• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/hydrogen-instructions.h"
6 
7 #include "src/base/bits.h"
8 #include "src/base/ieee754.h"
9 #include "src/base/safe_math.h"
10 #include "src/crankshaft/hydrogen-infer-representation.h"
11 #include "src/double.h"
12 #include "src/elements.h"
13 #include "src/factory.h"
14 
15 #if V8_TARGET_ARCH_IA32
16 #include "src/crankshaft/ia32/lithium-ia32.h"  // NOLINT
17 #elif V8_TARGET_ARCH_X64
18 #include "src/crankshaft/x64/lithium-x64.h"  // NOLINT
19 #elif V8_TARGET_ARCH_ARM64
20 #include "src/crankshaft/arm64/lithium-arm64.h"  // NOLINT
21 #elif V8_TARGET_ARCH_ARM
22 #include "src/crankshaft/arm/lithium-arm.h"  // NOLINT
23 #elif V8_TARGET_ARCH_PPC
24 #include "src/crankshaft/ppc/lithium-ppc.h"  // NOLINT
25 #elif V8_TARGET_ARCH_MIPS
26 #include "src/crankshaft/mips/lithium-mips.h"  // NOLINT
27 #elif V8_TARGET_ARCH_MIPS64
28 #include "src/crankshaft/mips64/lithium-mips64.h"  // NOLINT
29 #elif V8_TARGET_ARCH_S390
30 #include "src/crankshaft/s390/lithium-s390.h"  // NOLINT
31 #elif V8_TARGET_ARCH_X87
32 #include "src/crankshaft/x87/lithium-x87.h"  // NOLINT
33 #else
34 #error Unsupported target architecture.
35 #endif
36 
37 namespace v8 {
38 namespace internal {
39 
40 #define DEFINE_COMPILE(type)                                         \
41   LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) {  \
42     return builder->Do##type(this);                                  \
43   }
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)44 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
45 #undef DEFINE_COMPILE
46 
47 
48 Isolate* HValue::isolate() const {
49   DCHECK(block() != NULL);
50   return block()->isolate();
51 }
52 
53 
AssumeRepresentation(Representation r)54 void HValue::AssumeRepresentation(Representation r) {
55   if (CheckFlag(kFlexibleRepresentation)) {
56     ChangeRepresentation(r);
57     // The representation of the value is dictated by type feedback and
58     // will not be changed later.
59     ClearFlag(kFlexibleRepresentation);
60   }
61 }
62 
63 
InferRepresentation(HInferRepresentationPhase * h_infer)64 void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
65   DCHECK(CheckFlag(kFlexibleRepresentation));
66   Representation new_rep = RepresentationFromInputs();
67   UpdateRepresentation(new_rep, h_infer, "inputs");
68   new_rep = RepresentationFromUses();
69   UpdateRepresentation(new_rep, h_infer, "uses");
70   if (representation().IsSmi() && HasNonSmiUse()) {
71     UpdateRepresentation(
72         Representation::Integer32(), h_infer, "use requirements");
73   }
74 }
75 
76 
RepresentationFromUses()77 Representation HValue::RepresentationFromUses() {
78   if (HasNoUses()) return Representation::None();
79   Representation result = Representation::None();
80 
81   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
82     HValue* use = it.value();
83     Representation rep = use->observed_input_representation(it.index());
84     result = result.generalize(rep);
85 
86     if (FLAG_trace_representation) {
87       PrintF("#%d %s is used by #%d %s as %s%s\n",
88              id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
89              (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
90     }
91   }
92   if (IsPhi()) {
93     result = result.generalize(
94         HPhi::cast(this)->representation_from_indirect_uses());
95   }
96 
97   // External representations are dealt with separately.
98   return result.IsExternal() ? Representation::None() : result;
99 }
100 
101 
UpdateRepresentation(Representation new_rep,HInferRepresentationPhase * h_infer,const char * reason)102 void HValue::UpdateRepresentation(Representation new_rep,
103                                   HInferRepresentationPhase* h_infer,
104                                   const char* reason) {
105   Representation r = representation();
106   if (new_rep.is_more_general_than(r)) {
107     if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
108     if (FLAG_trace_representation) {
109       PrintF("Changing #%d %s representation %s -> %s based on %s\n",
110              id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
111     }
112     ChangeRepresentation(new_rep);
113     AddDependantsToWorklist(h_infer);
114   }
115 }
116 
117 
AddDependantsToWorklist(HInferRepresentationPhase * h_infer)118 void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
119   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
120     h_infer->AddToWorklist(it.value());
121   }
122   for (int i = 0; i < OperandCount(); ++i) {
123     h_infer->AddToWorklist(OperandAt(i));
124   }
125 }
126 
127 
ConvertAndSetOverflow(Representation r,int64_t result,bool * overflow)128 static int32_t ConvertAndSetOverflow(Representation r,
129                                      int64_t result,
130                                      bool* overflow) {
131   if (r.IsSmi()) {
132     if (result > Smi::kMaxValue) {
133       *overflow = true;
134       return Smi::kMaxValue;
135     }
136     if (result < Smi::kMinValue) {
137       *overflow = true;
138       return Smi::kMinValue;
139     }
140   } else {
141     if (result > kMaxInt) {
142       *overflow = true;
143       return kMaxInt;
144     }
145     if (result < kMinInt) {
146       *overflow = true;
147       return kMinInt;
148     }
149   }
150   return static_cast<int32_t>(result);
151 }
152 
153 
AddWithoutOverflow(Representation r,int32_t a,int32_t b,bool * overflow)154 static int32_t AddWithoutOverflow(Representation r,
155                                   int32_t a,
156                                   int32_t b,
157                                   bool* overflow) {
158   int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
159   return ConvertAndSetOverflow(r, result, overflow);
160 }
161 
162 
SubWithoutOverflow(Representation r,int32_t a,int32_t b,bool * overflow)163 static int32_t SubWithoutOverflow(Representation r,
164                                   int32_t a,
165                                   int32_t b,
166                                   bool* overflow) {
167   int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
168   return ConvertAndSetOverflow(r, result, overflow);
169 }
170 
171 
MulWithoutOverflow(const Representation & r,int32_t a,int32_t b,bool * overflow)172 static int32_t MulWithoutOverflow(const Representation& r,
173                                   int32_t a,
174                                   int32_t b,
175                                   bool* overflow) {
176   int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
177   return ConvertAndSetOverflow(r, result, overflow);
178 }
179 
180 
Mask() const181 int32_t Range::Mask() const {
182   if (lower_ == upper_) return lower_;
183   if (lower_ >= 0) {
184     int32_t res = 1;
185     while (res < upper_) {
186       res = (res << 1) | 1;
187     }
188     return res;
189   }
190   return 0xffffffff;
191 }
192 
193 
AddConstant(int32_t value)194 void Range::AddConstant(int32_t value) {
195   if (value == 0) return;
196   bool may_overflow = false;  // Overflow is ignored here.
197   Representation r = Representation::Integer32();
198   lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
199   upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
200 #ifdef DEBUG
201   Verify();
202 #endif
203 }
204 
205 
Intersect(Range * other)206 void Range::Intersect(Range* other) {
207   upper_ = Min(upper_, other->upper_);
208   lower_ = Max(lower_, other->lower_);
209   bool b = CanBeMinusZero() && other->CanBeMinusZero();
210   set_can_be_minus_zero(b);
211 }
212 
213 
Union(Range * other)214 void Range::Union(Range* other) {
215   upper_ = Max(upper_, other->upper_);
216   lower_ = Min(lower_, other->lower_);
217   bool b = CanBeMinusZero() || other->CanBeMinusZero();
218   set_can_be_minus_zero(b);
219 }
220 
221 
CombinedMax(Range * other)222 void Range::CombinedMax(Range* other) {
223   upper_ = Max(upper_, other->upper_);
224   lower_ = Max(lower_, other->lower_);
225   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
226 }
227 
228 
CombinedMin(Range * other)229 void Range::CombinedMin(Range* other) {
230   upper_ = Min(upper_, other->upper_);
231   lower_ = Min(lower_, other->lower_);
232   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
233 }
234 
235 
Sar(int32_t value)236 void Range::Sar(int32_t value) {
237   int32_t bits = value & 0x1F;
238   lower_ = lower_ >> bits;
239   upper_ = upper_ >> bits;
240   set_can_be_minus_zero(false);
241 }
242 
243 
Shl(int32_t value)244 void Range::Shl(int32_t value) {
245   int32_t bits = value & 0x1F;
246   int old_lower = lower_;
247   int old_upper = upper_;
248   lower_ = lower_ << bits;
249   upper_ = upper_ << bits;
250   if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
251     upper_ = kMaxInt;
252     lower_ = kMinInt;
253   }
254   set_can_be_minus_zero(false);
255 }
256 
257 
AddAndCheckOverflow(const Representation & r,Range * other)258 bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
259   bool may_overflow = false;
260   lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
261   upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
262   KeepOrder();
263 #ifdef DEBUG
264   Verify();
265 #endif
266   return may_overflow;
267 }
268 
269 
SubAndCheckOverflow(const Representation & r,Range * other)270 bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
271   bool may_overflow = false;
272   lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
273   upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
274   KeepOrder();
275 #ifdef DEBUG
276   Verify();
277 #endif
278   return may_overflow;
279 }
280 
281 
KeepOrder()282 void Range::KeepOrder() {
283   if (lower_ > upper_) {
284     int32_t tmp = lower_;
285     lower_ = upper_;
286     upper_ = tmp;
287   }
288 }
289 
290 
291 #ifdef DEBUG
Verify() const292 void Range::Verify() const {
293   DCHECK(lower_ <= upper_);
294 }
295 #endif
296 
297 
MulAndCheckOverflow(const Representation & r,Range * other)298 bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
299   bool may_overflow = false;
300   int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
301   int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
302   int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
303   int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
304   lower_ = Min(Min(v1, v2), Min(v3, v4));
305   upper_ = Max(Max(v1, v2), Max(v3, v4));
306 #ifdef DEBUG
307   Verify();
308 #endif
309   return may_overflow;
310 }
311 
312 
IsDefinedAfter(HBasicBlock * other) const313 bool HValue::IsDefinedAfter(HBasicBlock* other) const {
314   return block()->block_id() > other->block_id();
315 }
316 
317 
tail()318 HUseListNode* HUseListNode::tail() {
319   // Skip and remove dead items in the use list.
320   while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
321     tail_ = tail_->tail_;
322   }
323   return tail_;
324 }
325 
326 
CheckUsesForFlag(Flag f) const327 bool HValue::CheckUsesForFlag(Flag f) const {
328   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
329     if (it.value()->IsSimulate()) continue;
330     if (!it.value()->CheckFlag(f)) return false;
331   }
332   return true;
333 }
334 
335 
CheckUsesForFlag(Flag f,HValue ** value) const336 bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
337   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
338     if (it.value()->IsSimulate()) continue;
339     if (!it.value()->CheckFlag(f)) {
340       *value = it.value();
341       return false;
342     }
343   }
344   return true;
345 }
346 
347 
HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const348 bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
349   bool return_value = false;
350   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
351     if (it.value()->IsSimulate()) continue;
352     if (!it.value()->CheckFlag(f)) return false;
353     return_value = true;
354   }
355   return return_value;
356 }
357 
358 
HUseIterator(HUseListNode * head)359 HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
360   Advance();
361 }
362 
363 
Advance()364 void HUseIterator::Advance() {
365   current_ = next_;
366   if (current_ != NULL) {
367     next_ = current_->tail();
368     value_ = current_->value();
369     index_ = current_->index();
370   }
371 }
372 
373 
UseCount() const374 int HValue::UseCount() const {
375   int count = 0;
376   for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
377   return count;
378 }
379 
380 
RemoveUse(HValue * value,int index)381 HUseListNode* HValue::RemoveUse(HValue* value, int index) {
382   HUseListNode* previous = NULL;
383   HUseListNode* current = use_list_;
384   while (current != NULL) {
385     if (current->value() == value && current->index() == index) {
386       if (previous == NULL) {
387         use_list_ = current->tail();
388       } else {
389         previous->set_tail(current->tail());
390       }
391       break;
392     }
393 
394     previous = current;
395     current = current->tail();
396   }
397 
398 #ifdef DEBUG
399   // Do not reuse use list nodes in debug mode, zap them.
400   if (current != NULL) {
401     HUseListNode* temp =
402         new(block()->zone())
403         HUseListNode(current->value(), current->index(), NULL);
404     current->Zap();
405     current = temp;
406   }
407 #endif
408   return current;
409 }
410 
411 
Equals(HValue * other)412 bool HValue::Equals(HValue* other) {
413   if (other->opcode() != opcode()) return false;
414   if (!other->representation().Equals(representation())) return false;
415   if (!other->type_.Equals(type_)) return false;
416   if (other->flags() != flags()) return false;
417   if (OperandCount() != other->OperandCount()) return false;
418   for (int i = 0; i < OperandCount(); ++i) {
419     if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
420   }
421   bool result = DataEquals(other);
422   DCHECK(!result || Hashcode() == other->Hashcode());
423   return result;
424 }
425 
426 
Hashcode()427 intptr_t HValue::Hashcode() {
428   intptr_t result = opcode();
429   int count = OperandCount();
430   for (int i = 0; i < count; ++i) {
431     result = result * 19 + OperandAt(i)->id() + (result >> 7);
432   }
433   return result;
434 }
435 
436 
Mnemonic() const437 const char* HValue::Mnemonic() const {
438   switch (opcode()) {
439 #define MAKE_CASE(type) case k##type: return #type;
440     HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
441 #undef MAKE_CASE
442     case kPhi: return "Phi";
443     default: return "";
444   }
445 }
446 
447 
CanReplaceWithDummyUses()448 bool HValue::CanReplaceWithDummyUses() {
449   return FLAG_unreachable_code_elimination &&
450       !(block()->IsReachable() ||
451         IsBlockEntry() ||
452         IsControlInstruction() ||
453         IsArgumentsObject() ||
454         IsCapturedObject() ||
455         IsSimulate() ||
456         IsEnterInlined() ||
457         IsLeaveInlined());
458 }
459 
460 
IsInteger32Constant()461 bool HValue::IsInteger32Constant() {
462   return IsConstant() && HConstant::cast(this)->HasInteger32Value();
463 }
464 
465 
GetInteger32Constant()466 int32_t HValue::GetInteger32Constant() {
467   return HConstant::cast(this)->Integer32Value();
468 }
469 
470 
EqualsInteger32Constant(int32_t value)471 bool HValue::EqualsInteger32Constant(int32_t value) {
472   return IsInteger32Constant() && GetInteger32Constant() == value;
473 }
474 
475 
SetOperandAt(int index,HValue * value)476 void HValue::SetOperandAt(int index, HValue* value) {
477   RegisterUse(index, value);
478   InternalSetOperandAt(index, value);
479 }
480 
481 
DeleteAndReplaceWith(HValue * other)482 void HValue::DeleteAndReplaceWith(HValue* other) {
483   // We replace all uses first, so Delete can assert that there are none.
484   if (other != NULL) ReplaceAllUsesWith(other);
485   Kill();
486   DeleteFromGraph();
487 }
488 
489 
ReplaceAllUsesWith(HValue * other)490 void HValue::ReplaceAllUsesWith(HValue* other) {
491   while (use_list_ != NULL) {
492     HUseListNode* list_node = use_list_;
493     HValue* value = list_node->value();
494     DCHECK(!value->block()->IsStartBlock());
495     value->InternalSetOperandAt(list_node->index(), other);
496     use_list_ = list_node->tail();
497     list_node->set_tail(other->use_list_);
498     other->use_list_ = list_node;
499   }
500 }
501 
502 
Kill()503 void HValue::Kill() {
504   // Instead of going through the entire use list of each operand, we only
505   // check the first item in each use list and rely on the tail() method to
506   // skip dead items, removing them lazily next time we traverse the list.
507   SetFlag(kIsDead);
508   for (int i = 0; i < OperandCount(); ++i) {
509     HValue* operand = OperandAt(i);
510     if (operand == NULL) continue;
511     HUseListNode* first = operand->use_list_;
512     if (first != NULL && first->value()->CheckFlag(kIsDead)) {
513       operand->use_list_ = first->tail();
514     }
515   }
516 }
517 
518 
SetBlock(HBasicBlock * block)519 void HValue::SetBlock(HBasicBlock* block) {
520   DCHECK(block_ == NULL || block == NULL);
521   block_ = block;
522   if (id_ == kNoNumber && block != NULL) {
523     id_ = block->graph()->GetNextValueID(this);
524   }
525 }
526 
527 
operator <<(std::ostream & os,const HValue & v)528 std::ostream& operator<<(std::ostream& os, const HValue& v) {
529   return v.PrintTo(os);
530 }
531 
532 
operator <<(std::ostream & os,const TypeOf & t)533 std::ostream& operator<<(std::ostream& os, const TypeOf& t) {
534   if (t.value->representation().IsTagged() &&
535       !t.value->type().Equals(HType::Tagged()))
536     return os;
537   return os << " type:" << t.value->type();
538 }
539 
540 
operator <<(std::ostream & os,const ChangesOf & c)541 std::ostream& operator<<(std::ostream& os, const ChangesOf& c) {
542   GVNFlagSet changes_flags = c.value->ChangesFlags();
543   if (changes_flags.IsEmpty()) return os;
544   os << " changes[";
545   if (changes_flags == c.value->AllSideEffectsFlagSet()) {
546     os << "*";
547   } else {
548     bool add_comma = false;
549 #define PRINT_DO(Type)                   \
550   if (changes_flags.Contains(k##Type)) { \
551     if (add_comma) os << ",";            \
552     add_comma = true;                    \
553     os << #Type;                         \
554   }
555     GVN_TRACKED_FLAG_LIST(PRINT_DO);
556     GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
557 #undef PRINT_DO
558   }
559   return os << "]";
560 }
561 
562 
HasMonomorphicJSObjectType()563 bool HValue::HasMonomorphicJSObjectType() {
564   return !GetMonomorphicJSObjectMap().is_null();
565 }
566 
567 
UpdateInferredType()568 bool HValue::UpdateInferredType() {
569   HType type = CalculateInferredType();
570   bool result = (!type.Equals(type_));
571   type_ = type;
572   return result;
573 }
574 
575 
RegisterUse(int index,HValue * new_value)576 void HValue::RegisterUse(int index, HValue* new_value) {
577   HValue* old_value = OperandAt(index);
578   if (old_value == new_value) return;
579 
580   HUseListNode* removed = NULL;
581   if (old_value != NULL) {
582     removed = old_value->RemoveUse(this, index);
583   }
584 
585   if (new_value != NULL) {
586     if (removed == NULL) {
587       new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
588           this, index, new_value->use_list_);
589     } else {
590       removed->set_tail(new_value->use_list_);
591       new_value->use_list_ = removed;
592     }
593   }
594 }
595 
596 
AddNewRange(Range * r,Zone * zone)597 void HValue::AddNewRange(Range* r, Zone* zone) {
598   if (!HasRange()) ComputeInitialRange(zone);
599   if (!HasRange()) range_ = new(zone) Range();
600   DCHECK(HasRange());
601   r->StackUpon(range_);
602   range_ = r;
603 }
604 
605 
RemoveLastAddedRange()606 void HValue::RemoveLastAddedRange() {
607   DCHECK(HasRange());
608   DCHECK(range_->next() != NULL);
609   range_ = range_->next();
610 }
611 
612 
ComputeInitialRange(Zone * zone)613 void HValue::ComputeInitialRange(Zone* zone) {
614   DCHECK(!HasRange());
615   range_ = InferRange(zone);
616   DCHECK(HasRange());
617 }
618 
619 
PrintTo(std::ostream & os) const620 std::ostream& HInstruction::PrintTo(std::ostream& os) const {  // NOLINT
621   os << Mnemonic() << " ";
622   PrintDataTo(os) << ChangesOf(this) << TypeOf(this);
623   if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]";
624   if (CheckFlag(HValue::kIsDead)) os << " [dead]";
625   return os;
626 }
627 
628 
PrintDataTo(std::ostream & os) const629 std::ostream& HInstruction::PrintDataTo(std::ostream& os) const {  // NOLINT
630   for (int i = 0; i < OperandCount(); ++i) {
631     if (i > 0) os << " ";
632     os << NameOf(OperandAt(i));
633   }
634   return os;
635 }
636 
637 
Unlink()638 void HInstruction::Unlink() {
639   DCHECK(IsLinked());
640   DCHECK(!IsControlInstruction());  // Must never move control instructions.
641   DCHECK(!IsBlockEntry());  // Doesn't make sense to delete these.
642   DCHECK(previous_ != NULL);
643   previous_->next_ = next_;
644   if (next_ == NULL) {
645     DCHECK(block()->last() == this);
646     block()->set_last(previous_);
647   } else {
648     next_->previous_ = previous_;
649   }
650   clear_block();
651 }
652 
653 
InsertBefore(HInstruction * next)654 void HInstruction::InsertBefore(HInstruction* next) {
655   DCHECK(!IsLinked());
656   DCHECK(!next->IsBlockEntry());
657   DCHECK(!IsControlInstruction());
658   DCHECK(!next->block()->IsStartBlock());
659   DCHECK(next->previous_ != NULL);
660   HInstruction* prev = next->previous();
661   prev->next_ = this;
662   next->previous_ = this;
663   next_ = next;
664   previous_ = prev;
665   SetBlock(next->block());
666   if (!has_position() && next->has_position()) {
667     set_position(next->position());
668   }
669 }
670 
671 
InsertAfter(HInstruction * previous)672 void HInstruction::InsertAfter(HInstruction* previous) {
673   DCHECK(!IsLinked());
674   DCHECK(!previous->IsControlInstruction());
675   DCHECK(!IsControlInstruction() || previous->next_ == NULL);
676   HBasicBlock* block = previous->block();
677   // Never insert anything except constants into the start block after finishing
678   // it.
679   if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
680     DCHECK(block->end()->SecondSuccessor() == NULL);
681     InsertAfter(block->end()->FirstSuccessor()->first());
682     return;
683   }
684 
685   // If we're inserting after an instruction with side-effects that is
686   // followed by a simulate instruction, we need to insert after the
687   // simulate instruction instead.
688   HInstruction* next = previous->next_;
689   if (previous->HasObservableSideEffects() && next != NULL) {
690     DCHECK(next->IsSimulate());
691     previous = next;
692     next = previous->next_;
693   }
694 
695   previous_ = previous;
696   next_ = next;
697   SetBlock(block);
698   previous->next_ = this;
699   if (next != NULL) next->previous_ = this;
700   if (block->last() == previous) {
701     block->set_last(this);
702   }
703   if (!has_position() && previous->has_position()) {
704     set_position(previous->position());
705   }
706 }
707 
708 
Dominates(HInstruction * other)709 bool HInstruction::Dominates(HInstruction* other) {
710   if (block() != other->block()) {
711     return block()->Dominates(other->block());
712   }
713   // Both instructions are in the same basic block. This instruction
714   // should precede the other one in order to dominate it.
715   for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
716     if (instr == other) {
717       return true;
718     }
719   }
720   return false;
721 }
722 
723 
724 #ifdef DEBUG
Verify()725 void HInstruction::Verify() {
726   // Verify that input operands are defined before use.
727   HBasicBlock* cur_block = block();
728   for (int i = 0; i < OperandCount(); ++i) {
729     HValue* other_operand = OperandAt(i);
730     if (other_operand == NULL) continue;
731     HBasicBlock* other_block = other_operand->block();
732     if (cur_block == other_block) {
733       if (!other_operand->IsPhi()) {
734         HInstruction* cur = this->previous();
735         while (cur != NULL) {
736           if (cur == other_operand) break;
737           cur = cur->previous();
738         }
739         // Must reach other operand in the same block!
740         DCHECK(cur == other_operand);
741       }
742     } else {
743       // If the following assert fires, you may have forgotten an
744       // AddInstruction.
745       DCHECK(other_block->Dominates(cur_block));
746     }
747   }
748 
749   // Verify that instructions that may have side-effects are followed
750   // by a simulate instruction.
751   if (HasObservableSideEffects() && !IsOsrEntry()) {
752     DCHECK(next()->IsSimulate());
753   }
754 
755   // Verify that instructions that can be eliminated by GVN have overridden
756   // HValue::DataEquals.  The default implementation is UNREACHABLE.  We
757   // don't actually care whether DataEquals returns true or false here.
758   if (CheckFlag(kUseGVN)) DataEquals(this);
759 
760   // Verify that all uses are in the graph.
761   for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
762     if (use.value()->IsInstruction()) {
763       DCHECK(HInstruction::cast(use.value())->IsLinked());
764     }
765   }
766 }
767 #endif
768 
769 
CanDeoptimize()770 bool HInstruction::CanDeoptimize() {
771   switch (opcode()) {
772     case HValue::kAbnormalExit:
773     case HValue::kAccessArgumentsAt:
774     case HValue::kAllocate:
775     case HValue::kArgumentsElements:
776     case HValue::kArgumentsLength:
777     case HValue::kArgumentsObject:
778     case HValue::kBlockEntry:
779     case HValue::kCallNewArray:
780     case HValue::kCapturedObject:
781     case HValue::kClassOfTestAndBranch:
782     case HValue::kCompareGeneric:
783     case HValue::kCompareHoleAndBranch:
784     case HValue::kCompareMap:
785     case HValue::kCompareNumericAndBranch:
786     case HValue::kCompareObjectEqAndBranch:
787     case HValue::kConstant:
788     case HValue::kContext:
789     case HValue::kDebugBreak:
790     case HValue::kDeclareGlobals:
791     case HValue::kDoubleBits:
792     case HValue::kDummyUse:
793     case HValue::kEnterInlined:
794     case HValue::kEnvironmentMarker:
795     case HValue::kForceRepresentation:
796     case HValue::kGetCachedArrayIndex:
797     case HValue::kGoto:
798     case HValue::kHasCachedArrayIndexAndBranch:
799     case HValue::kHasInstanceTypeAndBranch:
800     case HValue::kInnerAllocatedObject:
801     case HValue::kIsSmiAndBranch:
802     case HValue::kIsStringAndBranch:
803     case HValue::kIsUndetectableAndBranch:
804     case HValue::kLeaveInlined:
805     case HValue::kLoadFieldByIndex:
806     case HValue::kLoadGlobalGeneric:
807     case HValue::kLoadNamedField:
808     case HValue::kLoadNamedGeneric:
809     case HValue::kLoadRoot:
810     case HValue::kMathMinMax:
811     case HValue::kParameter:
812     case HValue::kPhi:
813     case HValue::kPushArguments:
814     case HValue::kReturn:
815     case HValue::kSeqStringGetChar:
816     case HValue::kStoreCodeEntry:
817     case HValue::kStoreKeyed:
818     case HValue::kStoreNamedField:
819     case HValue::kStoreNamedGeneric:
820     case HValue::kStringCharCodeAt:
821     case HValue::kStringCharFromCode:
822     case HValue::kThisFunction:
823     case HValue::kTypeofIsAndBranch:
824     case HValue::kUnknownOSRValue:
825     case HValue::kUseConst:
826       return false;
827 
828     case HValue::kAdd:
829     case HValue::kApplyArguments:
830     case HValue::kBitwise:
831     case HValue::kBoundsCheck:
832     case HValue::kBranch:
833     case HValue::kCallRuntime:
834     case HValue::kCallWithDescriptor:
835     case HValue::kChange:
836     case HValue::kCheckArrayBufferNotNeutered:
837     case HValue::kCheckHeapObject:
838     case HValue::kCheckInstanceType:
839     case HValue::kCheckMapValue:
840     case HValue::kCheckMaps:
841     case HValue::kCheckSmi:
842     case HValue::kCheckValue:
843     case HValue::kClampToUint8:
844     case HValue::kDeoptimize:
845     case HValue::kDiv:
846     case HValue::kForInCacheArray:
847     case HValue::kForInPrepareMap:
848     case HValue::kHasInPrototypeChainAndBranch:
849     case HValue::kInvokeFunction:
850     case HValue::kLoadContextSlot:
851     case HValue::kLoadFunctionPrototype:
852     case HValue::kLoadKeyed:
853     case HValue::kLoadKeyedGeneric:
854     case HValue::kMathFloorOfDiv:
855     case HValue::kMaybeGrowElements:
856     case HValue::kMod:
857     case HValue::kMul:
858     case HValue::kOsrEntry:
859     case HValue::kPower:
860     case HValue::kPrologue:
861     case HValue::kRor:
862     case HValue::kSar:
863     case HValue::kSeqStringSetChar:
864     case HValue::kShl:
865     case HValue::kShr:
866     case HValue::kSimulate:
867     case HValue::kStackCheck:
868     case HValue::kStoreContextSlot:
869     case HValue::kStoreKeyedGeneric:
870     case HValue::kStringAdd:
871     case HValue::kStringCompareAndBranch:
872     case HValue::kSub:
873     case HValue::kTransitionElementsKind:
874     case HValue::kTrapAllocationMemento:
875     case HValue::kTypeof:
876     case HValue::kUnaryMathOperation:
877     case HValue::kWrapReceiver:
878       return true;
879   }
880   UNREACHABLE();
881   return true;
882 }
883 
884 
operator <<(std::ostream & os,const NameOf & v)885 std::ostream& operator<<(std::ostream& os, const NameOf& v) {
886   return os << v.value->representation().Mnemonic() << v.value->id();
887 }
888 
PrintDataTo(std::ostream & os) const889 std::ostream& HDummyUse::PrintDataTo(std::ostream& os) const {  // NOLINT
890   return os << NameOf(value());
891 }
892 
893 
PrintDataTo(std::ostream & os) const894 std::ostream& HEnvironmentMarker::PrintDataTo(
895     std::ostream& os) const {  // NOLINT
896   return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index()
897             << "]";
898 }
899 
900 
PrintDataTo(std::ostream & os) const901 std::ostream& HUnaryCall::PrintDataTo(std::ostream& os) const {  // NOLINT
902   return os << NameOf(value()) << " #" << argument_count();
903 }
904 
905 
PrintDataTo(std::ostream & os) const906 std::ostream& HBinaryCall::PrintDataTo(std::ostream& os) const {  // NOLINT
907   return os << NameOf(first()) << " " << NameOf(second()) << " #"
908             << argument_count();
909 }
910 
PrintTo(std::ostream & os) const911 std::ostream& HInvokeFunction::PrintTo(std::ostream& os) const {  // NOLINT
912   if (tail_call_mode() == TailCallMode::kAllow) os << "Tail";
913   return HBinaryCall::PrintTo(os);
914 }
915 
PrintDataTo(std::ostream & os) const916 std::ostream& HInvokeFunction::PrintDataTo(std::ostream& os) const {  // NOLINT
917   HBinaryCall::PrintDataTo(os);
918   if (syntactic_tail_call_mode() == TailCallMode::kAllow) {
919     os << ", JSTailCall";
920   }
921   return os;
922 }
923 
PrintDataTo(std::ostream & os) const924 std::ostream& HBoundsCheck::PrintDataTo(std::ostream& os) const {  // NOLINT
925   os << NameOf(index()) << " " << NameOf(length());
926   if (base() != NULL && (offset() != 0 || scale() != 0)) {
927     os << " base: ((";
928     if (base() != index()) {
929       os << NameOf(index());
930     } else {
931       os << "index";
932     }
933     os << " + " << offset() << ") >> " << scale() << ")";
934   }
935   if (skip_check()) os << " [DISABLED]";
936   return os;
937 }
938 
939 
InferRepresentation(HInferRepresentationPhase * h_infer)940 void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
941   DCHECK(CheckFlag(kFlexibleRepresentation));
942   HValue* actual_index = index()->ActualValue();
943   HValue* actual_length = length()->ActualValue();
944   Representation index_rep = actual_index->representation();
945   Representation length_rep = actual_length->representation();
946   if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
947     index_rep = Representation::Smi();
948   }
949   if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
950     length_rep = Representation::Smi();
951   }
952   Representation r = index_rep.generalize(length_rep);
953   if (r.is_more_general_than(Representation::Integer32())) {
954     r = Representation::Integer32();
955   }
956   UpdateRepresentation(r, h_infer, "boundscheck");
957 }
958 
959 
InferRange(Zone * zone)960 Range* HBoundsCheck::InferRange(Zone* zone) {
961   Representation r = representation();
962   if (r.IsSmiOrInteger32() && length()->HasRange()) {
963     int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
964     int lower = 0;
965 
966     Range* result = new(zone) Range(lower, upper);
967     if (index()->HasRange()) {
968       result->Intersect(index()->range());
969     }
970 
971     // In case of Smi representation, clamp result to Smi::kMaxValue.
972     if (r.IsSmi()) result->ClampToSmi();
973     return result;
974   }
975   return HValue::InferRange(zone);
976 }
977 
978 
PrintDataTo(std::ostream & os) const979 std::ostream& HCallWithDescriptor::PrintDataTo(
980     std::ostream& os) const {  // NOLINT
981   for (int i = 0; i < OperandCount(); i++) {
982     os << NameOf(OperandAt(i)) << " ";
983   }
984   os << "#" << argument_count();
985   if (syntactic_tail_call_mode() == TailCallMode::kAllow) {
986     os << ", JSTailCall";
987   }
988   return os;
989 }
990 
991 
PrintDataTo(std::ostream & os) const992 std::ostream& HCallNewArray::PrintDataTo(std::ostream& os) const {  // NOLINT
993   os << ElementsKindToString(elements_kind()) << " ";
994   return HBinaryCall::PrintDataTo(os);
995 }
996 
997 
PrintDataTo(std::ostream & os) const998 std::ostream& HCallRuntime::PrintDataTo(std::ostream& os) const {  // NOLINT
999   os << function()->name << " ";
1000   if (save_doubles() == kSaveFPRegs) os << "[save doubles] ";
1001   return os << "#" << argument_count();
1002 }
1003 
1004 
PrintDataTo(std::ostream & os) const1005 std::ostream& HClassOfTestAndBranch::PrintDataTo(
1006     std::ostream& os) const {  // NOLINT
1007   return os << "class_of_test(" << NameOf(value()) << ", \""
1008             << class_name()->ToCString().get() << "\")";
1009 }
1010 
1011 
PrintDataTo(std::ostream & os) const1012 std::ostream& HWrapReceiver::PrintDataTo(std::ostream& os) const {  // NOLINT
1013   return os << NameOf(receiver()) << " " << NameOf(function());
1014 }
1015 
1016 
PrintDataTo(std::ostream & os) const1017 std::ostream& HAccessArgumentsAt::PrintDataTo(
1018     std::ostream& os) const {  // NOLINT
1019   return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length "
1020             << NameOf(length());
1021 }
1022 
1023 
PrintDataTo(std::ostream & os) const1024 std::ostream& HControlInstruction::PrintDataTo(
1025     std::ostream& os) const {  // NOLINT
1026   os << " goto (";
1027   bool first_block = true;
1028   for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
1029     if (!first_block) os << ", ";
1030     os << *it.Current();
1031     first_block = false;
1032   }
1033   return os << ")";
1034 }
1035 
1036 
PrintDataTo(std::ostream & os) const1037 std::ostream& HUnaryControlInstruction::PrintDataTo(
1038     std::ostream& os) const {  // NOLINT
1039   os << NameOf(value());
1040   return HControlInstruction::PrintDataTo(os);
1041 }
1042 
1043 
PrintDataTo(std::ostream & os) const1044 std::ostream& HReturn::PrintDataTo(std::ostream& os) const {  // NOLINT
1045   return os << NameOf(value()) << " (pop " << NameOf(parameter_count())
1046             << " values)";
1047 }
1048 
1049 
observed_input_representation(int index)1050 Representation HBranch::observed_input_representation(int index) {
1051   if (expected_input_types_.Contains(ToBooleanICStub::NULL_TYPE) ||
1052       expected_input_types_.Contains(ToBooleanICStub::SPEC_OBJECT) ||
1053       expected_input_types_.Contains(ToBooleanICStub::STRING) ||
1054       expected_input_types_.Contains(ToBooleanICStub::SYMBOL) ||
1055       expected_input_types_.Contains(ToBooleanICStub::SIMD_VALUE)) {
1056     return Representation::Tagged();
1057   }
1058   if (expected_input_types_.Contains(ToBooleanICStub::UNDEFINED)) {
1059     if (expected_input_types_.Contains(ToBooleanICStub::HEAP_NUMBER)) {
1060       return Representation::Double();
1061     }
1062     return Representation::Tagged();
1063   }
1064   if (expected_input_types_.Contains(ToBooleanICStub::HEAP_NUMBER)) {
1065     return Representation::Double();
1066   }
1067   if (expected_input_types_.Contains(ToBooleanICStub::SMI)) {
1068     return Representation::Smi();
1069   }
1070   return Representation::None();
1071 }
1072 
1073 
KnownSuccessorBlock(HBasicBlock ** block)1074 bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
1075   HValue* value = this->value();
1076   if (value->EmitAtUses()) {
1077     DCHECK(value->IsConstant());
1078     DCHECK(!value->representation().IsDouble());
1079     *block = HConstant::cast(value)->BooleanValue()
1080         ? FirstSuccessor()
1081         : SecondSuccessor();
1082     return true;
1083   }
1084   *block = NULL;
1085   return false;
1086 }
1087 
1088 
PrintDataTo(std::ostream & os) const1089 std::ostream& HBranch::PrintDataTo(std::ostream& os) const {  // NOLINT
1090   return HUnaryControlInstruction::PrintDataTo(os) << " "
1091                                                    << expected_input_types();
1092 }
1093 
1094 
PrintDataTo(std::ostream & os) const1095 std::ostream& HCompareMap::PrintDataTo(std::ostream& os) const {  // NOLINT
1096   os << NameOf(value()) << " (" << *map().handle() << ")";
1097   HControlInstruction::PrintDataTo(os);
1098   if (known_successor_index() == 0) {
1099     os << " [true]";
1100   } else if (known_successor_index() == 1) {
1101     os << " [false]";
1102   }
1103   return os;
1104 }
1105 
1106 
OpName() const1107 const char* HUnaryMathOperation::OpName() const {
1108   switch (op()) {
1109     case kMathFloor:
1110       return "floor";
1111     case kMathFround:
1112       return "fround";
1113     case kMathRound:
1114       return "round";
1115     case kMathAbs:
1116       return "abs";
1117     case kMathCos:
1118       return "cos";
1119     case kMathLog:
1120       return "log";
1121     case kMathExp:
1122       return "exp";
1123     case kMathSin:
1124       return "sin";
1125     case kMathSqrt:
1126       return "sqrt";
1127     case kMathPowHalf:
1128       return "pow-half";
1129     case kMathClz32:
1130       return "clz32";
1131     default:
1132       UNREACHABLE();
1133       return NULL;
1134   }
1135 }
1136 
1137 
InferRange(Zone * zone)1138 Range* HUnaryMathOperation::InferRange(Zone* zone) {
1139   Representation r = representation();
1140   if (op() == kMathClz32) return new(zone) Range(0, 32);
1141   if (r.IsSmiOrInteger32() && value()->HasRange()) {
1142     if (op() == kMathAbs) {
1143       int upper = value()->range()->upper();
1144       int lower = value()->range()->lower();
1145       bool spans_zero = value()->range()->CanBeZero();
1146       // Math.abs(kMinInt) overflows its representation, on which the
1147       // instruction deopts. Hence clamp it to kMaxInt.
1148       int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
1149       int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
1150       Range* result =
1151           new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
1152                           Max(abs_lower, abs_upper));
1153       // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
1154       // Smi::kMaxValue.
1155       if (r.IsSmi()) result->ClampToSmi();
1156       return result;
1157     }
1158   }
1159   return HValue::InferRange(zone);
1160 }
1161 
1162 
PrintDataTo(std::ostream & os) const1163 std::ostream& HUnaryMathOperation::PrintDataTo(
1164     std::ostream& os) const {  // NOLINT
1165   return os << OpName() << " " << NameOf(value());
1166 }
1167 
1168 
PrintDataTo(std::ostream & os) const1169 std::ostream& HUnaryOperation::PrintDataTo(std::ostream& os) const {  // NOLINT
1170   return os << NameOf(value());
1171 }
1172 
1173 
PrintDataTo(std::ostream & os) const1174 std::ostream& HHasInstanceTypeAndBranch::PrintDataTo(
1175     std::ostream& os) const {  // NOLINT
1176   os << NameOf(value());
1177   switch (from_) {
1178     case FIRST_JS_RECEIVER_TYPE:
1179       if (to_ == LAST_TYPE) os << " spec_object";
1180       break;
1181     case JS_REGEXP_TYPE:
1182       if (to_ == JS_REGEXP_TYPE) os << " reg_exp";
1183       break;
1184     case JS_ARRAY_TYPE:
1185       if (to_ == JS_ARRAY_TYPE) os << " array";
1186       break;
1187     case JS_FUNCTION_TYPE:
1188       if (to_ == JS_FUNCTION_TYPE) os << " function";
1189       break;
1190     default:
1191       break;
1192   }
1193   return os;
1194 }
1195 
1196 
PrintDataTo(std::ostream & os) const1197 std::ostream& HTypeofIsAndBranch::PrintDataTo(
1198     std::ostream& os) const {  // NOLINT
1199   os << NameOf(value()) << " == " << type_literal()->ToCString().get();
1200   return HControlInstruction::PrintDataTo(os);
1201 }
1202 
1203 
1204 namespace {
1205 
TypeOfString(HConstant * constant,Isolate * isolate)1206 String* TypeOfString(HConstant* constant, Isolate* isolate) {
1207   Heap* heap = isolate->heap();
1208   if (constant->HasNumberValue()) return heap->number_string();
1209   if (constant->HasStringValue()) return heap->string_string();
1210   switch (constant->GetInstanceType()) {
1211     case ODDBALL_TYPE: {
1212       Unique<Object> unique = constant->GetUnique();
1213       if (unique.IsKnownGlobal(heap->true_value()) ||
1214           unique.IsKnownGlobal(heap->false_value())) {
1215         return heap->boolean_string();
1216       }
1217       if (unique.IsKnownGlobal(heap->null_value())) {
1218         return heap->object_string();
1219       }
1220       DCHECK(unique.IsKnownGlobal(heap->undefined_value()));
1221       return heap->undefined_string();
1222     }
1223     case SYMBOL_TYPE:
1224       return heap->symbol_string();
1225     case SIMD128_VALUE_TYPE: {
1226       Unique<Map> map = constant->ObjectMap();
1227 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
1228   if (map.IsKnownGlobal(heap->type##_map())) {                \
1229     return heap->type##_string();                             \
1230   }
1231       SIMD128_TYPES(SIMD128_TYPE)
1232 #undef SIMD128_TYPE
1233       UNREACHABLE();
1234       return nullptr;
1235     }
1236     default:
1237       if (constant->IsUndetectable()) return heap->undefined_string();
1238       if (constant->IsCallable()) return heap->function_string();
1239       return heap->object_string();
1240   }
1241 }
1242 
1243 }  // namespace
1244 
1245 
KnownSuccessorBlock(HBasicBlock ** block)1246 bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
1247   if (FLAG_fold_constants && value()->IsConstant()) {
1248     HConstant* constant = HConstant::cast(value());
1249     String* type_string = TypeOfString(constant, isolate());
1250     bool same_type = type_literal_.IsKnownGlobal(type_string);
1251     *block = same_type ? FirstSuccessor() : SecondSuccessor();
1252     return true;
1253   } else if (value()->representation().IsSpecialization()) {
1254     bool number_type =
1255         type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
1256     *block = number_type ? FirstSuccessor() : SecondSuccessor();
1257     return true;
1258   }
1259   *block = NULL;
1260   return false;
1261 }
1262 
1263 
PrintDataTo(std::ostream & os) const1264 std::ostream& HCheckMapValue::PrintDataTo(std::ostream& os) const {  // NOLINT
1265   return os << NameOf(value()) << " " << NameOf(map());
1266 }
1267 
1268 
Canonicalize()1269 HValue* HCheckMapValue::Canonicalize() {
1270   if (map()->IsConstant()) {
1271     HConstant* c_map = HConstant::cast(map());
1272     return HCheckMaps::CreateAndInsertAfter(
1273         block()->graph()->zone(), value(), c_map->MapValue(),
1274         c_map->HasStableMapValue(), this);
1275   }
1276   return this;
1277 }
1278 
1279 
PrintDataTo(std::ostream & os) const1280 std::ostream& HForInPrepareMap::PrintDataTo(std::ostream& os) const {  // NOLINT
1281   return os << NameOf(enumerable());
1282 }
1283 
1284 
PrintDataTo(std::ostream & os) const1285 std::ostream& HForInCacheArray::PrintDataTo(std::ostream& os) const {  // NOLINT
1286   return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_
1287             << "]";
1288 }
1289 
1290 
PrintDataTo(std::ostream & os) const1291 std::ostream& HLoadFieldByIndex::PrintDataTo(
1292     std::ostream& os) const {  // NOLINT
1293   return os << NameOf(object()) << " " << NameOf(index());
1294 }
1295 
1296 
MatchLeftIsOnes(HValue * l,HValue * r,HValue ** negated)1297 static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
1298   if (!l->EqualsInteger32Constant(~0)) return false;
1299   *negated = r;
1300   return true;
1301 }
1302 
1303 
MatchNegationViaXor(HValue * instr,HValue ** negated)1304 static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
1305   if (!instr->IsBitwise()) return false;
1306   HBitwise* b = HBitwise::cast(instr);
1307   return (b->op() == Token::BIT_XOR) &&
1308       (MatchLeftIsOnes(b->left(), b->right(), negated) ||
1309        MatchLeftIsOnes(b->right(), b->left(), negated));
1310 }
1311 
1312 
MatchDoubleNegation(HValue * instr,HValue ** arg)1313 static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
1314   HValue* negated;
1315   return MatchNegationViaXor(instr, &negated) &&
1316       MatchNegationViaXor(negated, arg);
1317 }
1318 
1319 
Canonicalize()1320 HValue* HBitwise::Canonicalize() {
1321   if (!representation().IsSmiOrInteger32()) return this;
1322   // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
1323   int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
1324   if (left()->EqualsInteger32Constant(nop_constant) &&
1325       !right()->CheckFlag(kUint32)) {
1326     return right();
1327   }
1328   if (right()->EqualsInteger32Constant(nop_constant) &&
1329       !left()->CheckFlag(kUint32)) {
1330     return left();
1331   }
1332   // Optimize double negation, a common pattern used for ToInt32(x).
1333   HValue* arg;
1334   if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
1335     return arg;
1336   }
1337   return this;
1338 }
1339 
1340 
1341 // static
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,ExternalAddType external_add_type)1342 HInstruction* HAdd::New(Isolate* isolate, Zone* zone, HValue* context,
1343                         HValue* left, HValue* right,
1344                         ExternalAddType external_add_type) {
1345   // For everything else, you should use the other factory method without
1346   // ExternalAddType.
1347   DCHECK_EQ(external_add_type, AddOfExternalAndTagged);
1348   return new (zone) HAdd(context, left, right, external_add_type);
1349 }
1350 
1351 
RepresentationFromInputs()1352 Representation HAdd::RepresentationFromInputs() {
1353   Representation left_rep = left()->representation();
1354   if (left_rep.IsExternal()) {
1355     return Representation::External();
1356   }
1357   return HArithmeticBinaryOperation::RepresentationFromInputs();
1358 }
1359 
1360 
RequiredInputRepresentation(int index)1361 Representation HAdd::RequiredInputRepresentation(int index) {
1362   if (index == 2) {
1363     Representation left_rep = left()->representation();
1364     if (left_rep.IsExternal()) {
1365       if (external_add_type_ == AddOfExternalAndTagged) {
1366         return Representation::Tagged();
1367       } else {
1368         return Representation::Integer32();
1369       }
1370     }
1371   }
1372   return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
1373 }
1374 
1375 
IsIdentityOperation(HValue * arg1,HValue * arg2,int32_t identity)1376 static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
1377   return arg1->representation().IsSpecialization() &&
1378     arg2->EqualsInteger32Constant(identity);
1379 }
1380 
1381 
Canonicalize()1382 HValue* HAdd::Canonicalize() {
1383   // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
1384   if (IsIdentityOperation(left(), right(), 0) &&
1385       !left()->representation().IsDouble()) {  // Left could be -0.
1386     return left();
1387   }
1388   if (IsIdentityOperation(right(), left(), 0) &&
1389       !left()->representation().IsDouble()) {  // Right could be -0.
1390     return right();
1391   }
1392   return this;
1393 }
1394 
1395 
Canonicalize()1396 HValue* HSub::Canonicalize() {
1397   if (IsIdentityOperation(left(), right(), 0)) return left();
1398   return this;
1399 }
1400 
1401 
Canonicalize()1402 HValue* HMul::Canonicalize() {
1403   if (IsIdentityOperation(left(), right(), 1)) return left();
1404   if (IsIdentityOperation(right(), left(), 1)) return right();
1405   return this;
1406 }
1407 
1408 
MulMinusOne()1409 bool HMul::MulMinusOne() {
1410   if (left()->EqualsInteger32Constant(-1) ||
1411       right()->EqualsInteger32Constant(-1)) {
1412     return true;
1413   }
1414 
1415   return false;
1416 }
1417 
1418 
Canonicalize()1419 HValue* HMod::Canonicalize() {
1420   return this;
1421 }
1422 
1423 
Canonicalize()1424 HValue* HDiv::Canonicalize() {
1425   if (IsIdentityOperation(left(), right(), 1)) return left();
1426   return this;
1427 }
1428 
1429 
Canonicalize()1430 HValue* HChange::Canonicalize() {
1431   return (from().Equals(to())) ? value() : this;
1432 }
1433 
1434 
Canonicalize()1435 HValue* HWrapReceiver::Canonicalize() {
1436   if (HasNoUses()) return NULL;
1437   if (receiver()->type().IsJSReceiver()) {
1438     return receiver();
1439   }
1440   return this;
1441 }
1442 
1443 
PrintDataTo(std::ostream & os) const1444 std::ostream& HTypeof::PrintDataTo(std::ostream& os) const {  // NOLINT
1445   return os << NameOf(value());
1446 }
1447 
1448 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * value,Representation representation)1449 HInstruction* HForceRepresentation::New(Isolate* isolate, Zone* zone,
1450                                         HValue* context, HValue* value,
1451                                         Representation representation) {
1452   if (FLAG_fold_constants && value->IsConstant()) {
1453     HConstant* c = HConstant::cast(value);
1454     c = c->CopyToRepresentation(representation, zone);
1455     if (c != NULL) return c;
1456   }
1457   return new(zone) HForceRepresentation(value, representation);
1458 }
1459 
1460 
PrintDataTo(std::ostream & os) const1461 std::ostream& HForceRepresentation::PrintDataTo(
1462     std::ostream& os) const {  // NOLINT
1463   return os << representation().Mnemonic() << " " << NameOf(value());
1464 }
1465 
1466 
PrintDataTo(std::ostream & os) const1467 std::ostream& HChange::PrintDataTo(std::ostream& os) const {  // NOLINT
1468   HUnaryOperation::PrintDataTo(os);
1469   os << " " << from().Mnemonic() << " to " << to().Mnemonic();
1470 
1471   if (CanTruncateToSmi()) os << " truncating-smi";
1472   if (CanTruncateToInt32()) os << " truncating-int32";
1473   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
1474   if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan";
1475   return os;
1476 }
1477 
1478 
Canonicalize()1479 HValue* HUnaryMathOperation::Canonicalize() {
1480   if (op() == kMathRound || op() == kMathFloor) {
1481     HValue* val = value();
1482     if (val->IsChange()) val = HChange::cast(val)->value();
1483     if (val->representation().IsSmiOrInteger32()) {
1484       if (val->representation().Equals(representation())) return val;
1485       return Prepend(new(block()->zone()) HChange(
1486           val, representation(), false, false));
1487     }
1488   }
1489   if (op() == kMathFloor && representation().IsSmiOrInteger32() &&
1490       value()->IsDiv() && value()->HasOneUse()) {
1491     HDiv* hdiv = HDiv::cast(value());
1492 
1493     HValue* left = hdiv->left();
1494     if (left->representation().IsInteger32() && !left->CheckFlag(kUint32)) {
1495       // A value with an integer representation does not need to be transformed.
1496     } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32() &&
1497                !HChange::cast(left)->value()->CheckFlag(kUint32)) {
1498       // A change from an integer32 can be replaced by the integer32 value.
1499       left = HChange::cast(left)->value();
1500     } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
1501       left = Prepend(new(block()->zone()) HChange(
1502           left, Representation::Integer32(), false, false));
1503     } else {
1504       return this;
1505     }
1506 
1507     HValue* right = hdiv->right();
1508     if (right->IsInteger32Constant()) {
1509       right = Prepend(HConstant::cast(right)->CopyToRepresentation(
1510           Representation::Integer32(), right->block()->zone()));
1511     } else if (right->representation().IsInteger32() &&
1512                !right->CheckFlag(kUint32)) {
1513       // A value with an integer representation does not need to be transformed.
1514     } else if (right->IsChange() &&
1515                HChange::cast(right)->from().IsInteger32() &&
1516                !HChange::cast(right)->value()->CheckFlag(kUint32)) {
1517       // A change from an integer32 can be replaced by the integer32 value.
1518       right = HChange::cast(right)->value();
1519     } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
1520       right = Prepend(new(block()->zone()) HChange(
1521           right, Representation::Integer32(), false, false));
1522     } else {
1523       return this;
1524     }
1525 
1526     return Prepend(HMathFloorOfDiv::New(
1527         block()->graph()->isolate(), block()->zone(), context(), left, right));
1528   }
1529   return this;
1530 }
1531 
1532 
Canonicalize()1533 HValue* HCheckInstanceType::Canonicalize() {
1534   if ((check_ == IS_JS_RECEIVER && value()->type().IsJSReceiver()) ||
1535       (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
1536       (check_ == IS_STRING && value()->type().IsString())) {
1537     return value();
1538   }
1539 
1540   if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
1541     if (HConstant::cast(value())->HasInternalizedStringValue()) {
1542       return value();
1543     }
1544   }
1545   return this;
1546 }
1547 
1548 
GetCheckInterval(InstanceType * first,InstanceType * last)1549 void HCheckInstanceType::GetCheckInterval(InstanceType* first,
1550                                           InstanceType* last) {
1551   DCHECK(is_interval_check());
1552   switch (check_) {
1553     case IS_JS_RECEIVER:
1554       *first = FIRST_JS_RECEIVER_TYPE;
1555       *last = LAST_JS_RECEIVER_TYPE;
1556       return;
1557     case IS_JS_ARRAY:
1558       *first = *last = JS_ARRAY_TYPE;
1559       return;
1560     case IS_JS_FUNCTION:
1561       *first = *last = JS_FUNCTION_TYPE;
1562       return;
1563     case IS_JS_DATE:
1564       *first = *last = JS_DATE_TYPE;
1565       return;
1566     default:
1567       UNREACHABLE();
1568   }
1569 }
1570 
1571 
GetCheckMaskAndTag(uint8_t * mask,uint8_t * tag)1572 void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
1573   DCHECK(!is_interval_check());
1574   switch (check_) {
1575     case IS_STRING:
1576       *mask = kIsNotStringMask;
1577       *tag = kStringTag;
1578       return;
1579     case IS_INTERNALIZED_STRING:
1580       *mask = kIsNotStringMask | kIsNotInternalizedMask;
1581       *tag = kInternalizedTag;
1582       return;
1583     default:
1584       UNREACHABLE();
1585   }
1586 }
1587 
1588 
PrintDataTo(std::ostream & os) const1589 std::ostream& HCheckMaps::PrintDataTo(std::ostream& os) const {  // NOLINT
1590   os << NameOf(value()) << " [" << *maps()->at(0).handle();
1591   for (int i = 1; i < maps()->size(); ++i) {
1592     os << "," << *maps()->at(i).handle();
1593   }
1594   os << "]";
1595   if (IsStabilityCheck()) os << "(stability-check)";
1596   return os;
1597 }
1598 
1599 
Canonicalize()1600 HValue* HCheckMaps::Canonicalize() {
1601   if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
1602     HConstant* c_value = HConstant::cast(value());
1603     if (c_value->HasObjectMap()) {
1604       for (int i = 0; i < maps()->size(); ++i) {
1605         if (c_value->ObjectMap() == maps()->at(i)) {
1606           if (maps()->size() > 1) {
1607             set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
1608                     maps()->at(i), block()->graph()->zone()));
1609           }
1610           MarkAsStabilityCheck();
1611           break;
1612         }
1613       }
1614     }
1615   }
1616   return this;
1617 }
1618 
1619 
PrintDataTo(std::ostream & os) const1620 std::ostream& HCheckValue::PrintDataTo(std::ostream& os) const {  // NOLINT
1621   return os << NameOf(value()) << " " << Brief(*object().handle());
1622 }
1623 
1624 
Canonicalize()1625 HValue* HCheckValue::Canonicalize() {
1626   return (value()->IsConstant() &&
1627           HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
1628 }
1629 
1630 
GetCheckName() const1631 const char* HCheckInstanceType::GetCheckName() const {
1632   switch (check_) {
1633     case IS_JS_RECEIVER: return "object";
1634     case IS_JS_ARRAY: return "array";
1635     case IS_JS_FUNCTION:
1636       return "function";
1637     case IS_JS_DATE:
1638       return "date";
1639     case IS_STRING: return "string";
1640     case IS_INTERNALIZED_STRING: return "internalized_string";
1641   }
1642   UNREACHABLE();
1643   return "";
1644 }
1645 
1646 
PrintDataTo(std::ostream & os) const1647 std::ostream& HCheckInstanceType::PrintDataTo(
1648     std::ostream& os) const {  // NOLINT
1649   os << GetCheckName() << " ";
1650   return HUnaryOperation::PrintDataTo(os);
1651 }
1652 
1653 
PrintDataTo(std::ostream & os) const1654 std::ostream& HUnknownOSRValue::PrintDataTo(std::ostream& os) const {  // NOLINT
1655   const char* type = "expression";
1656   if (environment_->is_local_index(index_)) type = "local";
1657   if (environment_->is_special_index(index_)) type = "special";
1658   if (environment_->is_parameter_index(index_)) type = "parameter";
1659   return os << type << " @ " << index_;
1660 }
1661 
1662 
InferRange(Zone * zone)1663 Range* HValue::InferRange(Zone* zone) {
1664   Range* result;
1665   if (representation().IsSmi() || type().IsSmi()) {
1666     result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
1667     result->set_can_be_minus_zero(false);
1668   } else {
1669     result = new(zone) Range();
1670     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
1671     // TODO(jkummerow): The range cannot be minus zero when the upper type
1672     // bound is Integer32.
1673   }
1674   return result;
1675 }
1676 
1677 
InferRange(Zone * zone)1678 Range* HChange::InferRange(Zone* zone) {
1679   Range* input_range = value()->range();
1680   if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
1681       (to().IsSmi() ||
1682        (to().IsTagged() &&
1683         input_range != NULL &&
1684         input_range->IsInSmiRange()))) {
1685     set_type(HType::Smi());
1686     ClearChangesFlag(kNewSpacePromotion);
1687   }
1688   if (to().IsSmiOrTagged() &&
1689       input_range != NULL &&
1690       input_range->IsInSmiRange() &&
1691       (!SmiValuesAre32Bits() ||
1692        !value()->CheckFlag(HValue::kUint32) ||
1693        input_range->upper() != kMaxInt)) {
1694     // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
1695     // interval, so we treat kMaxInt as a sentinel for this entire interval.
1696     ClearFlag(kCanOverflow);
1697   }
1698   Range* result = (input_range != NULL)
1699       ? input_range->Copy(zone)
1700       : HValue::InferRange(zone);
1701   result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
1702                                 !(CheckFlag(kAllUsesTruncatingToInt32) ||
1703                                   CheckFlag(kAllUsesTruncatingToSmi)));
1704   if (to().IsSmi()) result->ClampToSmi();
1705   return result;
1706 }
1707 
1708 
InferRange(Zone * zone)1709 Range* HConstant::InferRange(Zone* zone) {
1710   if (HasInteger32Value()) {
1711     Range* result = new(zone) Range(int32_value_, int32_value_);
1712     result->set_can_be_minus_zero(false);
1713     return result;
1714   }
1715   return HValue::InferRange(zone);
1716 }
1717 
1718 
position() const1719 SourcePosition HPhi::position() const { return block()->first()->position(); }
1720 
1721 
InferRange(Zone * zone)1722 Range* HPhi::InferRange(Zone* zone) {
1723   Representation r = representation();
1724   if (r.IsSmiOrInteger32()) {
1725     if (block()->IsLoopHeader()) {
1726       Range* range = r.IsSmi()
1727           ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
1728           : new(zone) Range(kMinInt, kMaxInt);
1729       return range;
1730     } else {
1731       Range* range = OperandAt(0)->range()->Copy(zone);
1732       for (int i = 1; i < OperandCount(); ++i) {
1733         range->Union(OperandAt(i)->range());
1734       }
1735       return range;
1736     }
1737   } else {
1738     return HValue::InferRange(zone);
1739   }
1740 }
1741 
1742 
InferRange(Zone * zone)1743 Range* HAdd::InferRange(Zone* zone) {
1744   Representation r = representation();
1745   if (r.IsSmiOrInteger32()) {
1746     Range* a = left()->range();
1747     Range* b = right()->range();
1748     Range* res = a->Copy(zone);
1749     if (!res->AddAndCheckOverflow(r, b) ||
1750         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1751         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1752       ClearFlag(kCanOverflow);
1753     }
1754     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1755                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1756                                a->CanBeMinusZero() && b->CanBeMinusZero());
1757     return res;
1758   } else {
1759     return HValue::InferRange(zone);
1760   }
1761 }
1762 
1763 
InferRange(Zone * zone)1764 Range* HSub::InferRange(Zone* zone) {
1765   Representation r = representation();
1766   if (r.IsSmiOrInteger32()) {
1767     Range* a = left()->range();
1768     Range* b = right()->range();
1769     Range* res = a->Copy(zone);
1770     if (!res->SubAndCheckOverflow(r, b) ||
1771         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1772         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1773       ClearFlag(kCanOverflow);
1774     }
1775     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1776                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1777                                a->CanBeMinusZero() && b->CanBeZero());
1778     return res;
1779   } else {
1780     return HValue::InferRange(zone);
1781   }
1782 }
1783 
1784 
InferRange(Zone * zone)1785 Range* HMul::InferRange(Zone* zone) {
1786   Representation r = representation();
1787   if (r.IsSmiOrInteger32()) {
1788     Range* a = left()->range();
1789     Range* b = right()->range();
1790     Range* res = a->Copy(zone);
1791     if (!res->MulAndCheckOverflow(r, b) ||
1792         (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1793          (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
1794          MulMinusOne())) {
1795       // Truncated int multiplication is too precise and therefore not the
1796       // same as converting to Double and back.
1797       // Handle truncated integer multiplication by -1 special.
1798       ClearFlag(kCanOverflow);
1799     }
1800     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1801                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1802                                ((a->CanBeZero() && b->CanBeNegative()) ||
1803                                 (a->CanBeNegative() && b->CanBeZero())));
1804     return res;
1805   } else {
1806     return HValue::InferRange(zone);
1807   }
1808 }
1809 
1810 
InferRange(Zone * zone)1811 Range* HDiv::InferRange(Zone* zone) {
1812   if (representation().IsInteger32()) {
1813     Range* a = left()->range();
1814     Range* b = right()->range();
1815     Range* result = new(zone) Range();
1816     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1817                                   (a->CanBeMinusZero() ||
1818                                    (a->CanBeZero() && b->CanBeNegative())));
1819     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1820       ClearFlag(kCanOverflow);
1821     }
1822 
1823     if (!b->CanBeZero()) {
1824       ClearFlag(kCanBeDivByZero);
1825     }
1826     return result;
1827   } else {
1828     return HValue::InferRange(zone);
1829   }
1830 }
1831 
1832 
InferRange(Zone * zone)1833 Range* HMathFloorOfDiv::InferRange(Zone* zone) {
1834   if (representation().IsInteger32()) {
1835     Range* a = left()->range();
1836     Range* b = right()->range();
1837     Range* result = new(zone) Range();
1838     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1839                                   (a->CanBeMinusZero() ||
1840                                    (a->CanBeZero() && b->CanBeNegative())));
1841     if (!a->Includes(kMinInt)) {
1842       ClearFlag(kLeftCanBeMinInt);
1843     }
1844 
1845     if (!a->CanBeNegative()) {
1846       ClearFlag(HValue::kLeftCanBeNegative);
1847     }
1848 
1849     if (!a->CanBePositive()) {
1850       ClearFlag(HValue::kLeftCanBePositive);
1851     }
1852 
1853     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1854       ClearFlag(kCanOverflow);
1855     }
1856 
1857     if (!b->CanBeZero()) {
1858       ClearFlag(kCanBeDivByZero);
1859     }
1860     return result;
1861   } else {
1862     return HValue::InferRange(zone);
1863   }
1864 }
1865 
1866 
1867 // Returns the absolute value of its argument minus one, avoiding undefined
1868 // behavior at kMinInt.
AbsMinus1(int32_t a)1869 static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); }
1870 
1871 
InferRange(Zone * zone)1872 Range* HMod::InferRange(Zone* zone) {
1873   if (representation().IsInteger32()) {
1874     Range* a = left()->range();
1875     Range* b = right()->range();
1876 
1877     // The magnitude of the modulus is bounded by the right operand.
1878     int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper()));
1879 
1880     // The result of the modulo operation has the sign of its left operand.
1881     bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
1882     Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
1883                                     a->CanBePositive() ? positive_bound : 0);
1884 
1885     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1886                                   left_can_be_negative);
1887 
1888     if (!a->CanBeNegative()) {
1889       ClearFlag(HValue::kLeftCanBeNegative);
1890     }
1891 
1892     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1893       ClearFlag(HValue::kCanOverflow);
1894     }
1895 
1896     if (!b->CanBeZero()) {
1897       ClearFlag(HValue::kCanBeDivByZero);
1898     }
1899     return result;
1900   } else {
1901     return HValue::InferRange(zone);
1902   }
1903 }
1904 
1905 
InferRange(Zone * zone)1906 Range* HMathMinMax::InferRange(Zone* zone) {
1907   if (representation().IsSmiOrInteger32()) {
1908     Range* a = left()->range();
1909     Range* b = right()->range();
1910     Range* res = a->Copy(zone);
1911     if (operation_ == kMathMax) {
1912       res->CombinedMax(b);
1913     } else {
1914       DCHECK(operation_ == kMathMin);
1915       res->CombinedMin(b);
1916     }
1917     return res;
1918   } else {
1919     return HValue::InferRange(zone);
1920   }
1921 }
1922 
1923 
AddInput(HValue * value)1924 void HPushArguments::AddInput(HValue* value) {
1925   inputs_.Add(NULL, value->block()->zone());
1926   SetOperandAt(OperandCount() - 1, value);
1927 }
1928 
1929 
PrintTo(std::ostream & os) const1930 std::ostream& HPhi::PrintTo(std::ostream& os) const {  // NOLINT
1931   os << "[";
1932   for (int i = 0; i < OperandCount(); ++i) {
1933     os << " " << NameOf(OperandAt(i)) << " ";
1934   }
1935   return os << " uses" << UseCount()
1936             << representation_from_indirect_uses().Mnemonic() << " "
1937             << TypeOf(this) << "]";
1938 }
1939 
1940 
AddInput(HValue * value)1941 void HPhi::AddInput(HValue* value) {
1942   inputs_.Add(NULL, value->block()->zone());
1943   SetOperandAt(OperandCount() - 1, value);
1944   // Mark phis that may have 'arguments' directly or indirectly as an operand.
1945   if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
1946     SetFlag(kIsArguments);
1947   }
1948 }
1949 
1950 
HasRealUses()1951 bool HPhi::HasRealUses() {
1952   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
1953     if (!it.value()->IsPhi()) return true;
1954   }
1955   return false;
1956 }
1957 
1958 
GetRedundantReplacement()1959 HValue* HPhi::GetRedundantReplacement() {
1960   HValue* candidate = NULL;
1961   int count = OperandCount();
1962   int position = 0;
1963   while (position < count && candidate == NULL) {
1964     HValue* current = OperandAt(position++);
1965     if (current != this) candidate = current;
1966   }
1967   while (position < count) {
1968     HValue* current = OperandAt(position++);
1969     if (current != this && current != candidate) return NULL;
1970   }
1971   DCHECK(candidate != this);
1972   return candidate;
1973 }
1974 
1975 
DeleteFromGraph()1976 void HPhi::DeleteFromGraph() {
1977   DCHECK(block() != NULL);
1978   block()->RemovePhi(this);
1979   DCHECK(block() == NULL);
1980 }
1981 
1982 
InitRealUses(int phi_id)1983 void HPhi::InitRealUses(int phi_id) {
1984   // Initialize real uses.
1985   phi_id_ = phi_id;
1986   // Compute a conservative approximation of truncating uses before inferring
1987   // representations. The proper, exact computation will be done later, when
1988   // inserting representation changes.
1989   SetFlag(kTruncatingToSmi);
1990   SetFlag(kTruncatingToInt32);
1991   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
1992     HValue* value = it.value();
1993     if (!value->IsPhi()) {
1994       Representation rep = value->observed_input_representation(it.index());
1995       representation_from_non_phi_uses_ =
1996           representation_from_non_phi_uses().generalize(rep);
1997       if (rep.IsSmi() || rep.IsInteger32() || rep.IsDouble()) {
1998         has_type_feedback_from_uses_ = true;
1999       }
2000 
2001       if (FLAG_trace_representation) {
2002         PrintF("#%d Phi is used by real #%d %s as %s\n",
2003                id(), value->id(), value->Mnemonic(), rep.Mnemonic());
2004       }
2005       if (!value->IsSimulate()) {
2006         if (!value->CheckFlag(kTruncatingToSmi)) {
2007           ClearFlag(kTruncatingToSmi);
2008         }
2009         if (!value->CheckFlag(kTruncatingToInt32)) {
2010           ClearFlag(kTruncatingToInt32);
2011         }
2012       }
2013     }
2014   }
2015 }
2016 
2017 
AddNonPhiUsesFrom(HPhi * other)2018 void HPhi::AddNonPhiUsesFrom(HPhi* other) {
2019   if (FLAG_trace_representation) {
2020     PrintF(
2021         "generalizing use representation '%s' of #%d Phi "
2022         "with uses of #%d Phi '%s'\n",
2023         representation_from_indirect_uses().Mnemonic(), id(), other->id(),
2024         other->representation_from_non_phi_uses().Mnemonic());
2025   }
2026 
2027   representation_from_indirect_uses_ =
2028       representation_from_indirect_uses().generalize(
2029           other->representation_from_non_phi_uses());
2030 }
2031 
2032 
MergeWith(ZoneList<HSimulate * > * list)2033 void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
2034   while (!list->is_empty()) {
2035     HSimulate* from = list->RemoveLast();
2036     ZoneList<HValue*>* from_values = &from->values_;
2037     for (int i = 0; i < from_values->length(); ++i) {
2038       if (from->HasAssignedIndexAt(i)) {
2039         int index = from->GetAssignedIndexAt(i);
2040         if (HasValueForIndex(index)) continue;
2041         AddAssignedValue(index, from_values->at(i));
2042       } else {
2043         if (pop_count_ > 0) {
2044           pop_count_--;
2045         } else {
2046           AddPushedValue(from_values->at(i));
2047         }
2048       }
2049     }
2050     pop_count_ += from->pop_count_;
2051     from->DeleteAndReplaceWith(NULL);
2052   }
2053 }
2054 
2055 
PrintDataTo(std::ostream & os) const2056 std::ostream& HSimulate::PrintDataTo(std::ostream& os) const {  // NOLINT
2057   os << "id=" << ast_id().ToInt();
2058   if (pop_count_ > 0) os << " pop " << pop_count_;
2059   if (values_.length() > 0) {
2060     if (pop_count_ > 0) os << " /";
2061     for (int i = values_.length() - 1; i >= 0; --i) {
2062       if (HasAssignedIndexAt(i)) {
2063         os << " var[" << GetAssignedIndexAt(i) << "] = ";
2064       } else {
2065         os << " push ";
2066       }
2067       os << NameOf(values_[i]);
2068       if (i > 0) os << ",";
2069     }
2070   }
2071   return os;
2072 }
2073 
2074 
ReplayEnvironment(HEnvironment * env)2075 void HSimulate::ReplayEnvironment(HEnvironment* env) {
2076   if (is_done_with_replay()) return;
2077   DCHECK(env != NULL);
2078   env->set_ast_id(ast_id());
2079   env->Drop(pop_count());
2080   for (int i = values()->length() - 1; i >= 0; --i) {
2081     HValue* value = values()->at(i);
2082     if (HasAssignedIndexAt(i)) {
2083       env->Bind(GetAssignedIndexAt(i), value);
2084     } else {
2085       env->Push(value);
2086     }
2087   }
2088   set_done_with_replay();
2089 }
2090 
2091 
ReplayEnvironmentNested(const ZoneList<HValue * > * values,HCapturedObject * other)2092 static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
2093                                     HCapturedObject* other) {
2094   for (int i = 0; i < values->length(); ++i) {
2095     HValue* value = values->at(i);
2096     if (value->IsCapturedObject()) {
2097       if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
2098         values->at(i) = other;
2099       } else {
2100         ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
2101       }
2102     }
2103   }
2104 }
2105 
2106 
2107 // Replay captured objects by replacing all captured objects with the
2108 // same capture id in the current and all outer environments.
ReplayEnvironment(HEnvironment * env)2109 void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
2110   DCHECK(env != NULL);
2111   while (env != NULL) {
2112     ReplayEnvironmentNested(env->values(), this);
2113     env = env->outer();
2114   }
2115 }
2116 
2117 
PrintDataTo(std::ostream & os) const2118 std::ostream& HCapturedObject::PrintDataTo(std::ostream& os) const {  // NOLINT
2119   os << "#" << capture_id() << " ";
2120   return HDematerializedObject::PrintDataTo(os);
2121 }
2122 
2123 
RegisterReturnTarget(HBasicBlock * return_target,Zone * zone)2124 void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
2125                                          Zone* zone) {
2126   DCHECK(return_target->IsInlineReturnTarget());
2127   return_targets_.Add(return_target, zone);
2128 }
2129 
2130 
PrintDataTo(std::ostream & os) const2131 std::ostream& HEnterInlined::PrintDataTo(std::ostream& os) const {  // NOLINT
2132   os << function()->debug_name()->ToCString().get();
2133   if (syntactic_tail_call_mode() == TailCallMode::kAllow) {
2134     os << ", JSTailCall";
2135   }
2136   return os;
2137 }
2138 
2139 
IsInteger32(double value)2140 static bool IsInteger32(double value) {
2141   if (value >= std::numeric_limits<int32_t>::min() &&
2142       value <= std::numeric_limits<int32_t>::max()) {
2143     double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
2144     return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value);
2145   }
2146   return false;
2147 }
2148 
2149 
HConstant(Special special)2150 HConstant::HConstant(Special special)
2151     : HTemplateInstruction<0>(HType::TaggedNumber()),
2152       object_(Handle<Object>::null()),
2153       object_map_(Handle<Map>::null()),
2154       bit_field_(HasDoubleValueField::encode(true) |
2155                  InstanceTypeField::encode(kUnknownInstanceType)),
2156       int32_value_(0) {
2157   DCHECK_EQ(kHoleNaN, special);
2158   std::memcpy(&double_value_, &kHoleNanInt64, sizeof(double_value_));
2159   Initialize(Representation::Double());
2160 }
2161 
2162 
HConstant(Handle<Object> object,Representation r)2163 HConstant::HConstant(Handle<Object> object, Representation r)
2164     : HTemplateInstruction<0>(HType::FromValue(object)),
2165       object_(Unique<Object>::CreateUninitialized(object)),
2166       object_map_(Handle<Map>::null()),
2167       bit_field_(
2168           HasStableMapValueField::encode(false) |
2169           HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
2170           HasDoubleValueField::encode(false) |
2171           HasExternalReferenceValueField::encode(false) |
2172           IsNotInNewSpaceField::encode(true) |
2173           BooleanValueField::encode(object->BooleanValue()) |
2174           IsUndetectableField::encode(false) | IsCallableField::encode(false) |
2175           InstanceTypeField::encode(kUnknownInstanceType)) {
2176   if (object->IsHeapObject()) {
2177     Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
2178     Isolate* isolate = heap_object->GetIsolate();
2179     Handle<Map> map(heap_object->map(), isolate);
2180     bit_field_ = IsNotInNewSpaceField::update(
2181         bit_field_, !isolate->heap()->InNewSpace(*object));
2182     bit_field_ = InstanceTypeField::update(bit_field_, map->instance_type());
2183     bit_field_ =
2184         IsUndetectableField::update(bit_field_, map->is_undetectable());
2185     bit_field_ = IsCallableField::update(bit_field_, map->is_callable());
2186     if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
2187     bit_field_ = HasStableMapValueField::update(
2188         bit_field_,
2189         HasMapValue() && Handle<Map>::cast(heap_object)->is_stable());
2190   }
2191   if (object->IsNumber()) {
2192     double n = object->Number();
2193     bool has_int32_value = IsInteger32(n);
2194     bit_field_ = HasInt32ValueField::update(bit_field_, has_int32_value);
2195     int32_value_ = DoubleToInt32(n);
2196     bit_field_ = HasSmiValueField::update(
2197         bit_field_, has_int32_value && Smi::IsValid(int32_value_));
2198     double_value_ = n;
2199     bit_field_ = HasDoubleValueField::update(bit_field_, true);
2200   }
2201 
2202   Initialize(r);
2203 }
2204 
2205 
HConstant(Unique<Object> object,Unique<Map> object_map,bool has_stable_map_value,Representation r,HType type,bool is_not_in_new_space,bool boolean_value,bool is_undetectable,InstanceType instance_type)2206 HConstant::HConstant(Unique<Object> object, Unique<Map> object_map,
2207                      bool has_stable_map_value, Representation r, HType type,
2208                      bool is_not_in_new_space, bool boolean_value,
2209                      bool is_undetectable, InstanceType instance_type)
2210     : HTemplateInstruction<0>(type),
2211       object_(object),
2212       object_map_(object_map),
2213       bit_field_(HasStableMapValueField::encode(has_stable_map_value) |
2214                  HasSmiValueField::encode(false) |
2215                  HasInt32ValueField::encode(false) |
2216                  HasDoubleValueField::encode(false) |
2217                  HasExternalReferenceValueField::encode(false) |
2218                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
2219                  BooleanValueField::encode(boolean_value) |
2220                  IsUndetectableField::encode(is_undetectable) |
2221                  InstanceTypeField::encode(instance_type)) {
2222   DCHECK(!object.handle().is_null());
2223   DCHECK(!type.IsTaggedNumber() || type.IsNone());
2224   Initialize(r);
2225 }
2226 
2227 
HConstant(int32_t integer_value,Representation r,bool is_not_in_new_space,Unique<Object> object)2228 HConstant::HConstant(int32_t integer_value, Representation r,
2229                      bool is_not_in_new_space, Unique<Object> object)
2230     : object_(object),
2231       object_map_(Handle<Map>::null()),
2232       bit_field_(HasStableMapValueField::encode(false) |
2233                  HasSmiValueField::encode(Smi::IsValid(integer_value)) |
2234                  HasInt32ValueField::encode(true) |
2235                  HasDoubleValueField::encode(true) |
2236                  HasExternalReferenceValueField::encode(false) |
2237                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
2238                  BooleanValueField::encode(integer_value != 0) |
2239                  IsUndetectableField::encode(false) |
2240                  InstanceTypeField::encode(kUnknownInstanceType)),
2241       int32_value_(integer_value),
2242       double_value_(FastI2D(integer_value)) {
2243   // It's possible to create a constant with a value in Smi-range but stored
2244   // in a (pre-existing) HeapNumber. See crbug.com/349878.
2245   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2246   bool is_smi = HasSmiValue() && !could_be_heapobject;
2247   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2248   Initialize(r);
2249 }
2250 
2251 
HConstant(double double_value,Representation r,bool is_not_in_new_space,Unique<Object> object)2252 HConstant::HConstant(double double_value, Representation r,
2253                      bool is_not_in_new_space, Unique<Object> object)
2254     : object_(object),
2255       object_map_(Handle<Map>::null()),
2256       bit_field_(HasStableMapValueField::encode(false) |
2257                  HasInt32ValueField::encode(IsInteger32(double_value)) |
2258                  HasDoubleValueField::encode(true) |
2259                  HasExternalReferenceValueField::encode(false) |
2260                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
2261                  BooleanValueField::encode(double_value != 0 &&
2262                                            !std::isnan(double_value)) |
2263                  IsUndetectableField::encode(false) |
2264                  InstanceTypeField::encode(kUnknownInstanceType)),
2265       int32_value_(DoubleToInt32(double_value)),
2266       double_value_(double_value) {
2267   bit_field_ = HasSmiValueField::update(
2268       bit_field_, HasInteger32Value() && Smi::IsValid(int32_value_));
2269   // It's possible to create a constant with a value in Smi-range but stored
2270   // in a (pre-existing) HeapNumber. See crbug.com/349878.
2271   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2272   bool is_smi = HasSmiValue() && !could_be_heapobject;
2273   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2274   Initialize(r);
2275 }
2276 
2277 
HConstant(ExternalReference reference)2278 HConstant::HConstant(ExternalReference reference)
2279     : HTemplateInstruction<0>(HType::Any()),
2280       object_(Unique<Object>(Handle<Object>::null())),
2281       object_map_(Handle<Map>::null()),
2282       bit_field_(
2283           HasStableMapValueField::encode(false) |
2284           HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
2285           HasDoubleValueField::encode(false) |
2286           HasExternalReferenceValueField::encode(true) |
2287           IsNotInNewSpaceField::encode(true) | BooleanValueField::encode(true) |
2288           IsUndetectableField::encode(false) |
2289           InstanceTypeField::encode(kUnknownInstanceType)),
2290       external_reference_value_(reference) {
2291   Initialize(Representation::External());
2292 }
2293 
2294 
Initialize(Representation r)2295 void HConstant::Initialize(Representation r) {
2296   if (r.IsNone()) {
2297     if (HasSmiValue() && SmiValuesAre31Bits()) {
2298       r = Representation::Smi();
2299     } else if (HasInteger32Value()) {
2300       r = Representation::Integer32();
2301     } else if (HasDoubleValue()) {
2302       r = Representation::Double();
2303     } else if (HasExternalReferenceValue()) {
2304       r = Representation::External();
2305     } else {
2306       Handle<Object> object = object_.handle();
2307       if (object->IsJSObject()) {
2308         // Try to eagerly migrate JSObjects that have deprecated maps.
2309         Handle<JSObject> js_object = Handle<JSObject>::cast(object);
2310         if (js_object->map()->is_deprecated()) {
2311           JSObject::TryMigrateInstance(js_object);
2312         }
2313       }
2314       r = Representation::Tagged();
2315     }
2316   }
2317   if (r.IsSmi()) {
2318     // If we have an existing handle, zap it, because it might be a heap
2319     // number which we must not re-use when copying this HConstant to
2320     // Tagged representation later, because having Smi representation now
2321     // could cause heap object checks not to get emitted.
2322     object_ = Unique<Object>(Handle<Object>::null());
2323   }
2324   if (r.IsSmiOrInteger32() && object_.handle().is_null()) {
2325     // If it's not a heap object, it can't be in new space.
2326     bit_field_ = IsNotInNewSpaceField::update(bit_field_, true);
2327   }
2328   set_representation(r);
2329   SetFlag(kUseGVN);
2330 }
2331 
2332 
ImmortalImmovable() const2333 bool HConstant::ImmortalImmovable() const {
2334   if (HasInteger32Value()) {
2335     return false;
2336   }
2337   if (HasDoubleValue()) {
2338     if (IsSpecialDouble()) {
2339       return true;
2340     }
2341     return false;
2342   }
2343   if (HasExternalReferenceValue()) {
2344     return false;
2345   }
2346 
2347   DCHECK(!object_.handle().is_null());
2348   Heap* heap = isolate()->heap();
2349   DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value()));
2350   DCHECK(!object_.IsKnownGlobal(heap->nan_value()));
2351   return
2352 #define IMMORTAL_IMMOVABLE_ROOT(name) \
2353   object_.IsKnownGlobal(heap->root(Heap::k##name##RootIndex)) ||
2354       IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
2355 #undef IMMORTAL_IMMOVABLE_ROOT
2356 #define INTERNALIZED_STRING(name, value) \
2357       object_.IsKnownGlobal(heap->name()) ||
2358       INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
2359 #undef INTERNALIZED_STRING
2360 #define STRING_TYPE(NAME, size, name, Name) \
2361       object_.IsKnownGlobal(heap->name##_map()) ||
2362       STRING_TYPE_LIST(STRING_TYPE)
2363 #undef STRING_TYPE
2364       false;
2365 }
2366 
2367 
EmitAtUses()2368 bool HConstant::EmitAtUses() {
2369   DCHECK(IsLinked());
2370   if (block()->graph()->has_osr() &&
2371       block()->graph()->IsStandardConstant(this)) {
2372     return true;
2373   }
2374   if (HasNoUses()) return true;
2375   if (IsCell()) return false;
2376   if (representation().IsDouble()) return false;
2377   if (representation().IsExternal()) return false;
2378   return true;
2379 }
2380 
2381 
CopyToRepresentation(Representation r,Zone * zone) const2382 HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
2383   if (r.IsSmi() && !HasSmiValue()) return NULL;
2384   if (r.IsInteger32() && !HasInteger32Value()) return NULL;
2385   if (r.IsDouble() && !HasDoubleValue()) return NULL;
2386   if (r.IsExternal() && !HasExternalReferenceValue()) return NULL;
2387   if (HasInteger32Value()) {
2388     return new (zone) HConstant(int32_value_, r, NotInNewSpace(), object_);
2389   }
2390   if (HasDoubleValue()) {
2391     return new (zone) HConstant(double_value_, r, NotInNewSpace(), object_);
2392   }
2393   if (HasExternalReferenceValue()) {
2394     return new(zone) HConstant(external_reference_value_);
2395   }
2396   DCHECK(!object_.handle().is_null());
2397   return new (zone) HConstant(object_, object_map_, HasStableMapValue(), r,
2398                               type_, NotInNewSpace(), BooleanValue(),
2399                               IsUndetectable(), GetInstanceType());
2400 }
2401 
2402 
CopyToTruncatedInt32(Zone * zone)2403 Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
2404   HConstant* res = NULL;
2405   if (HasInteger32Value()) {
2406     res = new (zone) HConstant(int32_value_, Representation::Integer32(),
2407                                NotInNewSpace(), object_);
2408   } else if (HasDoubleValue()) {
2409     res = new (zone)
2410         HConstant(DoubleToInt32(double_value_), Representation::Integer32(),
2411                   NotInNewSpace(), object_);
2412   }
2413   return res != NULL ? Just(res) : Nothing<HConstant*>();
2414 }
2415 
2416 
CopyToTruncatedNumber(Isolate * isolate,Zone * zone)2417 Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Isolate* isolate,
2418                                                    Zone* zone) {
2419   HConstant* res = NULL;
2420   Handle<Object> handle = this->handle(isolate);
2421   if (handle->IsBoolean()) {
2422     res = handle->BooleanValue() ?
2423       new(zone) HConstant(1) : new(zone) HConstant(0);
2424   } else if (handle->IsUndefined(isolate)) {
2425     res = new (zone) HConstant(std::numeric_limits<double>::quiet_NaN());
2426   } else if (handle->IsNull(isolate)) {
2427     res = new(zone) HConstant(0);
2428   } else if (handle->IsString()) {
2429     res = new(zone) HConstant(String::ToNumber(Handle<String>::cast(handle)));
2430   }
2431   return res != NULL ? Just(res) : Nothing<HConstant*>();
2432 }
2433 
2434 
PrintDataTo(std::ostream & os) const2435 std::ostream& HConstant::PrintDataTo(std::ostream& os) const {  // NOLINT
2436   if (HasInteger32Value()) {
2437     os << int32_value_ << " ";
2438   } else if (HasDoubleValue()) {
2439     os << double_value_ << " ";
2440   } else if (HasExternalReferenceValue()) {
2441     os << reinterpret_cast<void*>(external_reference_value_.address()) << " ";
2442   } else {
2443     // The handle() method is silently and lazily mutating the object.
2444     Handle<Object> h = const_cast<HConstant*>(this)->handle(isolate());
2445     os << Brief(*h) << " ";
2446     if (HasStableMapValue()) os << "[stable-map] ";
2447     if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] ";
2448   }
2449   if (!NotInNewSpace()) os << "[new space] ";
2450   return os;
2451 }
2452 
2453 
PrintDataTo(std::ostream & os) const2454 std::ostream& HBinaryOperation::PrintDataTo(std::ostream& os) const {  // NOLINT
2455   os << NameOf(left()) << " " << NameOf(right());
2456   if (CheckFlag(kCanOverflow)) os << " !";
2457   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
2458   return os;
2459 }
2460 
2461 
InferRepresentation(HInferRepresentationPhase * h_infer)2462 void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
2463   DCHECK(CheckFlag(kFlexibleRepresentation));
2464   Representation new_rep = RepresentationFromInputs();
2465   UpdateRepresentation(new_rep, h_infer, "inputs");
2466 
2467   if (representation().IsSmi() && HasNonSmiUse()) {
2468     UpdateRepresentation(
2469         Representation::Integer32(), h_infer, "use requirements");
2470   }
2471 
2472   if (observed_output_representation_.IsNone()) {
2473     new_rep = RepresentationFromUses();
2474     UpdateRepresentation(new_rep, h_infer, "uses");
2475   } else {
2476     new_rep = RepresentationFromOutput();
2477     UpdateRepresentation(new_rep, h_infer, "output");
2478   }
2479 }
2480 
2481 
RepresentationFromInputs()2482 Representation HBinaryOperation::RepresentationFromInputs() {
2483   // Determine the worst case of observed input representations and
2484   // the currently assumed output representation.
2485   Representation rep = representation();
2486   for (int i = 1; i <= 2; ++i) {
2487     rep = rep.generalize(observed_input_representation(i));
2488   }
2489   // If any of the actual input representation is more general than what we
2490   // have so far but not Tagged, use that representation instead.
2491   Representation left_rep = left()->representation();
2492   Representation right_rep = right()->representation();
2493   if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
2494   if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
2495 
2496   return rep;
2497 }
2498 
2499 
IgnoreObservedOutputRepresentation(Representation current_rep)2500 bool HBinaryOperation::IgnoreObservedOutputRepresentation(
2501     Representation current_rep) {
2502   return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
2503           (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
2504          // Mul in Integer32 mode would be too precise.
2505          (!this->IsMul() || HMul::cast(this)->MulMinusOne());
2506 }
2507 
2508 
RepresentationFromOutput()2509 Representation HBinaryOperation::RepresentationFromOutput() {
2510   Representation rep = representation();
2511   // Consider observed output representation, but ignore it if it's Double,
2512   // this instruction is not a division, and all its uses are truncating
2513   // to Integer32.
2514   if (observed_output_representation_.is_more_general_than(rep) &&
2515       !IgnoreObservedOutputRepresentation(rep)) {
2516     return observed_output_representation_;
2517   }
2518   return Representation::None();
2519 }
2520 
2521 
AssumeRepresentation(Representation r)2522 void HBinaryOperation::AssumeRepresentation(Representation r) {
2523   set_observed_input_representation(1, r);
2524   set_observed_input_representation(2, r);
2525   HValue::AssumeRepresentation(r);
2526 }
2527 
2528 
InferRepresentation(HInferRepresentationPhase * h_infer)2529 void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
2530   DCHECK(CheckFlag(kFlexibleRepresentation));
2531   Representation new_rep = RepresentationFromInputs();
2532   UpdateRepresentation(new_rep, h_infer, "inputs");
2533   // Do not care about uses.
2534 }
2535 
2536 
InferRange(Zone * zone)2537 Range* HBitwise::InferRange(Zone* zone) {
2538   if (op() == Token::BIT_XOR) {
2539     if (left()->HasRange() && right()->HasRange()) {
2540       // The maximum value has the high bit, and all bits below, set:
2541       // (1 << high) - 1.
2542       // If the range can be negative, the minimum int is a negative number with
2543       // the high bit, and all bits below, unset:
2544       // -(1 << high).
2545       // If it cannot be negative, conservatively choose 0 as minimum int.
2546       int64_t left_upper = left()->range()->upper();
2547       int64_t left_lower = left()->range()->lower();
2548       int64_t right_upper = right()->range()->upper();
2549       int64_t right_lower = right()->range()->lower();
2550 
2551       if (left_upper < 0) left_upper = ~left_upper;
2552       if (left_lower < 0) left_lower = ~left_lower;
2553       if (right_upper < 0) right_upper = ~right_upper;
2554       if (right_lower < 0) right_lower = ~right_lower;
2555 
2556       int high = MostSignificantBit(
2557           static_cast<uint32_t>(
2558               left_upper | left_lower | right_upper | right_lower));
2559 
2560       int64_t limit = 1;
2561       limit <<= high;
2562       int32_t min = (left()->range()->CanBeNegative() ||
2563                      right()->range()->CanBeNegative())
2564                     ? static_cast<int32_t>(-limit) : 0;
2565       return new(zone) Range(min, static_cast<int32_t>(limit - 1));
2566     }
2567     Range* result = HValue::InferRange(zone);
2568     result->set_can_be_minus_zero(false);
2569     return result;
2570   }
2571   const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
2572   int32_t left_mask = (left()->range() != NULL)
2573       ? left()->range()->Mask()
2574       : kDefaultMask;
2575   int32_t right_mask = (right()->range() != NULL)
2576       ? right()->range()->Mask()
2577       : kDefaultMask;
2578   int32_t result_mask = (op() == Token::BIT_AND)
2579       ? left_mask & right_mask
2580       : left_mask | right_mask;
2581   if (result_mask >= 0) return new(zone) Range(0, result_mask);
2582 
2583   Range* result = HValue::InferRange(zone);
2584   result->set_can_be_minus_zero(false);
2585   return result;
2586 }
2587 
2588 
InferRange(Zone * zone)2589 Range* HSar::InferRange(Zone* zone) {
2590   if (right()->IsConstant()) {
2591     HConstant* c = HConstant::cast(right());
2592     if (c->HasInteger32Value()) {
2593       Range* result = (left()->range() != NULL)
2594           ? left()->range()->Copy(zone)
2595           : new(zone) Range();
2596       result->Sar(c->Integer32Value());
2597       return result;
2598     }
2599   }
2600   return HValue::InferRange(zone);
2601 }
2602 
2603 
InferRange(Zone * zone)2604 Range* HShr::InferRange(Zone* zone) {
2605   if (right()->IsConstant()) {
2606     HConstant* c = HConstant::cast(right());
2607     if (c->HasInteger32Value()) {
2608       int shift_count = c->Integer32Value() & 0x1f;
2609       if (left()->range()->CanBeNegative()) {
2610         // Only compute bounds if the result always fits into an int32.
2611         return (shift_count >= 1)
2612             ? new(zone) Range(0,
2613                               static_cast<uint32_t>(0xffffffff) >> shift_count)
2614             : new(zone) Range();
2615       } else {
2616         // For positive inputs we can use the >> operator.
2617         Range* result = (left()->range() != NULL)
2618             ? left()->range()->Copy(zone)
2619             : new(zone) Range();
2620         result->Sar(c->Integer32Value());
2621         return result;
2622       }
2623     }
2624   }
2625   return HValue::InferRange(zone);
2626 }
2627 
2628 
InferRange(Zone * zone)2629 Range* HShl::InferRange(Zone* zone) {
2630   if (right()->IsConstant()) {
2631     HConstant* c = HConstant::cast(right());
2632     if (c->HasInteger32Value()) {
2633       Range* result = (left()->range() != NULL)
2634           ? left()->range()->Copy(zone)
2635           : new(zone) Range();
2636       result->Shl(c->Integer32Value());
2637       return result;
2638     }
2639   }
2640   return HValue::InferRange(zone);
2641 }
2642 
2643 
InferRange(Zone * zone)2644 Range* HLoadNamedField::InferRange(Zone* zone) {
2645   if (access().representation().IsInteger8()) {
2646     return new(zone) Range(kMinInt8, kMaxInt8);
2647   }
2648   if (access().representation().IsUInteger8()) {
2649     return new(zone) Range(kMinUInt8, kMaxUInt8);
2650   }
2651   if (access().representation().IsInteger16()) {
2652     return new(zone) Range(kMinInt16, kMaxInt16);
2653   }
2654   if (access().representation().IsUInteger16()) {
2655     return new(zone) Range(kMinUInt16, kMaxUInt16);
2656   }
2657   if (access().IsStringLength()) {
2658     return new(zone) Range(0, String::kMaxLength);
2659   }
2660   return HValue::InferRange(zone);
2661 }
2662 
2663 
InferRange(Zone * zone)2664 Range* HLoadKeyed::InferRange(Zone* zone) {
2665   switch (elements_kind()) {
2666     case INT8_ELEMENTS:
2667       return new(zone) Range(kMinInt8, kMaxInt8);
2668     case UINT8_ELEMENTS:
2669     case UINT8_CLAMPED_ELEMENTS:
2670       return new(zone) Range(kMinUInt8, kMaxUInt8);
2671     case INT16_ELEMENTS:
2672       return new(zone) Range(kMinInt16, kMaxInt16);
2673     case UINT16_ELEMENTS:
2674       return new(zone) Range(kMinUInt16, kMaxUInt16);
2675     default:
2676       return HValue::InferRange(zone);
2677   }
2678 }
2679 
2680 
PrintDataTo(std::ostream & os) const2681 std::ostream& HCompareGeneric::PrintDataTo(std::ostream& os) const {  // NOLINT
2682   os << Token::Name(token()) << " ";
2683   return HBinaryOperation::PrintDataTo(os);
2684 }
2685 
2686 
PrintDataTo(std::ostream & os) const2687 std::ostream& HStringCompareAndBranch::PrintDataTo(
2688     std::ostream& os) const {  // NOLINT
2689   os << Token::Name(token()) << " ";
2690   return HControlInstruction::PrintDataTo(os);
2691 }
2692 
2693 
PrintDataTo(std::ostream & os) const2694 std::ostream& HCompareNumericAndBranch::PrintDataTo(
2695     std::ostream& os) const {  // NOLINT
2696   os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right());
2697   return HControlInstruction::PrintDataTo(os);
2698 }
2699 
2700 
PrintDataTo(std::ostream & os) const2701 std::ostream& HCompareObjectEqAndBranch::PrintDataTo(
2702     std::ostream& os) const {  // NOLINT
2703   os << NameOf(left()) << " " << NameOf(right());
2704   return HControlInstruction::PrintDataTo(os);
2705 }
2706 
2707 
KnownSuccessorBlock(HBasicBlock ** block)2708 bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
2709   if (known_successor_index() != kNoKnownSuccessorIndex) {
2710     *block = SuccessorAt(known_successor_index());
2711     return true;
2712   }
2713   if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
2714     *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
2715         ? FirstSuccessor() : SecondSuccessor();
2716     return true;
2717   }
2718   *block = NULL;
2719   return false;
2720 }
2721 
2722 
KnownSuccessorBlock(HBasicBlock ** block)2723 bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
2724   if (known_successor_index() != kNoKnownSuccessorIndex) {
2725     *block = SuccessorAt(known_successor_index());
2726     return true;
2727   }
2728   if (FLAG_fold_constants && value()->IsConstant()) {
2729     *block = HConstant::cast(value())->HasStringValue()
2730         ? FirstSuccessor() : SecondSuccessor();
2731     return true;
2732   }
2733   if (value()->type().IsString()) {
2734     *block = FirstSuccessor();
2735     return true;
2736   }
2737   if (value()->type().IsSmi() ||
2738       value()->type().IsNull() ||
2739       value()->type().IsBoolean() ||
2740       value()->type().IsUndefined() ||
2741       value()->type().IsJSReceiver()) {
2742     *block = SecondSuccessor();
2743     return true;
2744   }
2745   *block = NULL;
2746   return false;
2747 }
2748 
2749 
KnownSuccessorBlock(HBasicBlock ** block)2750 bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
2751   if (FLAG_fold_constants && value()->IsConstant()) {
2752     *block = HConstant::cast(value())->IsUndetectable()
2753         ? FirstSuccessor() : SecondSuccessor();
2754     return true;
2755   }
2756   if (value()->type().IsNull() || value()->type().IsUndefined()) {
2757     *block = FirstSuccessor();
2758     return true;
2759   }
2760   if (value()->type().IsBoolean() ||
2761       value()->type().IsSmi() ||
2762       value()->type().IsString() ||
2763       value()->type().IsJSReceiver()) {
2764     *block = SecondSuccessor();
2765     return true;
2766   }
2767   *block = NULL;
2768   return false;
2769 }
2770 
2771 
KnownSuccessorBlock(HBasicBlock ** block)2772 bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
2773   if (FLAG_fold_constants && value()->IsConstant()) {
2774     InstanceType type = HConstant::cast(value())->GetInstanceType();
2775     *block = (from_ <= type) && (type <= to_)
2776         ? FirstSuccessor() : SecondSuccessor();
2777     return true;
2778   }
2779   *block = NULL;
2780   return false;
2781 }
2782 
2783 
InferRepresentation(HInferRepresentationPhase * h_infer)2784 void HCompareHoleAndBranch::InferRepresentation(
2785     HInferRepresentationPhase* h_infer) {
2786   ChangeRepresentation(value()->representation());
2787 }
2788 
2789 
KnownSuccessorBlock(HBasicBlock ** block)2790 bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
2791   if (left() == right() &&
2792       left()->representation().IsSmiOrInteger32()) {
2793     *block = (token() == Token::EQ ||
2794               token() == Token::EQ_STRICT ||
2795               token() == Token::LTE ||
2796               token() == Token::GTE)
2797         ? FirstSuccessor() : SecondSuccessor();
2798     return true;
2799   }
2800   *block = NULL;
2801   return false;
2802 }
2803 
2804 
PrintDataTo(std::ostream & os) const2805 std::ostream& HGoto::PrintDataTo(std::ostream& os) const {  // NOLINT
2806   return os << *SuccessorAt(0);
2807 }
2808 
2809 
InferRepresentation(HInferRepresentationPhase * h_infer)2810 void HCompareNumericAndBranch::InferRepresentation(
2811     HInferRepresentationPhase* h_infer) {
2812   Representation left_rep = left()->representation();
2813   Representation right_rep = right()->representation();
2814   Representation observed_left = observed_input_representation(0);
2815   Representation observed_right = observed_input_representation(1);
2816 
2817   Representation rep = Representation::None();
2818   rep = rep.generalize(observed_left);
2819   rep = rep.generalize(observed_right);
2820   if (rep.IsNone() || rep.IsSmiOrInteger32()) {
2821     if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
2822     if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
2823   } else {
2824     rep = Representation::Double();
2825   }
2826 
2827   if (rep.IsDouble()) {
2828     // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
2829     // and !=) have special handling of undefined, e.g. undefined == undefined
2830     // is 'true'. Relational comparisons have a different semantic, first
2831     // calling ToPrimitive() on their arguments.  The standard Crankshaft
2832     // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
2833     // inputs are doubles caused 'undefined' to be converted to NaN. That's
2834     // compatible out-of-the box with ordered relational comparisons (<, >, <=,
2835     // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
2836     // it is not consistent with the spec. For example, it would cause undefined
2837     // == undefined (should be true) to be evaluated as NaN == NaN
2838     // (false). Therefore, any comparisons other than ordered relational
2839     // comparisons must cause a deopt when one of their arguments is undefined.
2840     // See also v8:1434
2841     if (Token::IsOrderedRelationalCompareOp(token_)) {
2842       SetFlag(kAllowUndefinedAsNaN);
2843     }
2844   }
2845   ChangeRepresentation(rep);
2846 }
2847 
2848 
PrintDataTo(std::ostream & os) const2849 std::ostream& HParameter::PrintDataTo(std::ostream& os) const {  // NOLINT
2850   return os << index();
2851 }
2852 
2853 
PrintDataTo(std::ostream & os) const2854 std::ostream& HLoadNamedField::PrintDataTo(std::ostream& os) const {  // NOLINT
2855   os << NameOf(object()) << access_;
2856 
2857   if (maps() != NULL) {
2858     os << " [" << *maps()->at(0).handle();
2859     for (int i = 1; i < maps()->size(); ++i) {
2860       os << "," << *maps()->at(i).handle();
2861     }
2862     os << "]";
2863   }
2864 
2865   if (HasDependency()) os << " " << NameOf(dependency());
2866   return os;
2867 }
2868 
2869 
PrintDataTo(std::ostream & os) const2870 std::ostream& HLoadNamedGeneric::PrintDataTo(
2871     std::ostream& os) const {  // NOLINT
2872   Handle<String> n = Handle<String>::cast(name());
2873   return os << NameOf(object()) << "." << n->ToCString().get();
2874 }
2875 
2876 
PrintDataTo(std::ostream & os) const2877 std::ostream& HLoadKeyed::PrintDataTo(std::ostream& os) const {  // NOLINT
2878   if (!is_fixed_typed_array()) {
2879     os << NameOf(elements());
2880   } else {
2881     DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
2882            elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
2883     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
2884   }
2885 
2886   os << "[" << NameOf(key());
2887   if (IsDehoisted()) os << " + " << base_offset();
2888   os << "]";
2889 
2890   if (HasDependency()) os << " " << NameOf(dependency());
2891   if (RequiresHoleCheck()) os << " check_hole";
2892   return os;
2893 }
2894 
2895 
TryIncreaseBaseOffset(uint32_t increase_by_value)2896 bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
2897   // The base offset is usually simply the size of the array header, except
2898   // with dehoisting adds an addition offset due to a array index key
2899   // manipulation, in which case it becomes (array header size +
2900   // constant-offset-from-key * kPointerSize)
2901   uint32_t base_offset = BaseOffsetField::decode(bit_field_);
2902   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset;
2903   addition_result += increase_by_value;
2904   if (!addition_result.IsValid()) return false;
2905   base_offset = addition_result.ValueOrDie();
2906   if (!BaseOffsetField::is_valid(base_offset)) return false;
2907   bit_field_ = BaseOffsetField::update(bit_field_, base_offset);
2908   return true;
2909 }
2910 
2911 
UsesMustHandleHole() const2912 bool HLoadKeyed::UsesMustHandleHole() const {
2913   if (IsFastPackedElementsKind(elements_kind())) {
2914     return false;
2915   }
2916 
2917   if (IsFixedTypedArrayElementsKind(elements_kind())) {
2918     return false;
2919   }
2920 
2921   if (hole_mode() == ALLOW_RETURN_HOLE) {
2922     if (IsFastDoubleElementsKind(elements_kind())) {
2923       return AllUsesCanTreatHoleAsNaN();
2924     }
2925     return true;
2926   }
2927 
2928   if (IsFastDoubleElementsKind(elements_kind())) {
2929     return false;
2930   }
2931 
2932   // Holes are only returned as tagged values.
2933   if (!representation().IsTagged()) {
2934     return false;
2935   }
2936 
2937   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2938     HValue* use = it.value();
2939     if (!use->IsChange()) return false;
2940   }
2941 
2942   return true;
2943 }
2944 
2945 
AllUsesCanTreatHoleAsNaN() const2946 bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
2947   return IsFastDoubleElementsKind(elements_kind()) &&
2948       CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
2949 }
2950 
2951 
RequiresHoleCheck() const2952 bool HLoadKeyed::RequiresHoleCheck() const {
2953   if (IsFastPackedElementsKind(elements_kind())) {
2954     return false;
2955   }
2956 
2957   if (IsFixedTypedArrayElementsKind(elements_kind())) {
2958     return false;
2959   }
2960 
2961   if (hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2962     return false;
2963   }
2964 
2965   return !UsesMustHandleHole();
2966 }
2967 
2968 
PrintDataTo(std::ostream & os) const2969 std::ostream& HLoadKeyedGeneric::PrintDataTo(
2970     std::ostream& os) const {  // NOLINT
2971   return os << NameOf(object()) << "[" << NameOf(key()) << "]";
2972 }
2973 
2974 
Canonicalize()2975 HValue* HLoadKeyedGeneric::Canonicalize() {
2976   // Recognize generic keyed loads that use property name generated
2977   // by for-in statement as a key and rewrite them into fast property load
2978   // by index.
2979   if (key()->IsLoadKeyed()) {
2980     HLoadKeyed* key_load = HLoadKeyed::cast(key());
2981     if (key_load->elements()->IsForInCacheArray()) {
2982       HForInCacheArray* names_cache =
2983           HForInCacheArray::cast(key_load->elements());
2984 
2985       if (names_cache->enumerable() == object()) {
2986         HForInCacheArray* index_cache =
2987             names_cache->index_cache();
2988         HCheckMapValue* map_check = HCheckMapValue::New(
2989             block()->graph()->isolate(), block()->graph()->zone(),
2990             block()->graph()->GetInvalidContext(), object(),
2991             names_cache->map());
2992         HInstruction* index = HLoadKeyed::New(
2993             block()->graph()->isolate(), block()->graph()->zone(),
2994             block()->graph()->GetInvalidContext(), index_cache, key_load->key(),
2995             key_load->key(), nullptr, key_load->elements_kind());
2996         map_check->InsertBefore(this);
2997         index->InsertBefore(this);
2998         return Prepend(new(block()->zone()) HLoadFieldByIndex(
2999             object(), index));
3000       }
3001     }
3002   }
3003 
3004   return this;
3005 }
3006 
3007 
PrintDataTo(std::ostream & os) const3008 std::ostream& HStoreNamedGeneric::PrintDataTo(
3009     std::ostream& os) const {  // NOLINT
3010   Handle<String> n = Handle<String>::cast(name());
3011   return os << NameOf(object()) << "." << n->ToCString().get() << " = "
3012             << NameOf(value());
3013 }
3014 
3015 
PrintDataTo(std::ostream & os) const3016 std::ostream& HStoreNamedField::PrintDataTo(std::ostream& os) const {  // NOLINT
3017   os << NameOf(object()) << access_ << " = " << NameOf(value());
3018   if (NeedsWriteBarrier()) os << " (write-barrier)";
3019   if (has_transition()) os << " (transition map " << *transition_map() << ")";
3020   return os;
3021 }
3022 
3023 
PrintDataTo(std::ostream & os) const3024 std::ostream& HStoreKeyed::PrintDataTo(std::ostream& os) const {  // NOLINT
3025   if (!is_fixed_typed_array()) {
3026     os << NameOf(elements());
3027   } else {
3028     DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
3029            elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
3030     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
3031   }
3032 
3033   os << "[" << NameOf(key());
3034   if (IsDehoisted()) os << " + " << base_offset();
3035   return os << "] = " << NameOf(value());
3036 }
3037 
3038 
PrintDataTo(std::ostream & os) const3039 std::ostream& HStoreKeyedGeneric::PrintDataTo(
3040     std::ostream& os) const {  // NOLINT
3041   return os << NameOf(object()) << "[" << NameOf(key())
3042             << "] = " << NameOf(value());
3043 }
3044 
3045 
PrintDataTo(std::ostream & os) const3046 std::ostream& HTransitionElementsKind::PrintDataTo(
3047     std::ostream& os) const {  // NOLINT
3048   os << NameOf(object());
3049   ElementsKind from_kind = original_map().handle()->elements_kind();
3050   ElementsKind to_kind = transitioned_map().handle()->elements_kind();
3051   os << " " << *original_map().handle() << " ["
3052      << ElementsAccessor::ForKind(from_kind)->name() << "] -> "
3053      << *transitioned_map().handle() << " ["
3054      << ElementsAccessor::ForKind(to_kind)->name() << "]";
3055   if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)";
3056   return os;
3057 }
3058 
3059 
PrintDataTo(std::ostream & os) const3060 std::ostream& HLoadGlobalGeneric::PrintDataTo(
3061     std::ostream& os) const {  // NOLINT
3062   return os << name()->ToCString().get() << " ";
3063 }
3064 
3065 
PrintDataTo(std::ostream & os) const3066 std::ostream& HInnerAllocatedObject::PrintDataTo(
3067     std::ostream& os) const {  // NOLINT
3068   os << NameOf(base_object()) << " offset ";
3069   return offset()->PrintTo(os);
3070 }
3071 
3072 
PrintDataTo(std::ostream & os) const3073 std::ostream& HLoadContextSlot::PrintDataTo(std::ostream& os) const {  // NOLINT
3074   return os << NameOf(value()) << "[" << slot_index() << "]";
3075 }
3076 
3077 
PrintDataTo(std::ostream & os) const3078 std::ostream& HStoreContextSlot::PrintDataTo(
3079     std::ostream& os) const {  // NOLINT
3080   return os << NameOf(context()) << "[" << slot_index()
3081             << "] = " << NameOf(value());
3082 }
3083 
3084 
3085 // Implementation of type inference and type conversions. Calculates
3086 // the inferred type of this instruction based on the input operands.
3087 
CalculateInferredType()3088 HType HValue::CalculateInferredType() {
3089   return type_;
3090 }
3091 
3092 
CalculateInferredType()3093 HType HPhi::CalculateInferredType() {
3094   if (OperandCount() == 0) return HType::Tagged();
3095   HType result = OperandAt(0)->type();
3096   for (int i = 1; i < OperandCount(); ++i) {
3097     HType current = OperandAt(i)->type();
3098     result = result.Combine(current);
3099   }
3100   return result;
3101 }
3102 
3103 
CalculateInferredType()3104 HType HChange::CalculateInferredType() {
3105   if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
3106   return type();
3107 }
3108 
3109 
RepresentationFromInputs()3110 Representation HUnaryMathOperation::RepresentationFromInputs() {
3111   if (SupportsFlexibleFloorAndRound() &&
3112       (op_ == kMathFloor || op_ == kMathRound)) {
3113     // Floor and Round always take a double input. The integral result can be
3114     // used as an integer or a double. Infer the representation from the uses.
3115     return Representation::None();
3116   }
3117   Representation rep = representation();
3118   // If any of the actual input representation is more general than what we
3119   // have so far but not Tagged, use that representation instead.
3120   Representation input_rep = value()->representation();
3121   if (!input_rep.IsTagged()) {
3122     rep = rep.generalize(input_rep);
3123   }
3124   return rep;
3125 }
3126 
3127 
HandleSideEffectDominator(GVNFlag side_effect,HValue * dominator)3128 bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
3129                                           HValue* dominator) {
3130   DCHECK(side_effect == kNewSpacePromotion);
3131   DCHECK(!IsAllocationFolded());
3132   Zone* zone = block()->zone();
3133   Isolate* isolate = block()->isolate();
3134   if (!FLAG_use_allocation_folding) return false;
3135 
3136   // Try to fold allocations together with their dominating allocations.
3137   if (!dominator->IsAllocate()) {
3138     if (FLAG_trace_allocation_folding) {
3139       PrintF("#%d (%s) cannot fold into #%d (%s)\n",
3140           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3141     }
3142     return false;
3143   }
3144 
3145   // Check whether we are folding within the same block for local folding.
3146   if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
3147     if (FLAG_trace_allocation_folding) {
3148       PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
3149           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3150     }
3151     return false;
3152   }
3153 
3154   HAllocate* dominator_allocate = HAllocate::cast(dominator);
3155   HValue* dominator_size = dominator_allocate->size();
3156   HValue* current_size = size();
3157 
3158   // TODO(hpayer): Add support for non-constant allocation in dominator.
3159   if (!current_size->IsInteger32Constant() ||
3160       !dominator_size->IsInteger32Constant()) {
3161     if (FLAG_trace_allocation_folding) {
3162       PrintF("#%d (%s) cannot fold into #%d (%s), "
3163              "dynamic allocation size in dominator\n",
3164           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3165     }
3166     return false;
3167   }
3168 
3169 
3170   if (!IsFoldable(dominator_allocate)) {
3171     if (FLAG_trace_allocation_folding) {
3172       PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n", id(),
3173              Mnemonic(), dominator->id(), dominator->Mnemonic());
3174     }
3175     return false;
3176   }
3177 
3178   DCHECK(
3179       (IsNewSpaceAllocation() && dominator_allocate->IsNewSpaceAllocation()) ||
3180       (IsOldSpaceAllocation() && dominator_allocate->IsOldSpaceAllocation()));
3181 
3182   // First update the size of the dominator allocate instruction.
3183   dominator_size = dominator_allocate->size();
3184   int32_t original_object_size =
3185       HConstant::cast(dominator_size)->GetInteger32Constant();
3186   int32_t dominator_size_constant = original_object_size;
3187 
3188   if (MustAllocateDoubleAligned()) {
3189     if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
3190       dominator_size_constant += kDoubleSize / 2;
3191     }
3192   }
3193 
3194   int32_t current_size_max_value = size()->GetInteger32Constant();
3195   int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
3196 
3197   // Since we clear the first word after folded memory, we cannot use the
3198   // whole Page::kMaxRegularHeapObjectSize memory.
3199   if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
3200     if (FLAG_trace_allocation_folding) {
3201       PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
3202           id(), Mnemonic(), dominator_allocate->id(),
3203           dominator_allocate->Mnemonic(), new_dominator_size);
3204     }
3205     return false;
3206   }
3207 
3208   HInstruction* new_dominator_size_value = HConstant::CreateAndInsertBefore(
3209       isolate, zone, context(), new_dominator_size, Representation::None(),
3210       dominator_allocate);
3211 
3212   dominator_allocate->UpdateSize(new_dominator_size_value);
3213 
3214   if (MustAllocateDoubleAligned()) {
3215     if (!dominator_allocate->MustAllocateDoubleAligned()) {
3216       dominator_allocate->MakeDoubleAligned();
3217     }
3218   }
3219 
3220   if (IsAllocationFoldingDominator()) {
3221     DeleteAndReplaceWith(dominator_allocate);
3222     if (FLAG_trace_allocation_folding) {
3223       PrintF(
3224           "#%d (%s) folded dominator into #%d (%s), new dominator size: %d\n",
3225           id(), Mnemonic(), dominator_allocate->id(),
3226           dominator_allocate->Mnemonic(), new_dominator_size);
3227     }
3228     return true;
3229   }
3230 
3231   if (!dominator_allocate->IsAllocationFoldingDominator()) {
3232     HAllocate* first_alloc =
3233         HAllocate::New(isolate, zone, dominator_allocate->context(),
3234                        dominator_size, dominator_allocate->type(),
3235                        IsNewSpaceAllocation() ? NOT_TENURED : TENURED,
3236                        JS_OBJECT_TYPE, block()->graph()->GetConstant0());
3237     first_alloc->InsertAfter(dominator_allocate);
3238     dominator_allocate->ReplaceAllUsesWith(first_alloc);
3239     dominator_allocate->MakeAllocationFoldingDominator();
3240     first_alloc->MakeFoldedAllocation(dominator_allocate);
3241     if (FLAG_trace_allocation_folding) {
3242       PrintF("#%d (%s) inserted for dominator #%d (%s)\n", first_alloc->id(),
3243              first_alloc->Mnemonic(), dominator_allocate->id(),
3244              dominator_allocate->Mnemonic());
3245     }
3246   }
3247 
3248   MakeFoldedAllocation(dominator_allocate);
3249 
3250   if (FLAG_trace_allocation_folding) {
3251     PrintF("#%d (%s) folded into #%d (%s), new dominator size: %d\n", id(),
3252            Mnemonic(), dominator_allocate->id(), dominator_allocate->Mnemonic(),
3253            new_dominator_size);
3254   }
3255   return true;
3256 }
3257 
3258 
PrintDataTo(std::ostream & os) const3259 std::ostream& HAllocate::PrintDataTo(std::ostream& os) const {  // NOLINT
3260   os << NameOf(size()) << " (";
3261   if (IsNewSpaceAllocation()) os << "N";
3262   if (IsOldSpaceAllocation()) os << "P";
3263   if (MustAllocateDoubleAligned()) os << "A";
3264   if (MustPrefillWithFiller()) os << "F";
3265   return os << ")";
3266 }
3267 
3268 
TryIncreaseBaseOffset(uint32_t increase_by_value)3269 bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
3270   // The base offset is usually simply the size of the array header, except
3271   // with dehoisting adds an addition offset due to a array index key
3272   // manipulation, in which case it becomes (array header size +
3273   // constant-offset-from-key * kPointerSize)
3274   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_;
3275   addition_result += increase_by_value;
3276   if (!addition_result.IsValid()) return false;
3277   base_offset_ = addition_result.ValueOrDie();
3278   return true;
3279 }
3280 
3281 
NeedsCanonicalization()3282 bool HStoreKeyed::NeedsCanonicalization() {
3283   switch (value()->opcode()) {
3284     case kLoadKeyed: {
3285       ElementsKind load_kind = HLoadKeyed::cast(value())->elements_kind();
3286       return IsFixedFloatElementsKind(load_kind);
3287     }
3288     case kChange: {
3289       Representation from = HChange::cast(value())->from();
3290       return from.IsTagged() || from.IsHeapObject();
3291     }
3292     case kLoadNamedField:
3293     case kPhi: {
3294       // Better safe than sorry...
3295       return true;
3296     }
3297     default:
3298       return false;
3299   }
3300 }
3301 
3302 
3303 #define H_CONSTANT_INT(val) \
3304   HConstant::New(isolate, zone, context, static_cast<int32_t>(val))
3305 #define H_CONSTANT_DOUBLE(val) \
3306   HConstant::New(isolate, zone, context, static_cast<double>(val))
3307 
3308 #define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op)                     \
3309   HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context,   \
3310                             HValue* left, HValue* right) {                   \
3311     if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {  \
3312       HConstant* c_left = HConstant::cast(left);                             \
3313       HConstant* c_right = HConstant::cast(right);                           \
3314       if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {         \
3315         double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \
3316         if (IsInt32Double(double_res)) {                                     \
3317           return H_CONSTANT_INT(double_res);                                 \
3318         }                                                                    \
3319         return H_CONSTANT_DOUBLE(double_res);                                \
3320       }                                                                      \
3321     }                                                                        \
3322     return new (zone) HInstr(context, left, right);                          \
3323   }
3324 
3325 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
3326 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
3327 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
3328 
3329 #undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
3330 
3331 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,PretenureFlag pretenure_flag,StringAddFlags flags,Handle<AllocationSite> allocation_site)3332 HInstruction* HStringAdd::New(Isolate* isolate, Zone* zone, HValue* context,
3333                               HValue* left, HValue* right,
3334                               PretenureFlag pretenure_flag,
3335                               StringAddFlags flags,
3336                               Handle<AllocationSite> allocation_site) {
3337   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
3338     HConstant* c_right = HConstant::cast(right);
3339     HConstant* c_left = HConstant::cast(left);
3340     if (c_left->HasStringValue() && c_right->HasStringValue()) {
3341       Handle<String> left_string = c_left->StringValue();
3342       Handle<String> right_string = c_right->StringValue();
3343       // Prevent possible exception by invalid string length.
3344       if (left_string->length() + right_string->length() < String::kMaxLength) {
3345         MaybeHandle<String> concat = isolate->factory()->NewConsString(
3346             c_left->StringValue(), c_right->StringValue());
3347         return HConstant::New(isolate, zone, context, concat.ToHandleChecked());
3348       }
3349     }
3350   }
3351   return new (zone)
3352       HStringAdd(context, left, right, pretenure_flag, flags, allocation_site);
3353 }
3354 
3355 
PrintDataTo(std::ostream & os) const3356 std::ostream& HStringAdd::PrintDataTo(std::ostream& os) const {  // NOLINT
3357   if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
3358     os << "_CheckBoth";
3359   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
3360     os << "_CheckLeft";
3361   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
3362     os << "_CheckRight";
3363   }
3364   HBinaryOperation::PrintDataTo(os);
3365   os << " (";
3366   if (pretenure_flag() == NOT_TENURED)
3367     os << "N";
3368   else if (pretenure_flag() == TENURED)
3369     os << "D";
3370   return os << ")";
3371 }
3372 
3373 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * char_code)3374 HInstruction* HStringCharFromCode::New(Isolate* isolate, Zone* zone,
3375                                        HValue* context, HValue* char_code) {
3376   if (FLAG_fold_constants && char_code->IsConstant()) {
3377     HConstant* c_code = HConstant::cast(char_code);
3378     if (c_code->HasNumberValue()) {
3379       if (std::isfinite(c_code->DoubleValue())) {
3380         uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
3381         return HConstant::New(
3382             isolate, zone, context,
3383             isolate->factory()->LookupSingleCharacterStringFromCode(code));
3384       }
3385       return HConstant::New(isolate, zone, context,
3386                             isolate->factory()->empty_string());
3387     }
3388   }
3389   return new(zone) HStringCharFromCode(context, char_code);
3390 }
3391 
3392 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * value,BuiltinFunctionId op)3393 HInstruction* HUnaryMathOperation::New(Isolate* isolate, Zone* zone,
3394                                        HValue* context, HValue* value,
3395                                        BuiltinFunctionId op) {
3396   do {
3397     if (!FLAG_fold_constants) break;
3398     if (!value->IsConstant()) break;
3399     HConstant* constant = HConstant::cast(value);
3400     if (!constant->HasNumberValue()) break;
3401     double d = constant->DoubleValue();
3402     if (std::isnan(d)) {  // NaN poisons everything.
3403       return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
3404     }
3405     if (std::isinf(d)) {  // +Infinity and -Infinity.
3406       switch (op) {
3407         case kMathCos:
3408         case kMathSin:
3409           return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
3410         case kMathExp:
3411           return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
3412         case kMathLog:
3413         case kMathSqrt:
3414           return H_CONSTANT_DOUBLE(
3415               (d > 0.0) ? d : std::numeric_limits<double>::quiet_NaN());
3416         case kMathPowHalf:
3417         case kMathAbs:
3418           return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
3419         case kMathRound:
3420         case kMathFround:
3421         case kMathFloor:
3422           return H_CONSTANT_DOUBLE(d);
3423         case kMathClz32:
3424           return H_CONSTANT_INT(32);
3425         default:
3426           UNREACHABLE();
3427           break;
3428       }
3429     }
3430     switch (op) {
3431       case kMathCos:
3432         return H_CONSTANT_DOUBLE(base::ieee754::cos(d));
3433       case kMathExp:
3434         return H_CONSTANT_DOUBLE(base::ieee754::exp(d));
3435       case kMathLog:
3436         return H_CONSTANT_DOUBLE(base::ieee754::log(d));
3437       case kMathSin:
3438         return H_CONSTANT_DOUBLE(base::ieee754::sin(d));
3439       case kMathSqrt:
3440         lazily_initialize_fast_sqrt(isolate);
3441         return H_CONSTANT_DOUBLE(fast_sqrt(d, isolate));
3442       case kMathPowHalf:
3443         return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
3444       case kMathAbs:
3445         return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
3446       case kMathRound:
3447         // -0.5 .. -0.0 round to -0.0.
3448         if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
3449         // Doubles are represented as Significant * 2 ^ Exponent. If the
3450         // Exponent is not negative, the double value is already an integer.
3451         if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
3452         return H_CONSTANT_DOUBLE(Floor(d + 0.5));
3453       case kMathFround:
3454         return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d)));
3455       case kMathFloor:
3456         return H_CONSTANT_DOUBLE(Floor(d));
3457       case kMathClz32: {
3458         uint32_t i = DoubleToUint32(d);
3459         return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i));
3460       }
3461       default:
3462         UNREACHABLE();
3463         break;
3464     }
3465   } while (false);
3466   return new(zone) HUnaryMathOperation(context, value, op);
3467 }
3468 
3469 
RepresentationFromUses()3470 Representation HUnaryMathOperation::RepresentationFromUses() {
3471   if (op_ != kMathFloor && op_ != kMathRound) {
3472     return HValue::RepresentationFromUses();
3473   }
3474 
3475   // The instruction can have an int32 or double output. Prefer a double
3476   // representation if there are double uses.
3477   bool use_double = false;
3478 
3479   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3480     HValue* use = it.value();
3481     int use_index = it.index();
3482     Representation rep_observed = use->observed_input_representation(use_index);
3483     Representation rep_required = use->RequiredInputRepresentation(use_index);
3484     use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
3485     if (use_double && !FLAG_trace_representation) {
3486       // Having seen one double is enough.
3487       break;
3488     }
3489     if (FLAG_trace_representation) {
3490       if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
3491         PrintF("#%d %s is used by #%d %s as %s%s\n",
3492                id(), Mnemonic(), use->id(),
3493                use->Mnemonic(), rep_observed.Mnemonic(),
3494                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
3495       } else {
3496         PrintF("#%d %s is required by #%d %s as %s%s\n",
3497                id(), Mnemonic(), use->id(),
3498                use->Mnemonic(), rep_required.Mnemonic(),
3499                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
3500       }
3501     }
3502   }
3503   return use_double ? Representation::Double() : Representation::Integer32();
3504 }
3505 
3506 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right)3507 HInstruction* HPower::New(Isolate* isolate, Zone* zone, HValue* context,
3508                           HValue* left, HValue* right) {
3509   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
3510     HConstant* c_left = HConstant::cast(left);
3511     HConstant* c_right = HConstant::cast(right);
3512     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
3513       double result =
3514           power_helper(isolate, c_left->DoubleValue(), c_right->DoubleValue());
3515       return H_CONSTANT_DOUBLE(std::isnan(result)
3516                                    ? std::numeric_limits<double>::quiet_NaN()
3517                                    : result);
3518     }
3519   }
3520   return new(zone) HPower(left, right);
3521 }
3522 
3523 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,Operation op)3524 HInstruction* HMathMinMax::New(Isolate* isolate, Zone* zone, HValue* context,
3525                                HValue* left, HValue* right, Operation op) {
3526   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
3527     HConstant* c_left = HConstant::cast(left);
3528     HConstant* c_right = HConstant::cast(right);
3529     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
3530       double d_left = c_left->DoubleValue();
3531       double d_right = c_right->DoubleValue();
3532       if (op == kMathMin) {
3533         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
3534         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
3535         if (d_left == d_right) {
3536           // Handle +0 and -0.
3537           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
3538                                                                  : d_right);
3539         }
3540       } else {
3541         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
3542         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
3543         if (d_left == d_right) {
3544           // Handle +0 and -0.
3545           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
3546                                                                  : d_left);
3547         }
3548       }
3549       // All comparisons failed, must be NaN.
3550       return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
3551     }
3552   }
3553   return new(zone) HMathMinMax(context, left, right, op);
3554 }
3555 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right)3556 HInstruction* HMod::New(Isolate* isolate, Zone* zone, HValue* context,
3557                         HValue* left, HValue* right) {
3558   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
3559     HConstant* c_left = HConstant::cast(left);
3560     HConstant* c_right = HConstant::cast(right);
3561     if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
3562       int32_t dividend = c_left->Integer32Value();
3563       int32_t divisor = c_right->Integer32Value();
3564       if (dividend == kMinInt && divisor == -1) {
3565         return H_CONSTANT_DOUBLE(-0.0);
3566       }
3567       if (divisor != 0) {
3568         int32_t res = dividend % divisor;
3569         if ((res == 0) && (dividend < 0)) {
3570           return H_CONSTANT_DOUBLE(-0.0);
3571         }
3572         return H_CONSTANT_INT(res);
3573       }
3574     }
3575   }
3576   return new (zone) HMod(context, left, right);
3577 }
3578 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right)3579 HInstruction* HDiv::New(Isolate* isolate, Zone* zone, HValue* context,
3580                         HValue* left, HValue* right) {
3581   // If left and right are constant values, try to return a constant value.
3582   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
3583     HConstant* c_left = HConstant::cast(left);
3584     HConstant* c_right = HConstant::cast(right);
3585     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
3586       if (c_right->DoubleValue() != 0) {
3587         double double_res = c_left->DoubleValue() / c_right->DoubleValue();
3588         if (IsInt32Double(double_res)) {
3589           return H_CONSTANT_INT(double_res);
3590         }
3591         return H_CONSTANT_DOUBLE(double_res);
3592       } else {
3593         int sign = Double(c_left->DoubleValue()).Sign() *
3594                    Double(c_right->DoubleValue()).Sign();  // Right could be -0.
3595         return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
3596       }
3597     }
3598   }
3599   return new (zone) HDiv(context, left, right);
3600 }
3601 
New(Isolate * isolate,Zone * zone,HValue * context,Token::Value op,HValue * left,HValue * right)3602 HInstruction* HBitwise::New(Isolate* isolate, Zone* zone, HValue* context,
3603                             Token::Value op, HValue* left, HValue* right) {
3604   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
3605     HConstant* c_left = HConstant::cast(left);
3606     HConstant* c_right = HConstant::cast(right);
3607     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
3608       int32_t result;
3609       int32_t v_left = c_left->NumberValueAsInteger32();
3610       int32_t v_right = c_right->NumberValueAsInteger32();
3611       switch (op) {
3612         case Token::BIT_XOR:
3613           result = v_left ^ v_right;
3614           break;
3615         case Token::BIT_AND:
3616           result = v_left & v_right;
3617           break;
3618         case Token::BIT_OR:
3619           result = v_left | v_right;
3620           break;
3621         default:
3622           result = 0;  // Please the compiler.
3623           UNREACHABLE();
3624       }
3625       return H_CONSTANT_INT(result);
3626     }
3627   }
3628   return new (zone) HBitwise(context, op, left, right);
3629 }
3630 
3631 #define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result)                          \
3632   HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context,  \
3633                             HValue* left, HValue* right) {                  \
3634     if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
3635       HConstant* c_left = HConstant::cast(left);                            \
3636       HConstant* c_right = HConstant::cast(right);                          \
3637       if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {        \
3638         return H_CONSTANT_INT(result);                                      \
3639       }                                                                     \
3640     }                                                                       \
3641     return new (zone) HInstr(context, left, right);                         \
3642   }
3643 
3644 DEFINE_NEW_H_BITWISE_INSTR(HSar,
3645 c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
3646 DEFINE_NEW_H_BITWISE_INSTR(HShl,
3647 c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
3648 
3649 #undef DEFINE_NEW_H_BITWISE_INSTR
3650 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right)3651 HInstruction* HShr::New(Isolate* isolate, Zone* zone, HValue* context,
3652                         HValue* left, HValue* right) {
3653   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
3654     HConstant* c_left = HConstant::cast(left);
3655     HConstant* c_right = HConstant::cast(right);
3656     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
3657       int32_t left_val = c_left->NumberValueAsInteger32();
3658       int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
3659       if ((right_val == 0) && (left_val < 0)) {
3660         return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
3661       }
3662       return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
3663     }
3664   }
3665   return new (zone) HShr(context, left, right);
3666 }
3667 
3668 
New(Isolate * isolate,Zone * zone,HValue * context,String::Encoding encoding,HValue * string,HValue * index)3669 HInstruction* HSeqStringGetChar::New(Isolate* isolate, Zone* zone,
3670                                      HValue* context, String::Encoding encoding,
3671                                      HValue* string, HValue* index) {
3672   if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
3673     HConstant* c_string = HConstant::cast(string);
3674     HConstant* c_index = HConstant::cast(index);
3675     if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
3676       Handle<String> s = c_string->StringValue();
3677       int32_t i = c_index->Integer32Value();
3678       DCHECK_LE(0, i);
3679       DCHECK_LT(i, s->length());
3680       return H_CONSTANT_INT(s->Get(i));
3681     }
3682   }
3683   return new(zone) HSeqStringGetChar(encoding, string, index);
3684 }
3685 
3686 
3687 #undef H_CONSTANT_INT
3688 #undef H_CONSTANT_DOUBLE
3689 
3690 
PrintDataTo(std::ostream & os) const3691 std::ostream& HBitwise::PrintDataTo(std::ostream& os) const {  // NOLINT
3692   os << Token::Name(op_) << " ";
3693   return HBitwiseBinaryOperation::PrintDataTo(os);
3694 }
3695 
3696 
SimplifyConstantInputs()3697 void HPhi::SimplifyConstantInputs() {
3698   // Convert constant inputs to integers when all uses are truncating.
3699   // This must happen before representation inference takes place.
3700   if (!CheckUsesForFlag(kTruncatingToInt32)) return;
3701   for (int i = 0; i < OperandCount(); ++i) {
3702     if (!OperandAt(i)->IsConstant()) return;
3703   }
3704   HGraph* graph = block()->graph();
3705   for (int i = 0; i < OperandCount(); ++i) {
3706     HConstant* operand = HConstant::cast(OperandAt(i));
3707     if (operand->HasInteger32Value()) {
3708       continue;
3709     } else if (operand->HasDoubleValue()) {
3710       HConstant* integer_input = HConstant::New(
3711           graph->isolate(), graph->zone(), graph->GetInvalidContext(),
3712           DoubleToInt32(operand->DoubleValue()));
3713       integer_input->InsertAfter(operand);
3714       SetOperandAt(i, integer_input);
3715     } else if (operand->HasBooleanValue()) {
3716       SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
3717                                               : graph->GetConstant0());
3718     } else if (operand->ImmortalImmovable()) {
3719       SetOperandAt(i, graph->GetConstant0());
3720     }
3721   }
3722   // Overwrite observed input representations because they are likely Tagged.
3723   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3724     HValue* use = it.value();
3725     if (use->IsBinaryOperation()) {
3726       HBinaryOperation::cast(use)->set_observed_input_representation(
3727           it.index(), Representation::Smi());
3728     }
3729   }
3730 }
3731 
3732 
InferRepresentation(HInferRepresentationPhase * h_infer)3733 void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
3734   DCHECK(CheckFlag(kFlexibleRepresentation));
3735   Representation new_rep = RepresentationFromUses();
3736   UpdateRepresentation(new_rep, h_infer, "uses");
3737   new_rep = RepresentationFromInputs();
3738   UpdateRepresentation(new_rep, h_infer, "inputs");
3739   new_rep = RepresentationFromUseRequirements();
3740   UpdateRepresentation(new_rep, h_infer, "use requirements");
3741 }
3742 
3743 
RepresentationFromInputs()3744 Representation HPhi::RepresentationFromInputs() {
3745   Representation r = representation();
3746   for (int i = 0; i < OperandCount(); ++i) {
3747     // Ignore conservative Tagged assumption of parameters if we have
3748     // reason to believe that it's too conservative.
3749     if (has_type_feedback_from_uses() && OperandAt(i)->IsParameter()) {
3750       continue;
3751     }
3752 
3753     r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
3754   }
3755   return r;
3756 }
3757 
3758 
3759 // Returns a representation if all uses agree on the same representation.
3760 // Integer32 is also returned when some uses are Smi but others are Integer32.
RepresentationFromUseRequirements()3761 Representation HValue::RepresentationFromUseRequirements() {
3762   Representation rep = Representation::None();
3763   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3764     // Ignore the use requirement from never run code
3765     if (it.value()->block()->IsUnreachable()) continue;
3766 
3767     // We check for observed_input_representation elsewhere.
3768     Representation use_rep =
3769         it.value()->RequiredInputRepresentation(it.index());
3770     if (rep.IsNone()) {
3771       rep = use_rep;
3772       continue;
3773     }
3774     if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
3775     if (rep.generalize(use_rep).IsInteger32()) {
3776       rep = Representation::Integer32();
3777       continue;
3778     }
3779     return Representation::None();
3780   }
3781   return rep;
3782 }
3783 
3784 
HasNonSmiUse()3785 bool HValue::HasNonSmiUse() {
3786   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3787     // We check for observed_input_representation elsewhere.
3788     Representation use_rep =
3789         it.value()->RequiredInputRepresentation(it.index());
3790     if (!use_rep.IsNone() &&
3791         !use_rep.IsSmi() &&
3792         !use_rep.IsTagged()) {
3793       return true;
3794     }
3795   }
3796   return false;
3797 }
3798 
3799 
3800 // Node-specific verification code is only included in debug mode.
3801 #ifdef DEBUG
3802 
Verify()3803 void HPhi::Verify() {
3804   DCHECK(OperandCount() == block()->predecessors()->length());
3805   for (int i = 0; i < OperandCount(); ++i) {
3806     HValue* value = OperandAt(i);
3807     HBasicBlock* defining_block = value->block();
3808     HBasicBlock* predecessor_block = block()->predecessors()->at(i);
3809     DCHECK(defining_block == predecessor_block ||
3810            defining_block->Dominates(predecessor_block));
3811   }
3812 }
3813 
3814 
Verify()3815 void HSimulate::Verify() {
3816   HInstruction::Verify();
3817   DCHECK(HasAstId() || next()->IsEnterInlined());
3818 }
3819 
3820 
Verify()3821 void HCheckHeapObject::Verify() {
3822   HInstruction::Verify();
3823   DCHECK(HasNoUses());
3824 }
3825 
3826 
Verify()3827 void HCheckValue::Verify() {
3828   HInstruction::Verify();
3829   DCHECK(HasNoUses());
3830 }
3831 
3832 #endif
3833 
3834 
ForFixedArrayHeader(int offset)3835 HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
3836   DCHECK(offset >= 0);
3837   DCHECK(offset < FixedArray::kHeaderSize);
3838   if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
3839   return HObjectAccess(kInobject, offset);
3840 }
3841 
3842 
ForMapAndOffset(Handle<Map> map,int offset,Representation representation)3843 HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
3844     Representation representation) {
3845   DCHECK(offset >= 0);
3846   Portion portion = kInobject;
3847 
3848   if (offset == JSObject::kElementsOffset) {
3849     portion = kElementsPointer;
3850   } else if (offset == JSObject::kMapOffset) {
3851     portion = kMaps;
3852   }
3853   bool existing_inobject_property = true;
3854   if (!map.is_null()) {
3855     existing_inobject_property = (offset <
3856         map->instance_size() - map->unused_property_fields() * kPointerSize);
3857   }
3858   return HObjectAccess(portion, offset, representation, Handle<String>::null(),
3859                        false, existing_inobject_property);
3860 }
3861 
3862 
ForAllocationSiteOffset(int offset)3863 HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
3864   switch (offset) {
3865     case AllocationSite::kTransitionInfoOffset:
3866       return HObjectAccess(kInobject, offset, Representation::Tagged());
3867     case AllocationSite::kNestedSiteOffset:
3868       return HObjectAccess(kInobject, offset, Representation::Tagged());
3869     case AllocationSite::kPretenureDataOffset:
3870       return HObjectAccess(kInobject, offset, Representation::Smi());
3871     case AllocationSite::kPretenureCreateCountOffset:
3872       return HObjectAccess(kInobject, offset, Representation::Smi());
3873     case AllocationSite::kDependentCodeOffset:
3874       return HObjectAccess(kInobject, offset, Representation::Tagged());
3875     case AllocationSite::kWeakNextOffset:
3876       return HObjectAccess(kInobject, offset, Representation::Tagged());
3877     default:
3878       UNREACHABLE();
3879   }
3880   return HObjectAccess(kInobject, offset);
3881 }
3882 
3883 
ForContextSlot(int index)3884 HObjectAccess HObjectAccess::ForContextSlot(int index) {
3885   DCHECK(index >= 0);
3886   Portion portion = kInobject;
3887   int offset = Context::kHeaderSize + index * kPointerSize;
3888   DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
3889   return HObjectAccess(portion, offset, Representation::Tagged());
3890 }
3891 
3892 
ForScriptContext(int index)3893 HObjectAccess HObjectAccess::ForScriptContext(int index) {
3894   DCHECK(index >= 0);
3895   Portion portion = kInobject;
3896   int offset = ScriptContextTable::GetContextOffset(index);
3897   return HObjectAccess(portion, offset, Representation::Tagged());
3898 }
3899 
3900 
ForJSArrayOffset(int offset)3901 HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
3902   DCHECK(offset >= 0);
3903   Portion portion = kInobject;
3904 
3905   if (offset == JSObject::kElementsOffset) {
3906     portion = kElementsPointer;
3907   } else if (offset == JSArray::kLengthOffset) {
3908     portion = kArrayLengths;
3909   } else if (offset == JSObject::kMapOffset) {
3910     portion = kMaps;
3911   }
3912   return HObjectAccess(portion, offset);
3913 }
3914 
3915 
ForBackingStoreOffset(int offset,Representation representation)3916 HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
3917     Representation representation) {
3918   DCHECK(offset >= 0);
3919   return HObjectAccess(kBackingStore, offset, representation,
3920                        Handle<String>::null(), false, false);
3921 }
3922 
3923 
ForField(Handle<Map> map,int index,Representation representation,Handle<Name> name)3924 HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index,
3925                                       Representation representation,
3926                                       Handle<Name> name) {
3927   if (index < 0) {
3928     // Negative property indices are in-object properties, indexed
3929     // from the end of the fixed part of the object.
3930     int offset = (index * kPointerSize) + map->instance_size();
3931     return HObjectAccess(kInobject, offset, representation, name, false, true);
3932   } else {
3933     // Non-negative property indices are in the properties array.
3934     int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
3935     return HObjectAccess(kBackingStore, offset, representation, name,
3936                          false, false);
3937   }
3938 }
3939 
3940 
SetGVNFlags(HValue * instr,PropertyAccessType access_type)3941 void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
3942   // set the appropriate GVN flags for a given load or store instruction
3943   if (access_type == STORE) {
3944     // track dominating allocations in order to eliminate write barriers
3945     instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
3946     instr->SetFlag(HValue::kTrackSideEffectDominators);
3947   } else {
3948     // try to GVN loads, but don't hoist above map changes
3949     instr->SetFlag(HValue::kUseGVN);
3950     instr->SetDependsOnFlag(::v8::internal::kMaps);
3951   }
3952 
3953   switch (portion()) {
3954     case kArrayLengths:
3955       if (access_type == STORE) {
3956         instr->SetChangesFlag(::v8::internal::kArrayLengths);
3957       } else {
3958         instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
3959       }
3960       break;
3961     case kStringLengths:
3962       if (access_type == STORE) {
3963         instr->SetChangesFlag(::v8::internal::kStringLengths);
3964       } else {
3965         instr->SetDependsOnFlag(::v8::internal::kStringLengths);
3966       }
3967       break;
3968     case kInobject:
3969       if (access_type == STORE) {
3970         instr->SetChangesFlag(::v8::internal::kInobjectFields);
3971       } else {
3972         instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
3973       }
3974       break;
3975     case kDouble:
3976       if (access_type == STORE) {
3977         instr->SetChangesFlag(::v8::internal::kDoubleFields);
3978       } else {
3979         instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
3980       }
3981       break;
3982     case kBackingStore:
3983       if (access_type == STORE) {
3984         instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
3985       } else {
3986         instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
3987       }
3988       break;
3989     case kElementsPointer:
3990       if (access_type == STORE) {
3991         instr->SetChangesFlag(::v8::internal::kElementsPointer);
3992       } else {
3993         instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
3994       }
3995       break;
3996     case kMaps:
3997       if (access_type == STORE) {
3998         instr->SetChangesFlag(::v8::internal::kMaps);
3999       } else {
4000         instr->SetDependsOnFlag(::v8::internal::kMaps);
4001       }
4002       break;
4003     case kExternalMemory:
4004       if (access_type == STORE) {
4005         instr->SetChangesFlag(::v8::internal::kExternalMemory);
4006       } else {
4007         instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
4008       }
4009       break;
4010   }
4011 }
4012 
4013 
operator <<(std::ostream & os,const HObjectAccess & access)4014 std::ostream& operator<<(std::ostream& os, const HObjectAccess& access) {
4015   os << ".";
4016 
4017   switch (access.portion()) {
4018     case HObjectAccess::kArrayLengths:
4019     case HObjectAccess::kStringLengths:
4020       os << "%length";
4021       break;
4022     case HObjectAccess::kElementsPointer:
4023       os << "%elements";
4024       break;
4025     case HObjectAccess::kMaps:
4026       os << "%map";
4027       break;
4028     case HObjectAccess::kDouble:  // fall through
4029     case HObjectAccess::kInobject:
4030       if (!access.name().is_null() && access.name()->IsString()) {
4031         os << Handle<String>::cast(access.name())->ToCString().get();
4032       }
4033       os << "[in-object]";
4034       break;
4035     case HObjectAccess::kBackingStore:
4036       if (!access.name().is_null() && access.name()->IsString()) {
4037         os << Handle<String>::cast(access.name())->ToCString().get();
4038       }
4039       os << "[backing-store]";
4040       break;
4041     case HObjectAccess::kExternalMemory:
4042       os << "[external-memory]";
4043       break;
4044   }
4045 
4046   return os << "@" << access.offset();
4047 }
4048 
4049 }  // namespace internal
4050 }  // namespace v8
4051