• Home
  • Raw
  • Download

Lines Matching refs:fX

20     if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {  in align()
21 dstPt->fX = fPts[endIndex].fX; in align()
35 double calcPos = (&cubicAtT.fX)[xAxis]; in binarySearch()
41 if (approximately_equal_half(lessPt.fX, cubicAtT.fX) in binarySearch()
45 double lessDist = (&lessPt.fX)[xAxis] - axisIntercept; in binarySearch()
60 if (approximately_equal_half(morePt.fX, cubicAtT.fX) in binarySearch()
64 double moreDist = (&morePt.fX)[xAxis] - axisIntercept; in binarySearch()
72 calcPos = (&cubicAtT.fX)[xAxis]; in binarySearch()
110 dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2; in chopAt()
112 dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4; in chopAt()
114 dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8; in chopAt()
116 dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4; in chopAt()
118 dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2; in chopAt()
123 interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t); in chopAt()
139 return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX) in endsAreExtremaInXOrY()
140 && between(fPts[0].fX, fPts[2].fX, fPts[3].fX)) in endsAreExtremaInXOrY()
164 double origX = endPt[0]->fX; in hullIntersects()
166 double adj = endPt[1]->fX - origX; in hullIntersects()
170 double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; in hullIntersects()
172 double sign2 = (fPts[oddMan2].fY - origY) * adj - (fPts[oddMan2].fX - origX) * opp; in hullIntersects()
185 double test = (pts[n].fY - origY) * adj - (pts[n].fX - origX) * opp; in hullIntersects()
219 double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), in isLinear()
220 fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY); in isLinear()
221 double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), in isLinear()
222 fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY); in isLinear()
292 return precisely_between(fPts[0].fX, fPts[1].fX, fPts[3].fX) in monotonicInX()
293 && precisely_between(fPts[0].fX, fPts[2].fX, fPts[3].fX); in monotonicInX()
473 SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) }; in dxdyAtT()
474 if (result.fX == 0 && result.fY == 0) { in dxdyAtT()
483 if (result.fX == 0 && result.fY == 0 && zero_or_one(t)) { in dxdyAtT()
492 double Ax = fPts[1].fX - fPts[0].fX; in findInflections()
494 double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX; in findInflections()
496 double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX; in findInflections()
545 formulate_F1DotF2(&fPts[0].fX, coeffX); in findMaxCurvature()
567 SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX, in ptAtT()
638 double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1); in subDivide()
640 double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3); in subDivide()
642 double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3); in subDivide()
644 double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2); in subDivide()
650 /* bx = */ dst[1].fX = (mx * 2 - nx) / 18; in subDivide()
652 /* cx = */ dst[2].fX = (nx * 2 - mx) / 18; in subDivide()
671 if (AlmostBequalUlps(dst[0].fX, a.fX)) { in subDivide()
672 dst[0].fX = a.fX; in subDivide()
677 if (AlmostBequalUlps(dst[1].fX, d.fX)) { in subDivide()
678 dst[1].fX = d.fX; in subDivide()
692 if (topPt->fY > mid.fY || (topPt->fY == mid.fY && topPt->fX > mid.fX)) { in top()