.ObservableInt},
{@link android.databinding.ObservableLong},
{@link android.databinding.ObservableFloat},
{@link android.databinding.ObservableDouble}, and
{@link android.databinding.ObservableParcelable}.
ObservableFields
are self-contained observable objects that have a single
field. The primitive versions avoid boxing and unboxing during access operations.
To use, create a public final field in the data class:
private static class User { public final ObservableField<String> firstName = new ObservableField<>(); public final ObservableField<String> lastName = new ObservableField<>(); public final ObservableInt age = new ObservableInt(); }
That's it! To access the value, use the set and get accessor methods:
user.firstName.set("Google"); int age = user.age.get();
Some applications use more dynamic structures to hold data. Observable collections allow keyed access to these data objects. {@link android.databinding.ObservableArrayMap} is useful when the key is a reference type, such as String.
ObservableArrayMap<String, Object> user = new ObservableArrayMap<>(); user.put("firstName", "Google"); user.put("lastName", "Inc."); user.put("age", 17);
In the layout, the map may be accessed through the String keys:
<data> <import type="android.databinding.ObservableMap"/> <variable name="user" type="ObservableMap<String, Object>"/> </data> … <TextView android:text='@{user["lastName"]}' android:layout_width="wrap_content" android:layout_height="wrap_content"/> <TextView android:text='@{String.valueOf(1 + (Integer)user["age"])}' android:layout_width="wrap_content" android:layout_height="wrap_content"/>
{@link android.databinding.ObservableArrayList} is useful when the key is an integer:
ObservableArrayList<Object> user = new ObservableArrayList<>(); user.add("Google"); user.add("Inc."); user.add(17);
In the layout, the list may be accessed through the indices:
<data> <import type="android.databinding.ObservableList"/> <import type="com.example.my.app.Fields"/> <variable name="user" type="ObservableList<Object>"/> </data> … <TextView android:text='@{user[Fields.LAST_NAME]}' android:layout_width="wrap_content" android:layout_height="wrap_content"/> <TextView android:text='@{String.valueOf(1 + (Integer)user[Fields.AGE])}' android:layout_width="wrap_content" android:layout_height="wrap_content"/>
The generated binding class links the layout variables with the Views within the layout. As discussed earlier, the name and package of the Binding may be customized. The Generated binding classes all extend {@link android.databinding.ViewDataBinding}.
The binding should be created soon after inflation to ensure that the View hierarchy is not disturbed prior to binding to the Views with expressions within the layout. There are a few ways to bind to a layout. The most common is to use the static methods on the Binding class.The inflate method inflates the View hierarchy and binds to it all it one step. There is a simpler version that only takes a {@link android.view.LayoutInflater} and one that takes a {@link android.view.ViewGroup} as well:
MyLayoutBinding binding = MyLayoutBinding.inflate(layoutInflater); MyLayoutBinding binding = MyLayoutBinding.inflate(layoutInflater, viewGroup, false);
If the layout was inflated using a different mechanism, it may be bound separately:
MyLayoutBinding binding = MyLayoutBinding.bind(viewRoot);
Sometimes the binding cannot be known in advance. In such cases, the binding can be created using the {@link android.databinding.DataBindingUtil} class:
ViewDataBinding binding = DataBindingUtil.inflate(LayoutInflater, layoutId, parent, attachToParent); ViewDataBinding binding = DataBindingUtil.bindTo(viewRoot, layoutId);
A public final field will be generated for each View with an ID in the layout. The binding does a single pass on the View hierarchy, extracting the Views with IDs. This mechanism can be faster than calling findViewById for several Views. For example:
<layout xmlns:android="http://schemas.android.com/apk/res/android"> <data> <variable name="user" type="com.example.User"/> </data> <LinearLayout android:orientation="vertical" android:layout_width="match_parent" android:layout_height="match_parent"> <TextView android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="@{user.firstName}" android:id="@+id/firstName"/> <TextView android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="@{user.lastName}" android:id="@+id/lastName"/> </LinearLayout> </layout>
Will generate a binding class with:
public final TextView firstName; public final TextView lastName;
IDs are not nearly as necessary as without data binding, but there are still some instances where access to Views are still necessary from code.
Each variable will be given accessor methods.
<data> <import type="android.graphics.drawable.Drawable"/> <variable name="user" type="com.example.User"/> <variable name="image" type="Drawable"/> <variable name="note" type="String"/> </data>
will generate setters and getters in the binding:
public abstract com.example.User getUser(); public abstract void setUser(com.example.User user); public abstract Drawable getImage(); public abstract void setImage(Drawable image); public abstract String getNote(); public abstract void setNote(String note);
{@link android.view.ViewStub}s are a little different from normal Views. They start off invisible and when they either are made visible or are explicitly told to inflate, they replace themselves in the layout by inflating another layout.
Because the ViewStub
essentially disappears from the View hierarchy, the View
in the binding object must also disappear to allow collection. Because the
Views are final, a {@link android.databinding.ViewStubProxy} object takes the place of the
ViewStub
, giving the developer access to the ViewStub when it exists and also
access to the inflated View hierarchy when the ViewStub
has been inflated.
When inflating another layout, a binding must be established for the new
layout. Therefore, the ViewStubProxy
must listen to the ViewStub
's
{@link android.view.ViewStub.OnInflateListener} and establish the binding at that time. Since
only one can exist, the ViewStubProxy
allows the developer to set an
OnInflateListener
on it that it will call after establishing the binding.
At times, the specific binding class won't be known. For example, a {@link android.support.v7.widget.RecyclerView.Adapter} operating against arbitrary layouts won't know the specific binding class. It still must assign the binding value during the {@link android.support.v7.widget.RecyclerView.Adapter#onBindViewHolder}.
In this example, all layouts that the RecyclerView binds to have an "item"
variable. The BindingHolder
has a getBinding
method returning the
{@link android.databinding.ViewDataBinding} base.
public void onBindViewHolder(BindingHolder holder, int position) { final T item = mItems.get(position); holder.getBinding().setVariable(BR.item, item); holder.getBinding().executePendingBindings(); }
When a variable or observable changes, the binding will be scheduled to change before the next frame. There are times, however, when binding must be executed immediately. To force execution, use the {@link android.databinding.ViewDataBinding#executePendingBindings()} method.
You can change your data model in a background thread as long as it is not a collection. Data binding will localize each variable / field while evaluating to avoid any concurrency issues.
Whenever a bound value changes, the generated binding class must call a setter method on the View with the binding expression. The data binding framework has ways to customize which method to call to set the value.
For example, an expression associated with TextView's attribute
android:text
will look for a setText(String).
If the expression returns an int, data binding will search for a setText(int)
method. Be careful to have the expression return the correct type, casting if
necessary. Note that data binding will work even if no attribute exists with
the given name. You can then easily "create" attributes for any setter by
using data binding. For example, support DrawerLayout doesn't have any
attributes, but plenty of setters. You can use the automatic setters to use
one of these.
<android.support.v4.widget.DrawerLayout android:layout_width="wrap_content" android:layout_height="wrap_content" app:scrimColor="@{@color/scrim}" app:drawerListener="@{fragment.drawerListener}"/>
Some attributes have setters that don't match by name. For these
methods, an attribute may be associated with the setter through
{@link android.databinding.BindingMethods} annotation. This must be associated with
a class and contains {@link android.databinding.BindingMethod} annotations, one for
each renamed method. For example, the android:tint
attribute
is really associated with {@link android.widget.ImageView#setImageTintList}, not
setTint
.
@BindingMethods({ @BindingMethod(type = "android.widget.ImageView", attribute = "android:tint", method = "setImageTintList"), })
It is unlikely that developers will need to rename setters; the android framework attributes have already been implemented.
Some attributes need custom binding logic. For example, there is no
associated setter for the android:paddingLeft
attribute. Instead, setPadding(left, top, right, bottom)
exists.
A static binding adapter method with the {@link android.databinding.BindingAdapter}
annotation allows the developer to customize how a setter for an attribute is
called.
The android attributes have already had BindingAdapter
s created.
For example, here is the one for paddingLeft
:
@BindingAdapter("android:paddingLeft") public static void setPaddingLeft(View view, int padding) { view.setPadding(padding, view.getPaddingTop(), view.getPaddingRight(), view.getPaddingBottom()); }
Binding adapters are useful for other types of customization. For example, a custom loader can be called off-thread to load an image.
Developer-created binding adapters will override the data binding default adapters when there is a conflict.
You can also have adapters that receive multiple parameters.
@BindingAdapter({"bind:imageUrl", "bind:error"}) public static void loadImage(ImageView view, String url, Drawable error) { Picasso.with(view.getContext()).load(url).error(error).into(view); }
<ImageView app:imageUrl="@{venue.imageUrl}" app:error="@{@drawable/venueError}"/>
This adapter will be called if both imageUrl and error are used for an ImageView and imageUrl is a string and error is a drawable.
Binding adapter methods may optionally take the old values in their handlers. A method taking old and new values should have all old values for the attributes come first, followed by the new values:
@BindingAdapter("android:paddingLeft") public static void setPaddingLeft(View view, int oldPadding, int newPadding) { if (oldPadding != newPadding) { view.setPadding(newPadding, view.getPaddingTop(), view.getPaddingRight(), view.getPaddingBottom()); } }
Event handlers may only be used with interfaces or abstract classes with one abstract method. For example:
@BindingAdapter("android:onLayoutChange") public static void setOnLayoutChangeListener(View view, View.OnLayoutChangeListener oldValue, View.OnLayoutChangeListener newValue) { if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) { if (oldValue != null) { view.removeOnLayoutChangeListener(oldValue); } if (newValue != null) { view.addOnLayoutChangeListener(newValue); } } }
When a listener has multiple methods, it must be split into multiple listeners. For example, {@link android.view.View.OnAttachStateChangeListener} has two methods: {@link android.view.View.OnAttachStateChangeListener#onViewAttachedToWindow onViewAttachedToWindow()} and {@link android.view.View.OnAttachStateChangeListener#onViewDetachedFromWindow onViewDetachedFromWindow()}. We must then create two interfaces to differentiate the attributes and handlers for them.
@TargetApi(VERSION_CODES.HONEYCOMB_MR1) public interface OnViewDetachedFromWindow { void onViewDetachedFromWindow(View v); } @TargetApi(VERSION_CODES.HONEYCOMB_MR1) public interface OnViewAttachedToWindow { void onViewAttachedToWindow(View v); }
Because changing one listener will also affect the other, we must have three different binding adapters, one for each attribute and one for both, should they both be set.
@BindingAdapter("android:onViewAttachedToWindow") public static void setListener(View view, OnViewAttachedToWindow attached) { setListener(view, null, attached); } @BindingAdapter("android:onViewDetachedFromWindow") public static void setListener(View view, OnViewDetachedFromWindow detached) { setListener(view, detached, null); } @BindingAdapter({"android:onViewDetachedFromWindow", "android:onViewAttachedToWindow"}) public static void setListener(View view, final OnViewDetachedFromWindow detach, final OnViewAttachedToWindow attach) { if (VERSION.SDK_INT >= VERSION_CODES.HONEYCOMB_MR1) { final OnAttachStateChangeListener newListener; if (detach == null && attach == null) { newListener = null; } else { newListener = new OnAttachStateChangeListener() { @Override public void onViewAttachedToWindow(View v) { if (attach != null) { attach.onViewAttachedToWindow(v); } } @Override public void onViewDetachedFromWindow(View v) { if (detach != null) { detach.onViewDetachedFromWindow(v); } } }; } final OnAttachStateChangeListener oldListener = ListenerUtil.trackListener(view, newListener, R.id.onAttachStateChangeListener); if (oldListener != null) { view.removeOnAttachStateChangeListener(oldListener); } if (newListener != null) { view.addOnAttachStateChangeListener(newListener); } } }
The above example is slightly more complicated than normal because View uses add and remove
for the listener instead of a set method for {@link android.view.View.OnAttachStateChangeListener}.
The android.databinding.adapters.ListenerUtil
class helps keep track of the previous
listeners so that they may be removed in the Binding Adaper.
By annotating the interfaces OnViewDetachedFromWindow
and
OnViewAttachedToWindow
with
@TargetApi(VERSION_CODES.HONEYCOMB_MR1)
, the data binding code
generator knows that the listener should only be generated when running on Honeycomb MR1
and new devices, the same version supported by
{@link android.view.View#addOnAttachStateChangeListener}.
When an Object is returned from a binding expression, a setter will be chosen from the automatic, renamed, and custom setters. The Object will be cast to a parameter type of the chosen setter.
This is a convenience for those using ObservableMaps to hold data. for example:
<TextView android:text='@{userMap["lastName"]}' android:layout_width="wrap_content" android:layout_height="wrap_content"/>
The userMap
returns an Object and that Object will be automatically cast to
parameter type found in the setter setText(CharSequence)
. When there
may be confusion about the parameter type, the developer will need
to cast in the expression.
Sometimes conversions should be automatic between specific types. For example, when setting the background:
<View android:background="@{isError ? @color/red : @color/white}" android:layout_width="wrap_content" android:layout_height="wrap_content"/>
Here, the background takes a Drawable
, but the color is an
integer. Whenever a Drawable
is expected and an integer is
returned, the int
should be converted to a
ColorDrawable
. This conversion is done using a static method
with a BindingConversion annotation:
@BindingConversion public static ColorDrawable convertColorToDrawable(int color) { return new ColorDrawable(color); }
Note that conversions only happen at the setter level, so it is not allowed to mix types like this:
<View android:background="@{isError ? @drawable/error : @color/white}" android:layout_width="wrap_content" android:layout_height="wrap_content"/>
Android Studio supports many of the code editing features for data binding code. For example, it supports the following features for data binding expressions:
Note: Arrays and a generic type, such as the {@link android.databinding.Observable} class, might display errors when there are no errors.
The Preview pane displays default values for data binding expressions if
provided. In the following
example excerpt of an element from a layout XML file, the Preview pane displays
the {@code PLACEHOLDER} default text value in the TextView
.
<TextView android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="@{user.firstName, default=PLACEHOLDER}"/>
If you need to display a default value during the design phase of your project, you can also use tools attributes instead of default expression values, as described in Designtime Layout Attributes.