// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_ #define V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_ #include "src/macro-assembler.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/x64/assembler-x64.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP class RegExpMacroAssemblerX64: public NativeRegExpMacroAssembler { public: RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone, Mode mode, int registers_to_save); virtual ~RegExpMacroAssemblerX64(); virtual int stack_limit_slack(); virtual void AdvanceCurrentPosition(int by); virtual void AdvanceRegister(int reg, int by); virtual void Backtrack(); virtual void Bind(Label* label); virtual void CheckAtStart(Label* on_at_start); virtual void CheckCharacter(uint32_t c, Label* on_equal); virtual void CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal); virtual void CheckCharacterGT(uc16 limit, Label* on_greater); virtual void CheckCharacterLT(uc16 limit, Label* on_less); // A "greedy loop" is a loop that is both greedy and with a simple // body. It has a particularly simple implementation. virtual void CheckGreedyLoop(Label* on_tos_equals_current_position); virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start); virtual void CheckNotBackReference(int start_reg, bool read_backward, Label* on_no_match); virtual void CheckNotBackReferenceIgnoreCase(int start_reg, bool read_backward, bool unicode, Label* on_no_match); virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal); virtual void CheckNotCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_not_equal); virtual void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask, Label* on_not_equal); virtual void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range); virtual void CheckCharacterNotInRange(uc16 from, uc16 to, Label* on_not_in_range); virtual void CheckBitInTable(Handle table, Label* on_bit_set); // Checks whether the given offset from the current position is before // the end of the string. virtual void CheckPosition(int cp_offset, Label* on_outside_input); virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match); virtual void Fail(); virtual Handle GetCode(Handle source); virtual void GoTo(Label* label); virtual void IfRegisterGE(int reg, int comparand, Label* if_ge); virtual void IfRegisterLT(int reg, int comparand, Label* if_lt); virtual void IfRegisterEqPos(int reg, Label* if_eq); virtual IrregexpImplementation Implementation(); virtual void LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds = true, int characters = 1); virtual void PopCurrentPosition(); virtual void PopRegister(int register_index); virtual void PushBacktrack(Label* label); virtual void PushCurrentPosition(); virtual void PushRegister(int register_index, StackCheckFlag check_stack_limit); virtual void ReadCurrentPositionFromRegister(int reg); virtual void ReadStackPointerFromRegister(int reg); virtual void SetCurrentPositionFromEnd(int by); virtual void SetRegister(int register_index, int to); virtual bool Succeed(); virtual void WriteCurrentPositionToRegister(int reg, int cp_offset); virtual void ClearRegisters(int reg_from, int reg_to); virtual void WriteStackPointerToRegister(int reg); static Result Match(Handle regexp, Handle subject, int* offsets_vector, int offsets_vector_length, int previous_index, Isolate* isolate); static Result Execute(Code* code, String* input, int start_offset, const byte* input_start, const byte* input_end, int* output, bool at_start); // Called from RegExp if the stack-guard is triggered. // If the code object is relocated, the return address is fixed before // returning. static int CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame); private: // Offsets from rbp of function parameters and stored registers. static const int kFramePointer = 0; // Above the frame pointer - function parameters and return address. static const int kReturn_eip = kFramePointer + kRegisterSize; static const int kFrameAlign = kReturn_eip + kRegisterSize; #ifdef _WIN64 // Parameters (first four passed as registers, but with room on stack). // In Microsoft 64-bit Calling Convention, there is room on the callers // stack (before the return address) to spill parameter registers. We // use this space to store the register passed parameters. static const int kInputString = kFrameAlign; // StartIndex is passed as 32 bit int. static const int kStartIndex = kInputString + kRegisterSize; static const int kInputStart = kStartIndex + kRegisterSize; static const int kInputEnd = kInputStart + kRegisterSize; static const int kRegisterOutput = kInputEnd + kRegisterSize; // For the case of global regular expression, we have room to store at least // one set of capture results. For the case of non-global regexp, we ignore // this value. NumOutputRegisters is passed as 32-bit value. The upper // 32 bit of this 64-bit stack slot may contain garbage. static const int kNumOutputRegisters = kRegisterOutput + kRegisterSize; static const int kStackHighEnd = kNumOutputRegisters + kRegisterSize; // DirectCall is passed as 32 bit int (values 0 or 1). static const int kDirectCall = kStackHighEnd + kRegisterSize; static const int kIsolate = kDirectCall + kRegisterSize; #else // In AMD64 ABI Calling Convention, the first six integer parameters // are passed as registers, and caller must allocate space on the stack // if it wants them stored. We push the parameters after the frame pointer. static const int kInputString = kFramePointer - kRegisterSize; static const int kStartIndex = kInputString - kRegisterSize; static const int kInputStart = kStartIndex - kRegisterSize; static const int kInputEnd = kInputStart - kRegisterSize; static const int kRegisterOutput = kInputEnd - kRegisterSize; // For the case of global regular expression, we have room to store at least // one set of capture results. For the case of non-global regexp, we ignore // this value. static const int kNumOutputRegisters = kRegisterOutput - kRegisterSize; static const int kStackHighEnd = kFrameAlign; static const int kDirectCall = kStackHighEnd + kRegisterSize; static const int kIsolate = kDirectCall + kRegisterSize; #endif #ifdef _WIN64 // Microsoft calling convention has three callee-saved registers // (that we are using). We push these after the frame pointer. static const int kBackup_rsi = kFramePointer - kRegisterSize; static const int kBackup_rdi = kBackup_rsi - kRegisterSize; static const int kBackup_rbx = kBackup_rdi - kRegisterSize; static const int kLastCalleeSaveRegister = kBackup_rbx; #else // AMD64 Calling Convention has only one callee-save register that // we use. We push this after the frame pointer (and after the // parameters). static const int kBackup_rbx = kNumOutputRegisters - kRegisterSize; static const int kLastCalleeSaveRegister = kBackup_rbx; #endif static const int kSuccessfulCaptures = kLastCalleeSaveRegister - kPointerSize; // When adding local variables remember to push space for them in // the frame in GetCode. static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize; // First register address. Following registers are below it on the stack. static const int kRegisterZero = kStringStartMinusOne - kPointerSize; // Initial size of code buffer. static const size_t kRegExpCodeSize = 1024; // Load a number of characters at the given offset from the // current position, into the current-character register. void LoadCurrentCharacterUnchecked(int cp_offset, int character_count); // Check whether preemption has been requested. void CheckPreemption(); // Check whether we are exceeding the stack limit on the backtrack stack. void CheckStackLimit(); // Generate a call to CheckStackGuardState. void CallCheckStackGuardState(); // The rbp-relative location of a regexp register. Operand register_location(int register_index); // The register containing the current character after LoadCurrentCharacter. inline Register current_character() { return rdx; } // The register containing the backtrack stack top. Provides a meaningful // name to the register. inline Register backtrack_stackpointer() { return rcx; } // The registers containing a self pointer to this code's Code object. inline Register code_object_pointer() { return r8; } // Byte size of chars in the string to match (decided by the Mode argument) inline int char_size() { return static_cast(mode_); } // Equivalent to a conditional branch to the label, unless the label // is NULL, in which case it is a conditional Backtrack. void BranchOrBacktrack(Condition condition, Label* to); void MarkPositionForCodeRelativeFixup() { code_relative_fixup_positions_.Add(masm_.pc_offset(), zone()); } void FixupCodeRelativePositions(); // Call and return internally in the generated code in a way that // is GC-safe (i.e., doesn't leave absolute code addresses on the stack) inline void SafeCall(Label* to); inline void SafeCallTarget(Label* label); inline void SafeReturn(); // Pushes the value of a register on the backtrack stack. Decrements the // stack pointer (rcx) by a word size and stores the register's value there. inline void Push(Register source); // Pushes a value on the backtrack stack. Decrements the stack pointer (rcx) // by a word size and stores the value there. inline void Push(Immediate value); // Pushes the Code object relative offset of a label on the backtrack stack // (i.e., a backtrack target). Decrements the stack pointer (rcx) // by a word size and stores the value there. inline void Push(Label* label); // Pops a value from the backtrack stack. Reads the word at the stack pointer // (rcx) and increments it by a word size. inline void Pop(Register target); // Drops the top value from the backtrack stack without reading it. // Increments the stack pointer (rcx) by a word size. inline void Drop(); inline void ReadPositionFromRegister(Register dst, int reg); Isolate* isolate() const { return masm_.isolate(); } MacroAssembler masm_; MacroAssembler::NoRootArrayScope no_root_array_scope_; ZoneList code_relative_fixup_positions_; // Which mode to generate code for (LATIN1 or UC16). Mode mode_; // One greater than maximal register index actually used. int num_registers_; // Number of registers to output at the end (the saved registers // are always 0..num_saved_registers_-1) int num_saved_registers_; // Labels used internally. Label entry_label_; Label start_label_; Label success_label_; Label backtrack_label_; Label exit_label_; Label check_preempt_label_; Label stack_overflow_label_; }; #endif // V8_INTERPRETED_REGEXP } // namespace internal } // namespace v8 #endif // V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_