// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: strandmark@google.com (Petter Strandmark) // // Denoising using Fields of Experts and the Ceres minimizer. // // Note that for good denoising results the weighting between the data term // and the Fields of Experts term needs to be adjusted. This is discussed // in [1]. This program assumes Gaussian noise. The noise model can be changed // by substituing another function for QuadraticCostFunction. // // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of // Computer Vision, 82(2):205--229, 2009. #include #include #include #include #include #include #include "ceres/ceres.h" #include "gflags/gflags.h" #include "glog/logging.h" #include "fields_of_experts.h" #include "pgm_image.h" DEFINE_string(input, "", "File to which the output image should be written"); DEFINE_string(foe_file, "", "FoE file to use"); DEFINE_string(output, "", "File to which the output image should be written"); DEFINE_double(sigma, 20.0, "Standard deviation of noise"); DEFINE_bool(verbose, false, "Prints information about the solver progress."); DEFINE_bool(line_search, false, "Use a line search instead of trust region " "algorithm."); namespace ceres { namespace examples { // This cost function is used to build the data term. // // f_i(x) = a * (x_i - b)^2 // class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> { public: QuadraticCostFunction(double a, double b) : sqrta_(std::sqrt(a)), b_(b) {} virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { const double x = parameters[0][0]; residuals[0] = sqrta_ * (x - b_); if (jacobians != NULL && jacobians[0] != NULL) { jacobians[0][0] = sqrta_; } return true; } private: double sqrta_, b_; }; // Creates a Fields of Experts MAP inference problem. void CreateProblem(const FieldsOfExperts& foe, const PGMImage& image, Problem* problem, PGMImage* solution) { // Create the data term CHECK_GT(FLAGS_sigma, 0.0); const double coefficient = 1 / (2.0 * FLAGS_sigma * FLAGS_sigma); for (unsigned index = 0; index < image.NumPixels(); ++index) { ceres::CostFunction* cost_function = new QuadraticCostFunction(coefficient, image.PixelFromLinearIndex(index)); problem->AddResidualBlock(cost_function, NULL, solution->MutablePixelFromLinearIndex(index)); } // Create Ceres cost and loss functions for regularization. One is needed for // each filter. std::vector loss_function(foe.NumFilters()); std::vector cost_function(foe.NumFilters()); for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) { loss_function[alpha_index] = foe.NewLossFunction(alpha_index); cost_function[alpha_index] = foe.NewCostFunction(alpha_index); } // Add FoE regularization for each patch in the image. for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) { for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) { // Build a vector with the pixel indices of this patch. std::vector pixels; const std::vector& x_delta_indices = foe.GetXDeltaIndices(); const std::vector& y_delta_indices = foe.GetYDeltaIndices(); for (int i = 0; i < foe.NumVariables(); ++i) { double* pixel = solution->MutablePixel(x + x_delta_indices[i], y + y_delta_indices[i]); pixels.push_back(pixel); } // For this patch with coordinates (x, y), we will add foe.NumFilters() // terms to the objective function. for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) { problem->AddResidualBlock(cost_function[alpha_index], loss_function[alpha_index], pixels); } } } } // Solves the FoE problem using Ceres and post-processes it to make sure the // solution stays within [0, 255]. void SolveProblem(Problem* problem, PGMImage* solution) { // These parameters may be experimented with. For example, ceres::DOGLEG tends // to be faster for 2x2 filters, but gives solutions with slightly higher // objective function value. ceres::Solver::Options options; options.max_num_iterations = 100; if (FLAGS_verbose) { options.minimizer_progress_to_stdout = true; } if (FLAGS_line_search) { options.minimizer_type = ceres::LINE_SEARCH; } options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; options.function_tolerance = 1e-3; // Enough for denoising. ceres::Solver::Summary summary; ceres::Solve(options, problem, &summary); if (FLAGS_verbose) { std::cout << summary.FullReport() << "\n"; } // Make the solution stay in [0, 255]. for (int x = 0; x < solution->width(); ++x) { for (int y = 0; y < solution->height(); ++y) { *solution->MutablePixel(x, y) = std::min(255.0, std::max(0.0, solution->Pixel(x, y))); } } } } // namespace examples } // namespace ceres int main(int argc, char** argv) { using namespace ceres::examples; std::string usage("This program denoises an image using Ceres. Sample usage:\n"); usage += argv[0]; usage += " --input= --foe_file="; google::SetUsageMessage(usage); google::ParseCommandLineFlags(&argc, &argv, true); google::InitGoogleLogging(argv[0]); if (FLAGS_input.empty()) { std::cerr << "Please provide an image file name.\n"; return 1; } if (FLAGS_foe_file.empty()) { std::cerr << "Please provide a Fields of Experts file name.\n"; return 1; } // Load the Fields of Experts filters from file. FieldsOfExperts foe; if (!foe.LoadFromFile(FLAGS_foe_file)) { std::cerr << "Loading \"" << FLAGS_foe_file << "\" failed.\n"; return 2; } // Read the images PGMImage image(FLAGS_input); if (image.width() == 0) { std::cerr << "Reading \"" << FLAGS_input << "\" failed.\n"; return 3; } PGMImage solution(image.width(), image.height()); solution.Set(0.0); ceres::Problem problem; CreateProblem(foe, image, &problem, &solution); SolveProblem(&problem, &solution); if (!FLAGS_output.empty()) { CHECK(solution.WriteToFile(FLAGS_output)) << "Writing \"" << FLAGS_output << "\" failed."; } return 0; }