// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CRANKSHAFT_MIPS64_LITHIUM_CODEGEN_MIPS_H_ #define V8_CRANKSHAFT_MIPS64_LITHIUM_CODEGEN_MIPS_H_ #include "src/ast/scopes.h" #include "src/crankshaft/lithium-codegen.h" #include "src/crankshaft/mips64/lithium-gap-resolver-mips64.h" #include "src/crankshaft/mips64/lithium-mips64.h" #include "src/deoptimizer.h" #include "src/safepoint-table.h" #include "src/utils.h" namespace v8 { namespace internal { // Forward declarations. class LDeferredCode; class SafepointGenerator; class LCodeGen: public LCodeGenBase { public: LCodeGen(LChunk* chunk, MacroAssembler* assembler, CompilationInfo* info) : LCodeGenBase(chunk, assembler, info), jump_table_(4, info->zone()), scope_(info->scope()), deferred_(8, info->zone()), frame_is_built_(false), safepoints_(info->zone()), resolver_(this), expected_safepoint_kind_(Safepoint::kSimple) { PopulateDeoptimizationLiteralsWithInlinedFunctions(); } int LookupDestination(int block_id) const { return chunk()->LookupDestination(block_id); } bool IsNextEmittedBlock(int block_id) const { return LookupDestination(block_id) == GetNextEmittedBlock(); } bool NeedsEagerFrame() const { return HasAllocatedStackSlots() || info()->is_non_deferred_calling() || !info()->IsStub() || info()->requires_frame(); } bool NeedsDeferredFrame() const { return !NeedsEagerFrame() && info()->is_deferred_calling(); } RAStatus GetRAState() const { return frame_is_built_ ? kRAHasBeenSaved : kRAHasNotBeenSaved; } // Support for converting LOperands to assembler types. // LOperand must be a register. Register ToRegister(LOperand* op) const; // LOperand is loaded into scratch, unless already a register. Register EmitLoadRegister(LOperand* op, Register scratch); // LOperand must be a double register. DoubleRegister ToDoubleRegister(LOperand* op) const; // LOperand is loaded into dbl_scratch, unless already a double register. DoubleRegister EmitLoadDoubleRegister(LOperand* op, FloatRegister flt_scratch, DoubleRegister dbl_scratch); int64_t ToRepresentation_donotuse(LConstantOperand* op, const Representation& r) const; int32_t ToInteger32(LConstantOperand* op) const; Smi* ToSmi(LConstantOperand* op) const; double ToDouble(LConstantOperand* op) const; Operand ToOperand(LOperand* op); MemOperand ToMemOperand(LOperand* op) const; // Returns a MemOperand pointing to the high word of a DoubleStackSlot. MemOperand ToHighMemOperand(LOperand* op) const; bool IsInteger32(LConstantOperand* op) const; bool IsSmi(LConstantOperand* op) const; Handle ToHandle(LConstantOperand* op) const; // Try to generate code for the entire chunk, but it may fail if the // chunk contains constructs we cannot handle. Returns true if the // code generation attempt succeeded. bool GenerateCode(); // Finish the code by setting stack height, safepoint, and bailout // information on it. void FinishCode(Handle code); void DoDeferredNumberTagD(LNumberTagD* instr); enum IntegerSignedness { SIGNED_INT32, UNSIGNED_INT32 }; void DoDeferredNumberTagIU(LInstruction* instr, LOperand* value, LOperand* temp1, LOperand* temp2, IntegerSignedness signedness); void DoDeferredTaggedToI(LTaggedToI* instr); void DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr); void DoDeferredStackCheck(LStackCheck* instr); void DoDeferredMaybeGrowElements(LMaybeGrowElements* instr); void DoDeferredStringCharCodeAt(LStringCharCodeAt* instr); void DoDeferredStringCharFromCode(LStringCharFromCode* instr); void DoDeferredAllocate(LAllocate* instr); void DoDeferredInstanceMigration(LCheckMaps* instr, Register object); void DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, Register result, Register object, Register index); // Parallel move support. void DoParallelMove(LParallelMove* move); void DoGap(LGap* instr); MemOperand PrepareKeyedOperand(Register key, Register base, bool key_is_constant, int constant_key, int element_size, int shift_size, int base_offset); // Emit frame translation commands for an environment. void WriteTranslation(LEnvironment* environment, Translation* translation); // Declare methods that deal with the individual node types. #define DECLARE_DO(type) void Do##type(L##type* node); LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_DO) #undef DECLARE_DO private: Scope* scope() const { return scope_; } Register scratch0() { return kLithiumScratchReg; } Register scratch1() { return kLithiumScratchReg2; } DoubleRegister double_scratch0() { return kLithiumScratchDouble; } LInstruction* GetNextInstruction(); void EmitClassOfTest(Label* if_true, Label* if_false, Handle class_name, Register input, Register temporary, Register temporary2); bool HasAllocatedStackSlots() const { return chunk()->HasAllocatedStackSlots(); } int GetStackSlotCount() const { return chunk()->GetSpillSlotCount(); } int GetTotalFrameSlotCount() const { return chunk()->GetTotalFrameSlotCount(); } void AddDeferredCode(LDeferredCode* code) { deferred_.Add(code, zone()); } void SaveCallerDoubles(); void RestoreCallerDoubles(); // Code generation passes. Returns true if code generation should // continue. void GenerateBodyInstructionPre(LInstruction* instr) override; bool GeneratePrologue(); bool GenerateDeferredCode(); bool GenerateJumpTable(); bool GenerateSafepointTable(); // Generates the custom OSR entrypoint and sets the osr_pc_offset. void GenerateOsrPrologue(); enum SafepointMode { RECORD_SIMPLE_SAFEPOINT, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS }; void CallCode(Handle code, RelocInfo::Mode mode, LInstruction* instr); void CallCodeGeneric(Handle code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode); void CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr, SaveFPRegsMode save_doubles = kDontSaveFPRegs); void CallRuntime(Runtime::FunctionId id, int num_arguments, LInstruction* instr) { const Runtime::Function* function = Runtime::FunctionForId(id); CallRuntime(function, num_arguments, instr); } void CallRuntime(Runtime::FunctionId id, LInstruction* instr) { const Runtime::Function* function = Runtime::FunctionForId(id); CallRuntime(function, function->nargs, instr); } void LoadContextFromDeferred(LOperand* context); void CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context); void PrepareForTailCall(const ParameterCount& actual, Register scratch1, Register scratch2, Register scratch3); // Generate a direct call to a known function. Expects the function // to be in a1. void CallKnownFunction(Handle function, int formal_parameter_count, int arity, bool is_tail_call, LInstruction* instr); void RecordSafepointWithLazyDeopt(LInstruction* instr, SafepointMode safepoint_mode); void RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode); void DeoptimizeIf(Condition condition, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason, Deoptimizer::BailoutType bailout_type, Register src1 = zero_reg, const Operand& src2 = Operand(zero_reg)); void DeoptimizeIf( Condition condition, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason = Deoptimizer::kNoReason, Register src1 = zero_reg, const Operand& src2 = Operand(zero_reg)); void AddToTranslation(LEnvironment* environment, Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int* object_index_pointer, int* dematerialized_index_pointer); Register ToRegister(int index) const; DoubleRegister ToDoubleRegister(int index) const; MemOperand BuildSeqStringOperand(Register string, LOperand* index, String::Encoding encoding); void EmitIntegerMathAbs(LMathAbs* instr); void EmitSmiMathAbs(LMathAbs* instr); // Support for recording safepoint and position information. void RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode mode); void RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode); void RecordSafepoint(Safepoint::DeoptMode mode); void RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode mode); void RecordAndWritePosition(int position) override; static Condition TokenToCondition(Token::Value op, bool is_unsigned); void EmitGoto(int block); // EmitBranch expects to be the last instruction of a block. template void EmitBranch(InstrType instr, Condition condition, Register src1, const Operand& src2); template void EmitBranchF(InstrType instr, Condition condition, FPURegister src1, FPURegister src2); template void EmitTrueBranch(InstrType instr, Condition condition, Register src1, const Operand& src2); template void EmitFalseBranch(InstrType instr, Condition condition, Register src1, const Operand& src2); template void EmitFalseBranchF(InstrType instr, Condition condition, FPURegister src1, FPURegister src2); void EmitCmpI(LOperand* left, LOperand* right); void EmitNumberUntagD(LNumberUntagD* instr, Register input, DoubleRegister result, NumberUntagDMode mode); // Emits optimized code for typeof x == "y". Modifies input register. // Returns the condition on which a final split to // true and false label should be made, to optimize fallthrough. // Returns two registers in cmp1 and cmp2 that can be used in the // Branch instruction after EmitTypeofIs. Condition EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle type_name, Register* cmp1, Operand* cmp2); // Emits optimized code for %_IsString(x). Preserves input register. // Returns the condition on which a final split to // true and false label should be made, to optimize fallthrough. Condition EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed); // Emits optimized code to deep-copy the contents of statically known // object graphs (e.g. object literal boilerplate). void EmitDeepCopy(Handle object, Register result, Register source, int* offset, AllocationSiteMode mode); // Emit optimized code for integer division. // Inputs are signed. // All registers are clobbered. // If 'remainder' is no_reg, it is not computed. void EmitSignedIntegerDivisionByConstant(Register result, Register dividend, int32_t divisor, Register remainder, Register scratch, LEnvironment* environment); void EnsureSpaceForLazyDeopt(int space_needed) override; void DoLoadKeyedExternalArray(LLoadKeyed* instr); void DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr); void DoLoadKeyedFixedArray(LLoadKeyed* instr); void DoStoreKeyedExternalArray(LStoreKeyed* instr); void DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr); void DoStoreKeyedFixedArray(LStoreKeyed* instr); template void EmitVectorLoadICRegisters(T* instr); template void EmitVectorStoreICRegisters(T* instr); ZoneList jump_table_; Scope* const scope_; ZoneList deferred_; bool frame_is_built_; // Builder that keeps track of safepoints in the code. The table // itself is emitted at the end of the generated code. SafepointTableBuilder safepoints_; // Compiler from a set of parallel moves to a sequential list of moves. LGapResolver resolver_; Safepoint::Kind expected_safepoint_kind_; class PushSafepointRegistersScope final BASE_EMBEDDED { public: explicit PushSafepointRegistersScope(LCodeGen* codegen) : codegen_(codegen) { DCHECK(codegen_->info()->is_calling()); DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple); codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters; StoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->push(ra); codegen_->masm_->CallStub(&stub); } ~PushSafepointRegistersScope() { DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters); RestoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->push(ra); codegen_->masm_->CallStub(&stub); codegen_->expected_safepoint_kind_ = Safepoint::kSimple; } private: LCodeGen* codegen_; }; friend class LDeferredCode; friend class LEnvironment; friend class SafepointGenerator; DISALLOW_COPY_AND_ASSIGN(LCodeGen); }; class LDeferredCode : public ZoneObject { public: explicit LDeferredCode(LCodeGen* codegen) : codegen_(codegen), external_exit_(NULL), instruction_index_(codegen->current_instruction_) { codegen->AddDeferredCode(this); } virtual ~LDeferredCode() {} virtual void Generate() = 0; virtual LInstruction* instr() = 0; void SetExit(Label* exit) { external_exit_ = exit; } Label* entry() { return &entry_; } Label* exit() { return external_exit_ != NULL ? external_exit_ : &exit_; } int instruction_index() const { return instruction_index_; } protected: LCodeGen* codegen() const { return codegen_; } MacroAssembler* masm() const { return codegen_->masm(); } private: LCodeGen* codegen_; Label entry_; Label exit_; Label* external_exit_; int instruction_index_; }; } // namespace internal } // namespace v8 #endif // V8_CRANKSHAFT_MIPS64_LITHIUM_CODEGEN_MIPS_H_