//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements routines for translating from LLVM IR into SelectionDAG IR. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H #include "StatepointLowering.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Constants.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetLowering.h" #include namespace llvm { class AddrSpaceCastInst; class AllocaInst; class BasicBlock; class BitCastInst; class BranchInst; class CallInst; class DbgValueInst; class ExtractElementInst; class ExtractValueInst; class FCmpInst; class FPExtInst; class FPToSIInst; class FPToUIInst; class FPTruncInst; class Function; class FunctionLoweringInfo; class GetElementPtrInst; class GCFunctionInfo; class ICmpInst; class IntToPtrInst; class IndirectBrInst; class InvokeInst; class InsertElementInst; class InsertValueInst; class Instruction; class LoadInst; class MachineBasicBlock; class MachineInstr; class MachineRegisterInfo; class MDNode; class MVT; class PHINode; class PtrToIntInst; class ReturnInst; class SDDbgValue; class SExtInst; class SelectInst; class ShuffleVectorInst; class SIToFPInst; class StoreInst; class SwitchInst; class DataLayout; class TargetLibraryInfo; class TargetLowering; class TruncInst; class UIToFPInst; class UnreachableInst; class VAArgInst; class ZExtInst; //===----------------------------------------------------------------------===// /// SelectionDAGBuilder - This is the common target-independent lowering /// implementation that is parameterized by a TargetLowering object. /// class SelectionDAGBuilder { /// CurInst - The current instruction being visited const Instruction *CurInst; DenseMap NodeMap; /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used /// to preserve debug information for incoming arguments. DenseMap UnusedArgNodeMap; /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap. class DanglingDebugInfo { const DbgValueInst* DI; DebugLoc dl; unsigned SDNodeOrder; public: DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { } DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) : DI(di), dl(DL), SDNodeOrder(SDNO) { } const DbgValueInst* getDI() { return DI; } DebugLoc getdl() { return dl; } unsigned getSDNodeOrder() { return SDNodeOrder; } }; /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not /// yet seen the referent. We defer handling these until we do see it. DenseMap DanglingDebugInfoMap; public: /// PendingLoads - Loads are not emitted to the program immediately. We bunch /// them up and then emit token factor nodes when possible. This allows us to /// get simple disambiguation between loads without worrying about alias /// analysis. SmallVector PendingLoads; /// State used while lowering a statepoint sequence (gc_statepoint, /// gc_relocate, and gc_result). See StatepointLowering.hpp/cpp for details. StatepointLoweringState StatepointLowering; private: /// PendingExports - CopyToReg nodes that copy values to virtual registers /// for export to other blocks need to be emitted before any terminator /// instruction, but they have no other ordering requirements. We bunch them /// up and the emit a single tokenfactor for them just before terminator /// instructions. SmallVector PendingExports; /// SDNodeOrder - A unique monotonically increasing number used to order the /// SDNodes we create. unsigned SDNodeOrder; enum CaseClusterKind { /// A cluster of adjacent case labels with the same destination, or just one /// case. CC_Range, /// A cluster of cases suitable for jump table lowering. CC_JumpTable, /// A cluster of cases suitable for bit test lowering. CC_BitTests }; /// A cluster of case labels. struct CaseCluster { CaseClusterKind Kind; const ConstantInt *Low, *High; union { MachineBasicBlock *MBB; unsigned JTCasesIndex; unsigned BTCasesIndex; }; BranchProbability Prob; static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob) { CaseCluster C; C.Kind = CC_Range; C.Low = Low; C.High = High; C.MBB = MBB; C.Prob = Prob; return C; } static CaseCluster jumpTable(const ConstantInt *Low, const ConstantInt *High, unsigned JTCasesIndex, BranchProbability Prob) { CaseCluster C; C.Kind = CC_JumpTable; C.Low = Low; C.High = High; C.JTCasesIndex = JTCasesIndex; C.Prob = Prob; return C; } static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High, unsigned BTCasesIndex, BranchProbability Prob) { CaseCluster C; C.Kind = CC_BitTests; C.Low = Low; C.High = High; C.BTCasesIndex = BTCasesIndex; C.Prob = Prob; return C; } }; typedef std::vector CaseClusterVector; typedef CaseClusterVector::iterator CaseClusterIt; struct CaseBits { uint64_t Mask; MachineBasicBlock* BB; unsigned Bits; BranchProbability ExtraProb; CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits, BranchProbability Prob): Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) { } CaseBits() : Mask(0), BB(nullptr), Bits(0) {} }; typedef std::vector CaseBitsVector; /// Sort Clusters and merge adjacent cases. void sortAndRangeify(CaseClusterVector &Clusters); /// CaseBlock - This structure is used to communicate between /// SelectionDAGBuilder and SDISel for the code generation of additional basic /// blocks needed by multi-case switch statements. struct CaseBlock { CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs, const Value *cmpmiddle, MachineBasicBlock *truebb, MachineBasicBlock *falsebb, MachineBasicBlock *me, BranchProbability trueprob = BranchProbability::getUnknown(), BranchProbability falseprob = BranchProbability::getUnknown()) : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), TrueBB(truebb), FalseBB(falsebb), ThisBB(me), TrueProb(trueprob), FalseProb(falseprob) {} // CC - the condition code to use for the case block's setcc node ISD::CondCode CC; // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. // Emit by default LHS op RHS. MHS is used for range comparisons: // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). const Value *CmpLHS, *CmpMHS, *CmpRHS; // TrueBB/FalseBB - the block to branch to if the setcc is true/false. MachineBasicBlock *TrueBB, *FalseBB; // ThisBB - the block into which to emit the code for the setcc and branches MachineBasicBlock *ThisBB; // TrueProb/FalseProb - branch weights. BranchProbability TrueProb, FalseProb; }; struct JumpTable { JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} /// Reg - the virtual register containing the index of the jump table entry //. to jump to. unsigned Reg; /// JTI - the JumpTableIndex for this jump table in the function. unsigned JTI; /// MBB - the MBB into which to emit the code for the indirect jump. MachineBasicBlock *MBB; /// Default - the MBB of the default bb, which is a successor of the range /// check MBB. This is when updating PHI nodes in successors. MachineBasicBlock *Default; }; struct JumpTableHeader { JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H, bool E = false): First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {} APInt First; APInt Last; const Value *SValue; MachineBasicBlock *HeaderBB; bool Emitted; }; typedef std::pair JumpTableBlock; struct BitTestCase { BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr, BranchProbability Prob): Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) { } uint64_t Mask; MachineBasicBlock *ThisBB; MachineBasicBlock *TargetBB; BranchProbability ExtraProb; }; typedef SmallVector BitTestInfo; struct BitTestBlock { BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT, bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D, BitTestInfo C, BranchProbability Pr) : First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D), Cases(std::move(C)), Prob(Pr) {} APInt First; APInt Range; const Value *SValue; unsigned Reg; MVT RegVT; bool Emitted; bool ContiguousRange; MachineBasicBlock *Parent; MachineBasicBlock *Default; BitTestInfo Cases; BranchProbability Prob; BranchProbability DefaultProb; }; /// Minimum jump table density, in percent. enum { MinJumpTableDensity = 40 }; /// Check whether a range of clusters is dense enough for a jump table. bool isDense(const CaseClusterVector &Clusters, unsigned *TotalCases, unsigned First, unsigned Last); /// Build a jump table cluster from Clusters[First..Last]. Returns false if it /// decides it's not a good idea. bool buildJumpTable(CaseClusterVector &Clusters, unsigned First, unsigned Last, const SwitchInst *SI, MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster); /// Find clusters of cases suitable for jump table lowering. void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI, MachineBasicBlock *DefaultMBB); /// Check whether the range [Low,High] fits in a machine word. bool rangeFitsInWord(const APInt &Low, const APInt &High); /// Check whether these clusters are suitable for lowering with bit tests based /// on the number of destinations, comparison metric, and range. bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps, const APInt &Low, const APInt &High); /// Build a bit test cluster from Clusters[First..Last]. Returns false if it /// decides it's not a good idea. bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last, const SwitchInst *SI, CaseCluster &BTCluster); /// Find clusters of cases suitable for bit test lowering. void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI); struct SwitchWorkListItem { MachineBasicBlock *MBB; CaseClusterIt FirstCluster; CaseClusterIt LastCluster; const ConstantInt *GE; const ConstantInt *LT; BranchProbability DefaultProb; }; typedef SmallVector SwitchWorkList; /// Determine the rank by weight of CC in [First,Last]. If CC has more weight /// than each cluster in the range, its rank is 0. static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First, CaseClusterIt Last); /// Emit comparison and split W into two subtrees. void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W, Value *Cond, MachineBasicBlock *SwitchMBB); /// Lower W. void lowerWorkItem(SwitchWorkListItem W, Value *Cond, MachineBasicBlock *SwitchMBB, MachineBasicBlock *DefaultMBB); /// A class which encapsulates all of the information needed to generate a /// stack protector check and signals to isel via its state being initialized /// that a stack protector needs to be generated. /// /// *NOTE* The following is a high level documentation of SelectionDAG Stack /// Protector Generation. The reason that it is placed here is for a lack of /// other good places to stick it. /// /// High Level Overview of SelectionDAG Stack Protector Generation: /// /// Previously, generation of stack protectors was done exclusively in the /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated /// splitting basic blocks at the IR level to create the success/failure basic /// blocks in the tail of the basic block in question. As a result of this, /// calls that would have qualified for the sibling call optimization were no /// longer eligible for optimization since said calls were no longer right in /// the "tail position" (i.e. the immediate predecessor of a ReturnInst /// instruction). /// /// Then it was noticed that since the sibling call optimization causes the /// callee to reuse the caller's stack, if we could delay the generation of /// the stack protector check until later in CodeGen after the sibling call /// decision was made, we get both the tail call optimization and the stack /// protector check! /// /// A few goals in solving this problem were: /// /// 1. Preserve the architecture independence of stack protector generation. /// /// 2. Preserve the normal IR level stack protector check for platforms like /// OpenBSD for which we support platform-specific stack protector /// generation. /// /// The main problem that guided the present solution is that one can not /// solve this problem in an architecture independent manner at the IR level /// only. This is because: /// /// 1. The decision on whether or not to perform a sibling call on certain /// platforms (for instance i386) requires lower level information /// related to available registers that can not be known at the IR level. /// /// 2. Even if the previous point were not true, the decision on whether to /// perform a tail call is done in LowerCallTo in SelectionDAG which /// occurs after the Stack Protector Pass. As a result, one would need to /// put the relevant callinst into the stack protector check success /// basic block (where the return inst is placed) and then move it back /// later at SelectionDAG/MI time before the stack protector check if the /// tail call optimization failed. The MI level option was nixed /// immediately since it would require platform-specific pattern /// matching. The SelectionDAG level option was nixed because /// SelectionDAG only processes one IR level basic block at a time /// implying one could not create a DAG Combine to move the callinst. /// /// To get around this problem a few things were realized: /// /// 1. While one can not handle multiple IR level basic blocks at the /// SelectionDAG Level, one can generate multiple machine basic blocks /// for one IR level basic block. This is how we handle bit tests and /// switches. /// /// 2. At the MI level, tail calls are represented via a special return /// MIInst called "tcreturn". Thus if we know the basic block in which we /// wish to insert the stack protector check, we get the correct behavior /// by always inserting the stack protector check right before the return /// statement. This is a "magical transformation" since no matter where /// the stack protector check intrinsic is, we always insert the stack /// protector check code at the end of the BB. /// /// Given the aforementioned constraints, the following solution was devised: /// /// 1. On platforms that do not support SelectionDAG stack protector check /// generation, allow for the normal IR level stack protector check /// generation to continue. /// /// 2. On platforms that do support SelectionDAG stack protector check /// generation: /// /// a. Use the IR level stack protector pass to decide if a stack /// protector is required/which BB we insert the stack protector check /// in by reusing the logic already therein. If we wish to generate a /// stack protector check in a basic block, we place a special IR /// intrinsic called llvm.stackprotectorcheck right before the BB's /// returninst or if there is a callinst that could potentially be /// sibling call optimized, before the call inst. /// /// b. Then when a BB with said intrinsic is processed, we codegen the BB /// normally via SelectBasicBlock. In said process, when we visit the /// stack protector check, we do not actually emit anything into the /// BB. Instead, we just initialize the stack protector descriptor /// class (which involves stashing information/creating the success /// mbbb and the failure mbb if we have not created one for this /// function yet) and export the guard variable that we are going to /// compare. /// /// c. After we finish selecting the basic block, in FinishBasicBlock if /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is /// initialized, we first find a splice point in the parent basic block /// before the terminator and then splice the terminator of said basic /// block into the success basic block. Then we code-gen a new tail for /// the parent basic block consisting of the two loads, the comparison, /// and finally two branches to the success/failure basic blocks. We /// conclude by code-gening the failure basic block if we have not /// code-gened it already (all stack protector checks we generate in /// the same function, use the same failure basic block). class StackProtectorDescriptor { public: StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr), FailureMBB(nullptr), Guard(nullptr), GuardReg(0) { } /// Returns true if all fields of the stack protector descriptor are /// initialized implying that we should/are ready to emit a stack protector. bool shouldEmitStackProtector() const { return ParentMBB && SuccessMBB && FailureMBB && Guard; } /// Initialize the stack protector descriptor structure for a new basic /// block. void initialize(const BasicBlock *BB, MachineBasicBlock *MBB, const CallInst &StackProtCheckCall) { // Make sure we are not initialized yet. assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is " "already initialized!"); ParentMBB = MBB; SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true); FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB); if (!Guard) Guard = StackProtCheckCall.getArgOperand(0); } /// Reset state that changes when we handle different basic blocks. /// /// This currently includes: /// /// 1. The specific basic block we are generating a /// stack protector for (ParentMBB). /// /// 2. The successor machine basic block that will contain the tail of /// parent mbb after we create the stack protector check (SuccessMBB). This /// BB is visited only on stack protector check success. void resetPerBBState() { ParentMBB = nullptr; SuccessMBB = nullptr; } /// Reset state that only changes when we switch functions. /// /// This currently includes: /// /// 1. FailureMBB since we reuse the failure code path for all stack /// protector checks created in an individual function. /// /// 2.The guard variable since the guard variable we are checking against is /// always the same. void resetPerFunctionState() { FailureMBB = nullptr; Guard = nullptr; GuardReg = 0; } MachineBasicBlock *getParentMBB() { return ParentMBB; } MachineBasicBlock *getSuccessMBB() { return SuccessMBB; } MachineBasicBlock *getFailureMBB() { return FailureMBB; } const Value *getGuard() { return Guard; } unsigned getGuardReg() const { return GuardReg; } void setGuardReg(unsigned R) { GuardReg = R; } private: /// The basic block for which we are generating the stack protector. /// /// As a result of stack protector generation, we will splice the /// terminators of this basic block into the successor mbb SuccessMBB and /// replace it with a compare/branch to the successor mbbs /// SuccessMBB/FailureMBB depending on whether or not the stack protector /// was violated. MachineBasicBlock *ParentMBB; /// A basic block visited on stack protector check success that contains the /// terminators of ParentMBB. MachineBasicBlock *SuccessMBB; /// This basic block visited on stack protector check failure that will /// contain a call to __stack_chk_fail(). MachineBasicBlock *FailureMBB; /// The guard variable which we will compare against the stored value in the /// stack protector stack slot. const Value *Guard; /// The virtual register holding the stack guard value. unsigned GuardReg; /// Add a successor machine basic block to ParentMBB. If the successor mbb /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic /// block will be created. Assign a large weight if IsLikely is true. MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB, MachineBasicBlock *ParentMBB, bool IsLikely, MachineBasicBlock *SuccMBB = nullptr); }; private: const TargetMachine &TM; public: /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling /// nodes without a corresponding SDNode. static const unsigned LowestSDNodeOrder = 1; SelectionDAG &DAG; const DataLayout *DL; AliasAnalysis *AA; const TargetLibraryInfo *LibInfo; /// SwitchCases - Vector of CaseBlock structures used to communicate /// SwitchInst code generation information. std::vector SwitchCases; /// JTCases - Vector of JumpTable structures used to communicate /// SwitchInst code generation information. std::vector JTCases; /// BitTestCases - Vector of BitTestBlock structures used to communicate /// SwitchInst code generation information. std::vector BitTestCases; /// A StackProtectorDescriptor structure used to communicate stack protector /// information in between SelectBasicBlock and FinishBasicBlock. StackProtectorDescriptor SPDescriptor; // Emit PHI-node-operand constants only once even if used by multiple // PHI nodes. DenseMap ConstantsOut; /// FuncInfo - Information about the function as a whole. /// FunctionLoweringInfo &FuncInfo; /// GFI - Garbage collection metadata for the function. GCFunctionInfo *GFI; /// LPadToCallSiteMap - Map a landing pad to the call site indexes. DenseMap > LPadToCallSiteMap; /// HasTailCall - This is set to true if a call in the current /// block has been translated as a tail call. In this case, /// no subsequent DAG nodes should be created. /// bool HasTailCall; LLVMContext *Context; SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, CodeGenOpt::Level ol) : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag), FuncInfo(funcinfo), HasTailCall(false) { } void init(GCFunctionInfo *gfi, AliasAnalysis &aa, const TargetLibraryInfo *li); /// clear - Clear out the current SelectionDAG and the associated /// state and prepare this SelectionDAGBuilder object to be used /// for a new block. This doesn't clear out information about /// additional blocks that are needed to complete switch lowering /// or PHI node updating; that information is cleared out as it is /// consumed. void clear(); /// clearDanglingDebugInfo - Clear the dangling debug information /// map. This function is separated from the clear so that debug /// information that is dangling in a basic block can be properly /// resolved in a different basic block. This allows the /// SelectionDAG to resolve dangling debug information attached /// to PHI nodes. void clearDanglingDebugInfo(); /// getRoot - Return the current virtual root of the Selection DAG, /// flushing any PendingLoad items. This must be done before emitting /// a store or any other node that may need to be ordered after any /// prior load instructions. /// SDValue getRoot(); /// getControlRoot - Similar to getRoot, but instead of flushing all the /// PendingLoad items, flush all the PendingExports items. It is necessary /// to do this before emitting a terminator instruction. /// SDValue getControlRoot(); SDLoc getCurSDLoc() const { return SDLoc(CurInst, SDNodeOrder); } DebugLoc getCurDebugLoc() const { return CurInst ? CurInst->getDebugLoc() : DebugLoc(); } unsigned getSDNodeOrder() const { return SDNodeOrder; } void CopyValueToVirtualRegister(const Value *V, unsigned Reg); void visit(const Instruction &I); void visit(unsigned Opcode, const User &I); /// getCopyFromRegs - If there was virtual register allocated for the value V /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. SDValue getCopyFromRegs(const Value *V, Type *Ty); // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, // generate the debug data structures now that we've seen its definition. void resolveDanglingDebugInfo(const Value *V, SDValue Val); SDValue getValue(const Value *V); bool findValue(const Value *V) const; SDValue getNonRegisterValue(const Value *V); SDValue getValueImpl(const Value *V); void setValue(const Value *V, SDValue NewN) { SDValue &N = NodeMap[V]; assert(!N.getNode() && "Already set a value for this node!"); N = NewN; } void setUnusedArgValue(const Value *V, SDValue NewN) { SDValue &N = UnusedArgNodeMap[V]; assert(!N.getNode() && "Already set a value for this node!"); N = NewN; } void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TW, BranchProbability FW); void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TW, BranchProbability FW); bool ShouldEmitAsBranches(const std::vector &Cases); bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB); void CopyToExportRegsIfNeeded(const Value *V); void ExportFromCurrentBlock(const Value *V); void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, const BasicBlock *EHPadBB = nullptr); std::pair lowerCallOperands( ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, const BasicBlock *EHPadBB = nullptr, bool IsPatchPoint = false); /// UpdateSplitBlock - When an MBB was split during scheduling, update the /// references that need to refer to the last resulting block. void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last); // This function is responsible for the whole statepoint lowering process. // It uniformly handles invoke and call statepoints. void LowerStatepoint(ImmutableStatepoint Statepoint, const BasicBlock *EHPadBB = nullptr); private: std::pair lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB = nullptr); // Terminator instructions. void visitRet(const ReturnInst &I); void visitBr(const BranchInst &I); void visitSwitch(const SwitchInst &I); void visitIndirectBr(const IndirectBrInst &I); void visitUnreachable(const UnreachableInst &I); void visitCleanupRet(const CleanupReturnInst &I); void visitCatchSwitch(const CatchSwitchInst &I); void visitCatchRet(const CatchReturnInst &I); void visitCatchPad(const CatchPadInst &I); void visitCleanupPad(const CleanupPadInst &CPI); BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const; void addSuccessorWithProb( MachineBasicBlock *Src, MachineBasicBlock *Dst, BranchProbability Prob = BranchProbability::getUnknown()); public: void visitSwitchCase(CaseBlock &CB, MachineBasicBlock *SwitchBB); void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB); void visitSPDescriptorFailure(StackProtectorDescriptor &SPD); void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB); void visitBitTestCase(BitTestBlock &BB, MachineBasicBlock* NextMBB, BranchProbability BranchProbToNext, unsigned Reg, BitTestCase &B, MachineBasicBlock *SwitchBB); void visitJumpTable(JumpTable &JT); void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, MachineBasicBlock *SwitchBB); private: // These all get lowered before this pass. void visitInvoke(const InvokeInst &I); void visitResume(const ResumeInst &I); void visitBinary(const User &I, unsigned OpCode); void visitShift(const User &I, unsigned Opcode); void visitAdd(const User &I) { visitBinary(I, ISD::ADD); } void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); } void visitSub(const User &I) { visitBinary(I, ISD::SUB); } void visitFSub(const User &I); void visitMul(const User &I) { visitBinary(I, ISD::MUL); } void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); } void visitURem(const User &I) { visitBinary(I, ISD::UREM); } void visitSRem(const User &I) { visitBinary(I, ISD::SREM); } void visitFRem(const User &I) { visitBinary(I, ISD::FREM); } void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); } void visitSDiv(const User &I); void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); } void visitAnd (const User &I) { visitBinary(I, ISD::AND); } void visitOr (const User &I) { visitBinary(I, ISD::OR); } void visitXor (const User &I) { visitBinary(I, ISD::XOR); } void visitShl (const User &I) { visitShift(I, ISD::SHL); } void visitLShr(const User &I) { visitShift(I, ISD::SRL); } void visitAShr(const User &I) { visitShift(I, ISD::SRA); } void visitICmp(const User &I); void visitFCmp(const User &I); // Visit the conversion instructions void visitTrunc(const User &I); void visitZExt(const User &I); void visitSExt(const User &I); void visitFPTrunc(const User &I); void visitFPExt(const User &I); void visitFPToUI(const User &I); void visitFPToSI(const User &I); void visitUIToFP(const User &I); void visitSIToFP(const User &I); void visitPtrToInt(const User &I); void visitIntToPtr(const User &I); void visitBitCast(const User &I); void visitAddrSpaceCast(const User &I); void visitExtractElement(const User &I); void visitInsertElement(const User &I); void visitShuffleVector(const User &I); void visitExtractValue(const ExtractValueInst &I); void visitInsertValue(const InsertValueInst &I); void visitLandingPad(const LandingPadInst &I); void visitGetElementPtr(const User &I); void visitSelect(const User &I); void visitAlloca(const AllocaInst &I); void visitLoad(const LoadInst &I); void visitStore(const StoreInst &I); void visitMaskedLoad(const CallInst &I); void visitMaskedStore(const CallInst &I); void visitMaskedGather(const CallInst &I); void visitMaskedScatter(const CallInst &I); void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); void visitAtomicRMW(const AtomicRMWInst &I); void visitFence(const FenceInst &I); void visitPHI(const PHINode &I); void visitCall(const CallInst &I); bool visitMemCmpCall(const CallInst &I); bool visitMemChrCall(const CallInst &I); bool visitStrCpyCall(const CallInst &I, bool isStpcpy); bool visitStrCmpCall(const CallInst &I); bool visitStrLenCall(const CallInst &I); bool visitStrNLenCall(const CallInst &I); bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode); bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode); void visitAtomicLoad(const LoadInst &I); void visitAtomicStore(const StoreInst &I); void visitInlineAsm(ImmutableCallSite CS); const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic); void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic); void visitVAStart(const CallInst &I); void visitVAArg(const VAArgInst &I); void visitVAEnd(const CallInst &I); void visitVACopy(const CallInst &I); void visitStackmap(const CallInst &I); void visitPatchpoint(ImmutableCallSite CS, const BasicBlock *EHPadBB = nullptr); // These three are implemented in StatepointLowering.cpp void visitStatepoint(const CallInst &I); void visitGCRelocate(const CallInst &I); void visitGCResult(const CallInst &I); void visitUserOp1(const Instruction &I) { llvm_unreachable("UserOp1 should not exist at instruction selection time!"); } void visitUserOp2(const Instruction &I) { llvm_unreachable("UserOp2 should not exist at instruction selection time!"); } void processIntegerCallValue(const Instruction &I, SDValue Value, bool IsSigned); void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); /// EmitFuncArgumentDbgValue - If V is an function argument then create /// corresponding DBG_VALUE machine instruction for it now. At the end of /// instruction selection, they will be inserted to the entry BB. bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable, DIExpression *Expr, DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N); /// Return the next block after MBB, or nullptr if there is none. MachineBasicBlock *NextBlock(MachineBasicBlock *MBB); /// Update the DAG and DAG builder with the relevant information after /// a new root node has been created which could be a tail call. void updateDAGForMaybeTailCall(SDValue MaybeTC); }; /// RegsForValue - This struct represents the registers (physical or virtual) /// that a particular set of values is assigned, and the type information about /// the value. The most common situation is to represent one value at a time, /// but struct or array values are handled element-wise as multiple values. The /// splitting of aggregates is performed recursively, so that we never have /// aggregate-typed registers. The values at this point do not necessarily have /// legal types, so each value may require one or more registers of some legal /// type. /// struct RegsForValue { /// ValueVTs - The value types of the values, which may not be legal, and /// may need be promoted or synthesized from one or more registers. /// SmallVector ValueVTs; /// RegVTs - The value types of the registers. This is the same size as /// ValueVTs and it records, for each value, what the type of the assigned /// register or registers are. (Individual values are never synthesized /// from more than one type of register.) /// /// With virtual registers, the contents of RegVTs is redundant with TLI's /// getRegisterType member function, however when with physical registers /// it is necessary to have a separate record of the types. /// SmallVector RegVTs; /// Regs - This list holds the registers assigned to the values. /// Each legal or promoted value requires one register, and each /// expanded value requires multiple registers. /// SmallVector Regs; RegsForValue(); RegsForValue(const SmallVector ®s, MVT regvt, EVT valuevt); RegsForValue(LLVMContext &Context, const TargetLowering &TLI, const DataLayout &DL, unsigned Reg, Type *Ty); /// append - Add the specified values to this one. void append(const RegsForValue &RHS) { ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); Regs.append(RHS.Regs.begin(), RHS.Regs.end()); } /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from /// this value and returns the result as a ValueVTs value. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, SDLoc dl, SDValue &Chain, SDValue *Flag, const Value *V = nullptr) const; /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the specified /// value into the registers specified by this object. This uses Chain/Flag /// as the input and updates them for the output Chain/Flag. If the Flag /// pointer is nullptr, no flag is used. If V is not nullptr, then it is used /// in printing better diagnostic messages on error. void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, SDValue *Flag, const Value *V = nullptr, ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; /// AddInlineAsmOperands - Add this value to the specified inlineasm node /// operand list. This adds the code marker, matching input operand index /// (if applicable), and includes the number of values added into it. void AddInlineAsmOperands(unsigned Kind, bool HasMatching, unsigned MatchingIdx, SDLoc dl, SelectionDAG &DAG, std::vector &Ops) const; }; } // end namespace llvm #endif