//===-- DNB.cpp -------------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Created by Greg Clayton on 3/23/07. // //===----------------------------------------------------------------------===// #include "DNB.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MacOSX/MachProcess.h" #include "MacOSX/MachTask.h" #include "CFString.h" #include "DNBLog.h" #include "DNBDataRef.h" #include "DNBThreadResumeActions.h" #include "DNBTimer.h" #include "CFBundle.h" typedef std::shared_ptr MachProcessSP; typedef std::map ProcessMap; typedef ProcessMap::iterator ProcessMapIter; typedef ProcessMap::const_iterator ProcessMapConstIter; size_t GetAllInfos (std::vector& proc_infos); static size_t GetAllInfosMatchingName (const char *process_name, std::vector& matching_proc_infos); //---------------------------------------------------------------------- // A Thread safe singleton to get a process map pointer. // // Returns a pointer to the existing process map, or a pointer to a // newly created process map if CAN_CREATE is non-zero. //---------------------------------------------------------------------- static ProcessMap* GetProcessMap(bool can_create) { static ProcessMap* g_process_map_ptr = NULL; if (can_create && g_process_map_ptr == NULL) { static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER; PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex); if (g_process_map_ptr == NULL) g_process_map_ptr = new ProcessMap; } return g_process_map_ptr; } //---------------------------------------------------------------------- // Add PID to the shared process pointer map. // // Return non-zero value if we succeed in adding the process to the map. // The only time this should fail is if we run out of memory and can't // allocate a ProcessMap. //---------------------------------------------------------------------- static nub_bool_t AddProcessToMap (nub_process_t pid, MachProcessSP& procSP) { ProcessMap* process_map = GetProcessMap(true); if (process_map) { process_map->insert(std::make_pair(pid, procSP)); return true; } return false; } //---------------------------------------------------------------------- // Remove the shared pointer for PID from the process map. // // Returns the number of items removed from the process map. //---------------------------------------------------------------------- static size_t RemoveProcessFromMap (nub_process_t pid) { ProcessMap* process_map = GetProcessMap(false); if (process_map) { return process_map->erase(pid); } return 0; } //---------------------------------------------------------------------- // Get the shared pointer for PID from the existing process map. // // Returns true if we successfully find a shared pointer to a // MachProcess object. //---------------------------------------------------------------------- static nub_bool_t GetProcessSP (nub_process_t pid, MachProcessSP& procSP) { ProcessMap* process_map = GetProcessMap(false); if (process_map != NULL) { ProcessMapIter pos = process_map->find(pid); if (pos != process_map->end()) { procSP = pos->second; return true; } } procSP.reset(); return false; } static void * waitpid_thread (void *arg) { const pid_t pid = (pid_t)(intptr_t)arg; int status; while (1) { pid_t child_pid = waitpid(pid, &status, 0); DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno); if (child_pid < 0) { if (errno == EINTR) continue; break; } else { if (WIFSTOPPED(status)) { continue; } else// if (WIFEXITED(status) || WIFSIGNALED(status)) { DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): setting exit status for pid = %i to %i", child_pid, status); DNBProcessSetExitStatus (child_pid, status); return NULL; } } } // We should never exit as long as our child process is alive, so if we // do something else went wrong and we should exit... DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid); DNBProcessSetExitStatus (pid, -1); return NULL; } static bool spawn_waitpid_thread (pid_t pid) { pthread_t thread = THREAD_NULL; ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid); if (thread != THREAD_NULL) { ::pthread_detach (thread); return true; } return false; } nub_process_t DNBProcessLaunch (const char *path, char const *argv[], const char *envp[], const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this const char *stdin_path, const char *stdout_path, const char *stderr_path, bool no_stdio, nub_launch_flavor_t launch_flavor, int disable_aslr, char *err_str, size_t err_len) { DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %llu) called...", __FUNCTION__, path, argv, envp, working_directory, stdin_path, stdout_path, stderr_path, no_stdio, launch_flavor, disable_aslr, err_str, (uint64_t)err_len); if (err_str && err_len > 0) err_str[0] = '\0'; struct stat path_stat; if (::stat(path, &path_stat) == -1) { char stat_error[256]; ::strerror_r (errno, stat_error, sizeof(stat_error)); snprintf(err_str, err_len, "%s (%s)", stat_error, path); return INVALID_NUB_PROCESS; } MachProcessSP processSP (new MachProcess); if (processSP.get()) { DNBError launch_err; pid_t pid = processSP->LaunchForDebug (path, argv, envp, working_directory, stdin_path, stdout_path, stderr_path, no_stdio, launch_flavor, disable_aslr, launch_err); if (err_str) { *err_str = '\0'; if (launch_err.Fail()) { const char *launch_err_str = launch_err.AsString(); if (launch_err_str) { strncpy(err_str, launch_err_str, err_len-1); err_str[err_len-1] = '\0'; // Make sure the error string is terminated } } } DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid); if (pid != INVALID_NUB_PROCESS) { // Spawn a thread to reap our child inferior process... spawn_waitpid_thread (pid); if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL) { // We failed to get the task for our process ID which is bad. // Kill our process otherwise it will be stopped at the entry // point and get reparented to someone else and never go away. DNBLog ("Could not get task port for process, sending SIGKILL and exiting."); kill (SIGKILL, pid); if (err_str && err_len > 0) { if (launch_err.AsString()) { ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString()); } else { ::snprintf (err_str, err_len, "failed to get the task for process %i", pid); } } } else { bool res = AddProcessToMap(pid, processSP); assert(res && "Couldn't add process to map!"); return pid; } } } return INVALID_NUB_PROCESS; } nub_process_t DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len) { if (err_str && err_len > 0) err_str[0] = '\0'; std::vector matching_proc_infos; size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos); if (num_matching_proc_infos == 0) { DNBLogError ("error: no processes match '%s'\n", name); return INVALID_NUB_PROCESS; } else if (num_matching_proc_infos > 1) { DNBLogError ("error: %llu processes match '%s':\n", (uint64_t)num_matching_proc_infos, name); size_t i; for (i=0; i 0) err_str[0] = '\0'; pid_t pid = INVALID_NUB_PROCESS; MachProcessSP processSP(new MachProcess); if (processSP.get()) { DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid); pid = processSP->AttachForDebug (attach_pid, err_str, err_len); if (pid != INVALID_NUB_PROCESS) { bool res = AddProcessToMap(pid, processSP); assert(res && "Couldn't add process to map!"); spawn_waitpid_thread(pid); } } while (pid != INVALID_NUB_PROCESS) { // Wait for process to start up and hit entry point DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...", __FUNCTION__, pid); nub_event_t set_events = DNBProcessWaitForEvents (pid, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, timeout); DNBLogThreadedIf (LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x", __FUNCTION__, pid, set_events); if (set_events == 0) { if (err_str && err_len > 0) snprintf(err_str, err_len, "operation timed out"); pid = INVALID_NUB_PROCESS; } else { if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged)) { nub_state_t pid_state = DNBProcessGetState (pid); DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s", __FUNCTION__, pid, DNBStateAsString(pid_state)); switch (pid_state) { default: case eStateInvalid: case eStateUnloaded: case eStateAttaching: case eStateLaunching: case eStateSuspended: break; // Ignore case eStateRunning: case eStateStepping: // Still waiting to stop at entry point... break; case eStateStopped: case eStateCrashed: return pid; case eStateDetached: case eStateExited: if (err_str && err_len > 0) snprintf(err_str, err_len, "process exited"); return INVALID_NUB_PROCESS; } } DNBProcessResetEvents(pid, set_events); } } return INVALID_NUB_PROCESS; } size_t GetAllInfos (std::vector& proc_infos) { size_t size = 0; int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL }; u_int namelen = sizeof(name)/sizeof(int); int err; // Try to find out how many processes are around so we can // size the buffer appropriately. sysctl's man page specifically suggests // this approach, and says it returns a bit larger size than needed to // handle any new processes created between then and now. err = ::sysctl (name, namelen, NULL, &size, NULL, 0); if ((err < 0) && (err != ENOMEM)) { proc_infos.clear(); perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)"); return 0; } // Increase the size of the buffer by a few processes in case more have // been spawned proc_infos.resize (size / sizeof(struct kinfo_proc)); size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize... err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0); if (err < 0) { proc_infos.clear(); return 0; } // Trim down our array to fit what we actually got back proc_infos.resize(size / sizeof(struct kinfo_proc)); return proc_infos.size(); } static size_t GetAllInfosMatchingName(const char *full_process_name, std::vector& matching_proc_infos) { matching_proc_infos.clear(); if (full_process_name && full_process_name[0]) { // We only get the process name, not the full path, from the proc_info. So just take the // base name of the process name... const char *process_name; process_name = strrchr (full_process_name, '/'); if (process_name == NULL) process_name = full_process_name; else process_name++; const int process_name_len = strlen(process_name); std::vector proc_infos; const size_t num_proc_infos = GetAllInfos(proc_infos); if (num_proc_infos > 0) { uint32_t i; for (i=0; i MAXCOMLEN) { // We found a matching process name whose first MAXCOMLEN // characters match, but there is more to the name than // this. We need to get the full process name. Use proc_pidpath, which will get // us the full path to the executed process. char proc_path_buf[PATH_MAX]; int return_val = proc_pidpath (proc_infos[i].kp_proc.p_pid, proc_path_buf, PATH_MAX); if (return_val > 0) { // Okay, now search backwards from that to see if there is a // slash in the name. Note, even though we got all the args we don't care // because the list data is just a bunch of concatenated null terminated strings // so strrchr will start from the end of argv0. const char *argv_basename = strrchr(proc_path_buf, '/'); if (argv_basename) { // Skip the '/' ++argv_basename; } else { // We didn't find a directory delimiter in the process argv[0], just use what was in there argv_basename = proc_path_buf; } if (argv_basename) { if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0) { matching_proc_infos.push_back(proc_infos[i]); } } } } else { // We found a matching process, add it to our list matching_proc_infos.push_back(proc_infos[i]); } } } } } // return the newly added matches. return matching_proc_infos.size(); } nub_process_t DNBProcessAttachWait (const char *waitfor_process_name, nub_launch_flavor_t launch_flavor, bool ignore_existing, struct timespec *timeout_abstime, useconds_t waitfor_interval, char *err_str, size_t err_len, DNBShouldCancelCallback should_cancel_callback, void *callback_data) { DNBError prepare_error; std::vector exclude_proc_infos; size_t num_exclude_proc_infos; // If the PrepareForAttach returns a valid token, use MachProcess to check // for the process, otherwise scan the process table. const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error); if (prepare_error.Fail()) { DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString()); return INVALID_NUB_PROCESS; } if (attach_token == NULL) { if (ignore_existing) num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos); else num_exclude_proc_infos = 0; } DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name); // Loop and try to find the process by name nub_process_t waitfor_pid = INVALID_NUB_PROCESS; while (waitfor_pid == INVALID_NUB_PROCESS) { if (attach_token != NULL) { nub_process_t pid; pid = MachProcess::CheckForProcess(attach_token); if (pid != INVALID_NUB_PROCESS) { waitfor_pid = pid; break; } } else { // Get the current process list, and check for matches that // aren't in our original list. If anyone wants to attach // to an existing process by name, they should do it with // --attach=PROCNAME. Else we will wait for the first matching // process that wasn't in our exclusion list. std::vector proc_infos; const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos); for (size_t i=0; i 0) snprintf(err_str, err_len, "operation timed out"); DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name); return INVALID_NUB_PROCESS; } } // Call the should cancel callback as well... if (should_cancel_callback != NULL && should_cancel_callback (callback_data)) { DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback."); waitfor_pid = INVALID_NUB_PROCESS; break; } ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again } } if (waitfor_pid != INVALID_NUB_PROCESS) { DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid); waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len); } bool success = waitfor_pid != INVALID_NUB_PROCESS; MachProcess::CleanupAfterAttach (attach_token, success, prepare_error); return waitfor_pid; } nub_bool_t DNBProcessDetach (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->Detach(); } return false; } nub_bool_t DNBProcessKill (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->Kill (); } return false; } nub_bool_t DNBProcessSignal (nub_process_t pid, int signal) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->Signal (signal); } return false; } nub_bool_t DNBProcessIsAlive (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return MachTask::IsValid (procSP->Task().TaskPort()); } return eStateInvalid; } //---------------------------------------------------------------------- // Process and Thread state information //---------------------------------------------------------------------- nub_state_t DNBProcessGetState (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetState(); } return eStateInvalid; } //---------------------------------------------------------------------- // Process and Thread state information //---------------------------------------------------------------------- nub_bool_t DNBProcessGetExitStatus (nub_process_t pid, int* status) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->GetExitStatus(status); } return false; } nub_bool_t DNBProcessSetExitStatus (nub_process_t pid, int status) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetExitStatus(status); return true; } return false; } const char * DNBThreadGetName (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->ThreadGetName(tid); return NULL; } nub_bool_t DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info); return false; } nub_state_t DNBThreadGetState (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->ThreadGetState(tid); } return eStateInvalid; } const char * DNBStateAsString(nub_state_t state) { switch (state) { case eStateInvalid: return "Invalid"; case eStateUnloaded: return "Unloaded"; case eStateAttaching: return "Attaching"; case eStateLaunching: return "Launching"; case eStateStopped: return "Stopped"; case eStateRunning: return "Running"; case eStateStepping: return "Stepping"; case eStateCrashed: return "Crashed"; case eStateDetached: return "Detached"; case eStateExited: return "Exited"; case eStateSuspended: return "Suspended"; } return "nub_state_t ???"; } const char * DNBProcessGetExecutablePath (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->Path(); } return NULL; } nub_size_t DNBProcessGetArgumentCount (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->ArgumentCount(); } return 0; } const char * DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->ArgumentAtIndex (idx); } return NULL; } //---------------------------------------------------------------------- // Execution control //---------------------------------------------------------------------- nub_bool_t DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions) { DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { DNBThreadResumeActions thread_actions (actions, num_actions); // Below we add a default thread plan just in case one wasn't // provided so all threads always know what they were supposed to do if (thread_actions.IsEmpty()) { // No thread plans were given, so the default it to run all threads thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0); } else { // Some thread plans were given which means anything that wasn't // specified should remain stopped. thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0); } return procSP->Resume (thread_actions); } return false; } nub_bool_t DNBProcessHalt (nub_process_t pid) { DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid); MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Signal (SIGSTOP); return false; } // //nub_bool_t //DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step) //{ // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step); // MachProcessSP procSP; // if (GetProcessSP (pid, procSP)) // { // return procSP->Resume(tid, step, 0); // } // return false; //} // //nub_bool_t //DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal) //{ // DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal); // MachProcessSP procSP; // if (GetProcessSP (pid, procSP)) // { // return procSP->Resume(tid, step, signal); // } // return false; //} nub_event_t DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout) { nub_event_t result = 0; MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { if (wait_for_set) result = procSP->Events().WaitForSetEvents(event_mask, timeout); else result = procSP->Events().WaitForEventsToReset(event_mask, timeout); } return result; } void DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) procSP->Events().ResetEvents(event_mask); } // Breakpoints nub_bool_t DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->CreateBreakpoint(addr, size, hardware) != NULL; return false; } nub_bool_t DNBBreakpointClear (nub_process_t pid, nub_addr_t addr) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->DisableBreakpoint(addr, true); return false; // Failed } //---------------------------------------------------------------------- // Watchpoints //---------------------------------------------------------------------- nub_bool_t DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->CreateWatchpoint(addr, size, watch_flags, hardware) != NULL; return false; } nub_bool_t DNBWatchpointClear (nub_process_t pid, nub_addr_t addr) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->DisableWatchpoint(addr, true); return false; // Failed } //---------------------------------------------------------------------- // Return the number of supported hardware watchpoints. //---------------------------------------------------------------------- uint32_t DNBWatchpointGetNumSupportedHWP (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetNumSupportedHardwareWatchpoints(); return 0; } //---------------------------------------------------------------------- // Read memory in the address space of process PID. This call will take // care of setting and restoring permissions and breaking up the memory // read into multiple chunks as required. // // RETURNS: number of bytes actually read //---------------------------------------------------------------------- nub_size_t DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->ReadMemory(addr, size, buf); return 0; } //---------------------------------------------------------------------- // Write memory to the address space of process PID. This call will take // care of setting and restoring permissions and breaking up the memory // write into multiple chunks as required. // // RETURNS: number of bytes actually written //---------------------------------------------------------------------- nub_size_t DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->WriteMemory(addr, size, buf); return 0; } nub_addr_t DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Task().AllocateMemory (size, permissions); return 0; } nub_bool_t DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Task().DeallocateMemory (addr); return 0; } //---------------------------------------------------------------------- // Find attributes of the memory region that contains ADDR for process PID, // if possible, and return a string describing those attributes. // // Returns 1 if we could find attributes for this region and OUTBUF can // be sent to the remote debugger. // // Returns 0 if we couldn't find the attributes for a region of memory at // that address and OUTBUF should not be sent. // // Returns -1 if this platform cannot look up information about memory regions // or if we do not yet have a valid launched process. // //---------------------------------------------------------------------- int DNBProcessMemoryRegionInfo (nub_process_t pid, nub_addr_t addr, DNBRegionInfo *region_info) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Task().GetMemoryRegionInfo (addr, region_info); return -1; } std::string DNBProcessGetProfileData (nub_process_t pid, DNBProfileDataScanType scanType) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->Task().GetProfileData(scanType); return std::string(""); } nub_bool_t DNBProcessSetEnableAsyncProfiling (nub_process_t pid, nub_bool_t enable, uint64_t interval_usec, DNBProfileDataScanType scan_type) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type); return true; } return false; } //---------------------------------------------------------------------- // Formatted output that uses memory and registers from process and // thread in place of arguments. //---------------------------------------------------------------------- nub_size_t DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format) { if (file == NULL) return 0; enum printf_flags { alternate_form = (1 << 0), zero_padding = (1 << 1), negative_field_width = (1 << 2), blank_space = (1 << 3), show_sign = (1 << 4), show_thousands_separator= (1 << 5), }; enum printf_length_modifiers { length_mod_h = (1 << 0), length_mod_hh = (1 << 1), length_mod_l = (1 << 2), length_mod_ll = (1 << 3), length_mod_L = (1 << 4), length_mod_j = (1 << 5), length_mod_t = (1 << 6), length_mod_z = (1 << 7), length_mod_q = (1 << 8), }; nub_addr_t addr = base_addr; char *end_format = (char*)format + strlen(format); char *end = NULL; // For strtoXXXX calls; std::basic_string buf; nub_size_t total_bytes_read = 0; DNBDataRef data; const char *f; for (f = format; *f != '\0' && f < end_format; f++) { char ch = *f; switch (ch) { case '%': { f++; // Skip the '%' character // int min_field_width = 0; // int precision = 0; //uint32_t flags = 0; uint32_t length_modifiers = 0; uint32_t byte_size = 0; uint32_t actual_byte_size = 0; bool is_string = false; bool is_register = false; DNBRegisterValue register_value; int64_t register_offset = 0; nub_addr_t register_addr = INVALID_NUB_ADDRESS; // Create the format string to use for this conversion specification // so we can remove and mprintf specific flags and formatters. std::string fprintf_format("%"); // Decode any flags switch (*f) { case '#': fprintf_format += *f++; break; //flags |= alternate_form; break; case '0': fprintf_format += *f++; break; //flags |= zero_padding; break; case '-': fprintf_format += *f++; break; //flags |= negative_field_width; break; case ' ': fprintf_format += *f++; break; //flags |= blank_space; break; case '+': fprintf_format += *f++; break; //flags |= show_sign; break; case ',': fprintf_format += *f++; break; //flags |= show_thousands_separator;break; case '{': case '[': { // We have a register name specification that can take two forms: // ${regname} or ${regname+offset} // The action is to read the register value and add the signed offset // (if any) and use that as the value to format. // $[regname] or $[regname+offset] // The action is to read the register value and add the signed offset // (if any) and use the result as an address to dereference. The size // of what is dereferenced is specified by the actual byte size that // follows the minimum field width and precision (see comments below). switch (*f) { case '{': case '[': { char open_scope_ch = *f; f++; const char *reg_name = f; size_t reg_name_length = strcspn(f, "+-}]"); if (reg_name_length > 0) { std::string register_name(reg_name, reg_name_length); f += reg_name_length; register_offset = strtoll(f, &end, 0); if (f < end) f = end; if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']')) { fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n"); return total_bytes_read; } else { f++; if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), ®ister_value)) { // Set the address to dereference using the register value plus the offset switch (register_value.info.size) { default: case 0: fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size); return total_bytes_read; case 1: register_addr = register_value.value.uint8 + register_offset; break; case 2: register_addr = register_value.value.uint16 + register_offset; break; case 4: register_addr = register_value.value.uint32 + register_offset; break; case 8: register_addr = register_value.value.uint64 + register_offset; break; case 16: if (open_scope_ch == '[') { fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size); return total_bytes_read; } break; } if (open_scope_ch == '{') { byte_size = register_value.info.size; is_register = true; // value is in a register } else { addr = register_addr; // Use register value and offset as the address } } else { fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.8" PRIx64 "\n", register_name.c_str(), pid, tid); return total_bytes_read; } } } } break; default: fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n"); return total_bytes_read; } } break; } // Check for a minimum field width if (isdigit(*f)) { //min_field_width = strtoul(f, &end, 10); strtoul(f, &end, 10); if (end > f) { fprintf_format.append(f, end - f); f = end; } } // Check for a precision if (*f == '.') { f++; if (isdigit(*f)) { fprintf_format += '.'; //precision = strtoul(f, &end, 10); strtoul(f, &end, 10); if (end > f) { fprintf_format.append(f, end - f); f = end; } } } // mprintf specific: read the optional actual byte size (abs) // after the standard minimum field width (mfw) and precision (prec). // Standard printf calls you can have "mfw.prec" or ".prec", but // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice // for strings that may be in a fixed size buffer, but may not use all bytes // in that buffer for printable characters. if (*f == '.') { f++; actual_byte_size = strtoul(f, &end, 10); if (end > f) { byte_size = actual_byte_size; f = end; } } // Decode the length modifiers switch (*f) { case 'h': // h and hh length modifiers fprintf_format += *f++; length_modifiers |= length_mod_h; if (*f == 'h') { fprintf_format += *f++; length_modifiers |= length_mod_hh; } break; case 'l': // l and ll length modifiers fprintf_format += *f++; length_modifiers |= length_mod_l; if (*f == 'h') { fprintf_format += *f++; length_modifiers |= length_mod_ll; } break; case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break; case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break; case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break; case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break; case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break; } // Decode the conversion specifier switch (*f) { case '_': // mprintf specific format items { ++f; // Skip the '_' character switch (*f) { case 'a': // Print the current address ++f; fprintf_format += "ll"; fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ax") fprintf (file, fprintf_format.c_str(), addr); break; case 'o': // offset from base address ++f; fprintf_format += "ll"; fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ox") fprintf(file, fprintf_format.c_str(), addr - base_addr); break; default: fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f); break; } continue; } break; case 'D': case 'O': case 'U': fprintf_format += *f; if (byte_size == 0) byte_size = sizeof(long int); break; case 'd': case 'i': case 'o': case 'u': case 'x': case 'X': fprintf_format += *f; if (byte_size == 0) { if (length_modifiers & length_mod_hh) byte_size = sizeof(char); else if (length_modifiers & length_mod_h) byte_size = sizeof(short); else if (length_modifiers & length_mod_ll) byte_size = sizeof(long long); else if (length_modifiers & length_mod_l) byte_size = sizeof(long); else byte_size = sizeof(int); } break; case 'a': case 'A': case 'f': case 'F': case 'e': case 'E': case 'g': case 'G': fprintf_format += *f; if (byte_size == 0) { if (length_modifiers & length_mod_L) byte_size = sizeof(long double); else byte_size = sizeof(double); } break; case 'c': if ((length_modifiers & length_mod_l) == 0) { fprintf_format += *f; if (byte_size == 0) byte_size = sizeof(char); break; } // Fall through to 'C' modifier below... case 'C': fprintf_format += *f; if (byte_size == 0) byte_size = sizeof(wchar_t); break; case 's': fprintf_format += *f; if (is_register || byte_size == 0) is_string = 1; break; case 'p': fprintf_format += *f; if (byte_size == 0) byte_size = sizeof(void*); break; } if (is_string) { std::string mem_string; const size_t string_buf_len = 4; char string_buf[string_buf_len+1]; char *string_buf_end = string_buf + string_buf_len; string_buf[string_buf_len] = '\0'; nub_size_t bytes_read; nub_addr_t str_addr = is_register ? register_addr : addr; while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0) { // Did we get a NULL termination character yet? if (strchr(string_buf, '\0') == string_buf_end) { // no NULL terminator yet, append as a std::string mem_string.append(string_buf, string_buf_len); str_addr += string_buf_len; } else { // yep break; } } // Append as a C-string so we don't get the extra NULL // characters in the temp buffer (since it was resized) mem_string += string_buf; size_t mem_string_len = mem_string.size() + 1; fprintf(file, fprintf_format.c_str(), mem_string.c_str()); if (mem_string_len > 0) { if (!is_register) { addr += mem_string_len; total_bytes_read += mem_string_len; } } else return total_bytes_read; } else if (byte_size > 0) { buf.resize(byte_size); nub_size_t bytes_read = 0; if (is_register) bytes_read = register_value.info.size; else bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]); if (bytes_read > 0) { if (!is_register) total_bytes_read += bytes_read; if (bytes_read == byte_size) { switch (*f) { case 'd': case 'i': case 'o': case 'u': case 'X': case 'x': case 'a': case 'A': case 'f': case 'F': case 'e': case 'E': case 'g': case 'G': case 'p': case 'c': case 'C': { if (is_register) data.SetData(®ister_value.value.v_uint8[0], register_value.info.size); else data.SetData(&buf[0], bytes_read); DNBDataRef::offset_t data_offset = 0; if (byte_size <= 4) { uint32_t u32 = data.GetMax32(&data_offset, byte_size); // Show the actual byte width when displaying hex fprintf(file, fprintf_format.c_str(), u32); } else if (byte_size <= 8) { uint64_t u64 = data.GetMax64(&data_offset, byte_size); // Show the actual byte width when displaying hex fprintf(file, fprintf_format.c_str(), u64); } else { fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size); } if (!is_register) addr += byte_size; } break; case 's': fprintf(file, fprintf_format.c_str(), buf.c_str()); addr += byte_size; break; default: fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f); break; } } } } else return total_bytes_read; } break; case '\\': { f++; switch (*f) { case 'e': ch = '\e'; break; case 'a': ch = '\a'; break; case 'b': ch = '\b'; break; case 'f': ch = '\f'; break; case 'n': ch = '\n'; break; case 'r': ch = '\r'; break; case 't': ch = '\t'; break; case 'v': ch = '\v'; break; case '\'': ch = '\''; break; case '\\': ch = '\\'; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': ch = strtoul(f, &end, 8); f = end; break; default: ch = *f; break; } fputc(ch, file); } break; default: fputc(ch, file); break; } } return total_bytes_read; } //---------------------------------------------------------------------- // Get the number of threads for the specified process. //---------------------------------------------------------------------- nub_size_t DNBProcessGetNumThreads (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetNumThreads(); return 0; } //---------------------------------------------------------------------- // Get the thread ID of the current thread. //---------------------------------------------------------------------- nub_thread_t DNBProcessGetCurrentThread (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetCurrentThread(); return 0; } //---------------------------------------------------------------------- // Get the mach port number of the current thread. //---------------------------------------------------------------------- nub_thread_t DNBProcessGetCurrentThreadMachPort (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetCurrentThreadMachPort(); return 0; } //---------------------------------------------------------------------- // Change the current thread. //---------------------------------------------------------------------- nub_thread_t DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->SetCurrentThread (tid); return INVALID_NUB_THREAD; } //---------------------------------------------------------------------- // Dump a string describing a thread's stop reason to the specified file // handle //---------------------------------------------------------------------- nub_bool_t DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadStoppedReason (tid, stop_info); return false; } //---------------------------------------------------------------------- // Return string description for the specified thread. // // RETURNS: NULL if the thread isn't valid, else a NULL terminated C // string from a static buffer that must be copied prior to subsequent // calls. //---------------------------------------------------------------------- const char * DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadInfo (tid); return NULL; } //---------------------------------------------------------------------- // Get the thread ID given a thread index. //---------------------------------------------------------------------- nub_thread_t DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetThreadAtIndex (thread_idx); return INVALID_NUB_THREAD; } //---------------------------------------------------------------------- // Do whatever is needed to sync the thread's register state with it's kernel values. //---------------------------------------------------------------------- nub_bool_t DNBProcessSyncThreadState (nub_process_t pid, nub_thread_t tid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->SyncThreadState (tid); return false; } nub_addr_t DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid) { MachProcessSP procSP; DNBError err; if (GetProcessSP (pid, procSP)) return procSP->Task().GetDYLDAllImageInfosAddress (err); return INVALID_NUB_ADDRESS; } nub_bool_t DNBProcessSharedLibrariesUpdated(nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SharedLibrariesUpdated (); return true; } return false; } //---------------------------------------------------------------------- // Get the current shared library information for a process. Only return // the shared libraries that have changed since the last shared library // state changed event if only_changed is non-zero. //---------------------------------------------------------------------- nub_size_t DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->CopyImageInfos (image_infos, only_changed); // If we have no process, then return NULL for the shared library info // and zero for shared library count *image_infos = NULL; return 0; } //---------------------------------------------------------------------- // Get the register set information for a specific thread. //---------------------------------------------------------------------- const DNBRegisterSetInfo * DNBGetRegisterSetInfo (nub_size_t *num_reg_sets) { return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets); } //---------------------------------------------------------------------- // Read a register value by register set and register index. //---------------------------------------------------------------------- nub_bool_t DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value) { MachProcessSP procSP; ::bzero (value, sizeof(DNBRegisterValue)); if (GetProcessSP (pid, procSP)) { if (tid != INVALID_NUB_THREAD) return procSP->GetRegisterValue (tid, set, reg, value); } return false; } nub_bool_t DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value) { if (tid != INVALID_NUB_THREAD) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->SetRegisterValue (tid, set, reg, value); } return false; } nub_size_t DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { if (tid != INVALID_NUB_THREAD) return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len); } ::bzero (buf, buf_len); return 0; } nub_size_t DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { if (tid != INVALID_NUB_THREAD) return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len); } return 0; } //---------------------------------------------------------------------- // Read a register value by name. //---------------------------------------------------------------------- nub_bool_t DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value) { MachProcessSP procSP; ::bzero (value, sizeof(DNBRegisterValue)); if (GetProcessSP (pid, procSP)) { const struct DNBRegisterSetInfo *set_info; nub_size_t num_reg_sets = 0; set_info = DNBGetRegisterSetInfo (&num_reg_sets); if (set_info) { uint32_t set = reg_set; uint32_t reg; if (set == REGISTER_SET_ALL) { for (set = 1; set < num_reg_sets; ++set) { for (reg = 0; reg < set_info[set].num_registers; ++reg) { if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) return procSP->GetRegisterValue (tid, set, reg, value); } } } else { for (reg = 0; reg < set_info[set].num_registers; ++reg) { if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) return procSP->GetRegisterValue (tid, set, reg, value); } } } } return false; } //---------------------------------------------------------------------- // Read a register set and register number from the register name. //---------------------------------------------------------------------- nub_bool_t DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info) { const struct DNBRegisterSetInfo *set_info; nub_size_t num_reg_sets = 0; set_info = DNBGetRegisterSetInfo (&num_reg_sets); if (set_info) { uint32_t set, reg; for (set = 1; set < num_reg_sets; ++set) { for (reg = 0; reg < set_info[set].num_registers; ++reg) { if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) { *info = set_info[set].registers[reg]; return true; } } } for (set = 1; set < num_reg_sets; ++set) { uint32_t reg; for (reg = 0; reg < set_info[set].num_registers; ++reg) { if (set_info[set].registers[reg].alt == NULL) continue; if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0) { *info = set_info[set].registers[reg]; return true; } } } } ::bzero (info, sizeof(DNBRegisterInfo)); return false; } //---------------------------------------------------------------------- // Set the name to address callback function that this nub can use // for any name to address lookups that are needed. //---------------------------------------------------------------------- nub_bool_t DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetNameToAddressCallback (callback, baton); return true; } return false; } //---------------------------------------------------------------------- // Set the name to address callback function that this nub can use // for any name to address lookups that are needed. //---------------------------------------------------------------------- nub_bool_t DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { procSP->SetSharedLibraryInfoCallback (callback, baton); return true; } return false; } nub_addr_t DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) { return procSP->LookupSymbol (name, shlib); } return INVALID_NUB_ADDRESS; } nub_size_t DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetAvailableSTDOUT (buf, buf_size); return 0; } nub_size_t DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetAvailableSTDERR (buf, buf_size); return 0; } nub_size_t DNBProcessGetAvailableProfileData (nub_process_t pid, char *buf, nub_size_t buf_size) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetAsyncProfileData (buf, buf_size); return 0; } nub_size_t DNBProcessGetStopCount (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->StopCount(); return 0; } uint32_t DNBProcessGetCPUType (nub_process_t pid) { MachProcessSP procSP; if (GetProcessSP (pid, procSP)) return procSP->GetCPUType (); return 0; } nub_bool_t DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size) { if (path == NULL || path[0] == '\0') return false; char max_path[PATH_MAX]; std::string result; CFString::GlobPath(path, result); if (result.empty()) result = path; struct stat path_stat; if (::stat(path, &path_stat) == 0) { if ((path_stat.st_mode & S_IFMT) == S_IFDIR) { CFBundle bundle (path); CFReleaser url(bundle.CopyExecutableURL ()); if (url.get()) { if (::CFURLGetFileSystemRepresentation (url.get(), true, (UInt8*)resolved_path, resolved_path_size)) return true; } } } if (realpath(path, max_path)) { // Found the path relatively... ::strncpy(resolved_path, max_path, resolved_path_size); return strlen(resolved_path) + 1 < resolved_path_size; } else { // Not a relative path, check the PATH environment variable if the const char *PATH = getenv("PATH"); if (PATH) { const char *curr_path_start = PATH; const char *curr_path_end; while (curr_path_start && *curr_path_start) { curr_path_end = strchr(curr_path_start, ':'); if (curr_path_end == NULL) { result.assign(curr_path_start); curr_path_start = NULL; } else if (curr_path_end > curr_path_start) { size_t len = curr_path_end - curr_path_start; result.assign(curr_path_start, len); curr_path_start += len + 1; } else break; result += '/'; result += path; struct stat s; if (stat(result.c_str(), &s) == 0) { ::strncpy(resolved_path, result.c_str(), resolved_path_size); return result.size() + 1 < resolved_path_size; } } } } return false; } void DNBInitialize() { DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()"); #if defined (__i386__) || defined (__x86_64__) DNBArchImplI386::Initialize(); DNBArchImplX86_64::Initialize(); #elif defined (__arm__) DNBArchMachARM::Initialize(); #endif } void DNBTerminate() { } nub_bool_t DNBSetArchitecture (const char *arch) { if (arch && arch[0]) { if (strcasecmp (arch, "i386") == 0) return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386); else if (strcasecmp (arch, "x86_64") == 0) return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64); else if (strstr (arch, "arm") == arch) return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM); } return false; }