• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/deoptimizer.h"
6 
7 #include "src/accessors.h"
8 #include "src/ast/prettyprinter.h"
9 #include "src/codegen.h"
10 #include "src/disasm.h"
11 #include "src/frames-inl.h"
12 #include "src/full-codegen/full-codegen.h"
13 #include "src/global-handles.h"
14 #include "src/interpreter/interpreter.h"
15 #include "src/macro-assembler.h"
16 #include "src/tracing/trace-event.h"
17 #include "src/v8.h"
18 
19 
20 namespace v8 {
21 namespace internal {
22 
AllocateCodeChunk(MemoryAllocator * allocator)23 static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
24   return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
25                                   base::OS::CommitPageSize(),
26 #if defined(__native_client__)
27   // The Native Client port of V8 uses an interpreter,
28   // so code pages don't need PROT_EXEC.
29                                   NOT_EXECUTABLE,
30 #else
31                                   EXECUTABLE,
32 #endif
33                                   NULL);
34 }
35 
36 
DeoptimizerData(MemoryAllocator * allocator)37 DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
38     : allocator_(allocator),
39       current_(NULL) {
40   for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) {
41     deopt_entry_code_entries_[i] = -1;
42     deopt_entry_code_[i] = AllocateCodeChunk(allocator);
43   }
44 }
45 
46 
~DeoptimizerData()47 DeoptimizerData::~DeoptimizerData() {
48   for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) {
49     allocator_->Free<MemoryAllocator::kFull>(deopt_entry_code_[i]);
50     deopt_entry_code_[i] = NULL;
51   }
52 }
53 
54 
FindDeoptimizingCode(Address addr)55 Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
56   if (function_->IsHeapObject()) {
57     // Search all deoptimizing code in the native context of the function.
58     Isolate* isolate = function_->GetIsolate();
59     Context* native_context = function_->context()->native_context();
60     Object* element = native_context->DeoptimizedCodeListHead();
61     while (!element->IsUndefined(isolate)) {
62       Code* code = Code::cast(element);
63       CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
64       if (code->contains(addr)) return code;
65       element = code->next_code_link();
66     }
67   }
68   return NULL;
69 }
70 
71 
72 // We rely on this function not causing a GC.  It is called from generated code
73 // without having a real stack frame in place.
New(JSFunction * function,BailoutType type,unsigned bailout_id,Address from,int fp_to_sp_delta,Isolate * isolate)74 Deoptimizer* Deoptimizer::New(JSFunction* function,
75                               BailoutType type,
76                               unsigned bailout_id,
77                               Address from,
78                               int fp_to_sp_delta,
79                               Isolate* isolate) {
80   Deoptimizer* deoptimizer = new Deoptimizer(isolate,
81                                              function,
82                                              type,
83                                              bailout_id,
84                                              from,
85                                              fp_to_sp_delta,
86                                              NULL);
87   CHECK(isolate->deoptimizer_data()->current_ == NULL);
88   isolate->deoptimizer_data()->current_ = deoptimizer;
89   return deoptimizer;
90 }
91 
92 
93 // No larger than 2K on all platforms
94 static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
95 
96 
GetMaxDeoptTableSize()97 size_t Deoptimizer::GetMaxDeoptTableSize() {
98   int entries_size =
99       Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
100   int commit_page_size = static_cast<int>(base::OS::CommitPageSize());
101   int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
102                     commit_page_size) + 1;
103   return static_cast<size_t>(commit_page_size * page_count);
104 }
105 
106 
Grab(Isolate * isolate)107 Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
108   Deoptimizer* result = isolate->deoptimizer_data()->current_;
109   CHECK_NOT_NULL(result);
110   result->DeleteFrameDescriptions();
111   isolate->deoptimizer_data()->current_ = NULL;
112   return result;
113 }
114 
115 
ConvertJSFrameIndexToFrameIndex(int jsframe_index)116 int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
117   if (jsframe_index == 0) return 0;
118 
119   int frame_index = 0;
120   while (jsframe_index >= 0) {
121     FrameDescription* frame = output_[frame_index];
122     if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
123       jsframe_index--;
124     }
125     frame_index++;
126   }
127 
128   return frame_index - 1;
129 }
130 
131 
DebuggerInspectableFrame(JavaScriptFrame * frame,int jsframe_index,Isolate * isolate)132 DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
133     JavaScriptFrame* frame,
134     int jsframe_index,
135     Isolate* isolate) {
136   CHECK(frame->is_optimized());
137 
138   TranslatedState translated_values(frame);
139   translated_values.Prepare(false, frame->fp());
140 
141   TranslatedState::iterator frame_it = translated_values.end();
142   int counter = jsframe_index;
143   for (auto it = translated_values.begin(); it != translated_values.end();
144        it++) {
145     if (it->kind() == TranslatedFrame::kFunction ||
146         it->kind() == TranslatedFrame::kInterpretedFunction) {
147       if (counter == 0) {
148         frame_it = it;
149         break;
150       }
151       counter--;
152     }
153   }
154   CHECK(frame_it != translated_values.end());
155 
156   DeoptimizedFrameInfo* info =
157       new DeoptimizedFrameInfo(&translated_values, frame_it, isolate);
158 
159   return info;
160 }
161 
162 
DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo * info,Isolate * isolate)163 void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
164                                                  Isolate* isolate) {
165   delete info;
166 }
167 
168 
GenerateDeoptimizationEntries(MacroAssembler * masm,int count,BailoutType type)169 void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
170                                                 int count,
171                                                 BailoutType type) {
172   TableEntryGenerator generator(masm, type, count);
173   generator.Generate();
174 }
175 
176 
VisitAllOptimizedFunctionsForContext(Context * context,OptimizedFunctionVisitor * visitor)177 void Deoptimizer::VisitAllOptimizedFunctionsForContext(
178     Context* context, OptimizedFunctionVisitor* visitor) {
179   DisallowHeapAllocation no_allocation;
180 
181   CHECK(context->IsNativeContext());
182 
183   visitor->EnterContext(context);
184 
185   // Visit the list of optimized functions, removing elements that
186   // no longer refer to optimized code.
187   JSFunction* prev = NULL;
188   Object* element = context->OptimizedFunctionsListHead();
189   Isolate* isolate = context->GetIsolate();
190   while (!element->IsUndefined(isolate)) {
191     JSFunction* function = JSFunction::cast(element);
192     Object* next = function->next_function_link();
193     if (function->code()->kind() != Code::OPTIMIZED_FUNCTION ||
194         (visitor->VisitFunction(function),
195          function->code()->kind() != Code::OPTIMIZED_FUNCTION)) {
196       // The function no longer refers to optimized code, or the visitor
197       // changed the code to which it refers to no longer be optimized code.
198       // Remove the function from this list.
199       if (prev != NULL) {
200         prev->set_next_function_link(next, UPDATE_WEAK_WRITE_BARRIER);
201       } else {
202         context->SetOptimizedFunctionsListHead(next);
203       }
204       // The visitor should not alter the link directly.
205       CHECK_EQ(function->next_function_link(), next);
206       // Set the next function link to undefined to indicate it is no longer
207       // in the optimized functions list.
208       function->set_next_function_link(context->GetHeap()->undefined_value(),
209                                        SKIP_WRITE_BARRIER);
210     } else {
211       // The visitor should not alter the link directly.
212       CHECK_EQ(function->next_function_link(), next);
213       // preserve this element.
214       prev = function;
215     }
216     element = next;
217   }
218 
219   visitor->LeaveContext(context);
220 }
221 
222 
VisitAllOptimizedFunctions(Isolate * isolate,OptimizedFunctionVisitor * visitor)223 void Deoptimizer::VisitAllOptimizedFunctions(
224     Isolate* isolate,
225     OptimizedFunctionVisitor* visitor) {
226   DisallowHeapAllocation no_allocation;
227 
228   // Run through the list of all native contexts.
229   Object* context = isolate->heap()->native_contexts_list();
230   while (!context->IsUndefined(isolate)) {
231     VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
232     context = Context::cast(context)->next_context_link();
233   }
234 }
235 
236 
237 // Unlink functions referring to code marked for deoptimization, then move
238 // marked code from the optimized code list to the deoptimized code list,
239 // and patch code for lazy deopt.
DeoptimizeMarkedCodeForContext(Context * context)240 void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
241   DisallowHeapAllocation no_allocation;
242 
243   // A "closure" that unlinks optimized code that is going to be
244   // deoptimized from the functions that refer to it.
245   class SelectedCodeUnlinker: public OptimizedFunctionVisitor {
246    public:
247     virtual void EnterContext(Context* context) { }  // Don't care.
248     virtual void LeaveContext(Context* context)  { }  // Don't care.
249     virtual void VisitFunction(JSFunction* function) {
250       Code* code = function->code();
251       if (!code->marked_for_deoptimization()) return;
252 
253       // Unlink this function and evict from optimized code map.
254       SharedFunctionInfo* shared = function->shared();
255       function->set_code(shared->code());
256 
257       if (FLAG_trace_deopt) {
258         CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
259         PrintF(scope.file(), "[deoptimizer unlinked: ");
260         function->PrintName(scope.file());
261         PrintF(scope.file(),
262                " / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
263       }
264     }
265   };
266 
267   // Unlink all functions that refer to marked code.
268   SelectedCodeUnlinker unlinker;
269   VisitAllOptimizedFunctionsForContext(context, &unlinker);
270 
271   Isolate* isolate = context->GetHeap()->isolate();
272 #ifdef DEBUG
273   Code* topmost_optimized_code = NULL;
274   bool safe_to_deopt_topmost_optimized_code = false;
275   // Make sure all activations of optimized code can deopt at their current PC.
276   // The topmost optimized code has special handling because it cannot be
277   // deoptimized due to weak object dependency.
278   for (StackFrameIterator it(isolate, isolate->thread_local_top());
279        !it.done(); it.Advance()) {
280     StackFrame::Type type = it.frame()->type();
281     if (type == StackFrame::OPTIMIZED) {
282       Code* code = it.frame()->LookupCode();
283       JSFunction* function =
284           static_cast<OptimizedFrame*>(it.frame())->function();
285       if (FLAG_trace_deopt) {
286         CodeTracer::Scope scope(isolate->GetCodeTracer());
287         PrintF(scope.file(), "[deoptimizer found activation of function: ");
288         function->PrintName(scope.file());
289         PrintF(scope.file(),
290                " / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
291       }
292       SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
293       int deopt_index = safepoint.deoptimization_index();
294       // Turbofan deopt is checked when we are patching addresses on stack.
295       bool turbofanned = code->is_turbofanned() &&
296                          function->shared()->asm_function() &&
297                          !FLAG_turbo_asm_deoptimization;
298       bool safe_to_deopt =
299           deopt_index != Safepoint::kNoDeoptimizationIndex || turbofanned;
300       bool builtin = code->kind() == Code::BUILTIN;
301       CHECK(topmost_optimized_code == NULL || safe_to_deopt || turbofanned ||
302             builtin);
303       if (topmost_optimized_code == NULL) {
304         topmost_optimized_code = code;
305         safe_to_deopt_topmost_optimized_code = safe_to_deopt;
306       }
307     }
308   }
309 #endif
310 
311   // Move marked code from the optimized code list to the deoptimized
312   // code list, collecting them into a ZoneList.
313   Zone zone(isolate->allocator());
314   ZoneList<Code*> codes(10, &zone);
315 
316   // Walk over all optimized code objects in this native context.
317   Code* prev = NULL;
318   Object* element = context->OptimizedCodeListHead();
319   while (!element->IsUndefined(isolate)) {
320     Code* code = Code::cast(element);
321     CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
322     Object* next = code->next_code_link();
323 
324     if (code->marked_for_deoptimization()) {
325       // Put the code into the list for later patching.
326       codes.Add(code, &zone);
327 
328       if (prev != NULL) {
329         // Skip this code in the optimized code list.
330         prev->set_next_code_link(next);
331       } else {
332         // There was no previous node, the next node is the new head.
333         context->SetOptimizedCodeListHead(next);
334       }
335 
336       // Move the code to the _deoptimized_ code list.
337       code->set_next_code_link(context->DeoptimizedCodeListHead());
338       context->SetDeoptimizedCodeListHead(code);
339     } else {
340       // Not marked; preserve this element.
341       prev = code;
342     }
343     element = next;
344   }
345 
346   // We need a handle scope only because of the macro assembler,
347   // which is used in code patching in EnsureCodeForDeoptimizationEntry.
348   HandleScope scope(isolate);
349 
350   // Now patch all the codes for deoptimization.
351   for (int i = 0; i < codes.length(); i++) {
352 #ifdef DEBUG
353     if (codes[i] == topmost_optimized_code) {
354       DCHECK(safe_to_deopt_topmost_optimized_code);
355     }
356 #endif
357     // It is finally time to die, code object.
358 
359     // Remove the code from optimized code map.
360     DeoptimizationInputData* deopt_data =
361         DeoptimizationInputData::cast(codes[i]->deoptimization_data());
362     SharedFunctionInfo* shared =
363         SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo());
364     shared->EvictFromOptimizedCodeMap(codes[i], "deoptimized code");
365 
366     // Do platform-specific patching to force any activations to lazy deopt.
367     PatchCodeForDeoptimization(isolate, codes[i]);
368 
369     // We might be in the middle of incremental marking with compaction.
370     // Tell collector to treat this code object in a special way and
371     // ignore all slots that might have been recorded on it.
372     isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]);
373   }
374 }
375 
376 
DeoptimizeAll(Isolate * isolate)377 void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
378   RuntimeCallTimerScope runtimeTimer(isolate,
379                                      &RuntimeCallStats::DeoptimizeCode);
380   TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
381   TRACE_EVENT0("v8", "V8.DeoptimizeCode");
382   if (FLAG_trace_deopt) {
383     CodeTracer::Scope scope(isolate->GetCodeTracer());
384     PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
385   }
386   DisallowHeapAllocation no_allocation;
387   // For all contexts, mark all code, then deoptimize.
388   Object* context = isolate->heap()->native_contexts_list();
389   while (!context->IsUndefined(isolate)) {
390     Context* native_context = Context::cast(context);
391     MarkAllCodeForContext(native_context);
392     DeoptimizeMarkedCodeForContext(native_context);
393     context = native_context->next_context_link();
394   }
395 }
396 
397 
DeoptimizeMarkedCode(Isolate * isolate)398 void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
399   RuntimeCallTimerScope runtimeTimer(isolate,
400                                      &RuntimeCallStats::DeoptimizeCode);
401   TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
402   TRACE_EVENT0("v8", "V8.DeoptimizeCode");
403   if (FLAG_trace_deopt) {
404     CodeTracer::Scope scope(isolate->GetCodeTracer());
405     PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
406   }
407   DisallowHeapAllocation no_allocation;
408   // For all contexts, deoptimize code already marked.
409   Object* context = isolate->heap()->native_contexts_list();
410   while (!context->IsUndefined(isolate)) {
411     Context* native_context = Context::cast(context);
412     DeoptimizeMarkedCodeForContext(native_context);
413     context = native_context->next_context_link();
414   }
415 }
416 
417 
MarkAllCodeForContext(Context * context)418 void Deoptimizer::MarkAllCodeForContext(Context* context) {
419   Object* element = context->OptimizedCodeListHead();
420   Isolate* isolate = context->GetIsolate();
421   while (!element->IsUndefined(isolate)) {
422     Code* code = Code::cast(element);
423     CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
424     code->set_marked_for_deoptimization(true);
425     element = code->next_code_link();
426   }
427 }
428 
429 
DeoptimizeFunction(JSFunction * function)430 void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
431   Isolate* isolate = function->GetIsolate();
432   RuntimeCallTimerScope runtimeTimer(isolate,
433                                      &RuntimeCallStats::DeoptimizeCode);
434   TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
435   TRACE_EVENT0("v8", "V8.DeoptimizeCode");
436   Code* code = function->code();
437   if (code->kind() == Code::OPTIMIZED_FUNCTION) {
438     // Mark the code for deoptimization and unlink any functions that also
439     // refer to that code. The code cannot be shared across native contexts,
440     // so we only need to search one.
441     code->set_marked_for_deoptimization(true);
442     DeoptimizeMarkedCodeForContext(function->context()->native_context());
443   }
444 }
445 
446 
ComputeOutputFrames(Deoptimizer * deoptimizer)447 void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
448   deoptimizer->DoComputeOutputFrames();
449 }
450 
451 
TraceEnabledFor(BailoutType deopt_type,StackFrame::Type frame_type)452 bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type,
453                                   StackFrame::Type frame_type) {
454   switch (deopt_type) {
455     case EAGER:
456     case SOFT:
457     case LAZY:
458       return (frame_type == StackFrame::STUB)
459           ? FLAG_trace_stub_failures
460           : FLAG_trace_deopt;
461   }
462   FATAL("Unsupported deopt type");
463   return false;
464 }
465 
466 
MessageFor(BailoutType type)467 const char* Deoptimizer::MessageFor(BailoutType type) {
468   switch (type) {
469     case EAGER: return "eager";
470     case SOFT: return "soft";
471     case LAZY: return "lazy";
472   }
473   FATAL("Unsupported deopt type");
474   return NULL;
475 }
476 
Deoptimizer(Isolate * isolate,JSFunction * function,BailoutType type,unsigned bailout_id,Address from,int fp_to_sp_delta,Code * optimized_code)477 Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function,
478                          BailoutType type, unsigned bailout_id, Address from,
479                          int fp_to_sp_delta, Code* optimized_code)
480     : isolate_(isolate),
481       function_(function),
482       bailout_id_(bailout_id),
483       bailout_type_(type),
484       from_(from),
485       fp_to_sp_delta_(fp_to_sp_delta),
486       deoptimizing_throw_(false),
487       catch_handler_data_(-1),
488       catch_handler_pc_offset_(-1),
489       input_(nullptr),
490       output_count_(0),
491       jsframe_count_(0),
492       output_(nullptr),
493       caller_frame_top_(0),
494       caller_fp_(0),
495       caller_pc_(0),
496       caller_constant_pool_(0),
497       input_frame_context_(0),
498       stack_fp_(0),
499       trace_scope_(nullptr) {
500   if (isolate->deoptimizer_lazy_throw()) {
501     isolate->set_deoptimizer_lazy_throw(false);
502     deoptimizing_throw_ = true;
503   }
504 
505   // For COMPILED_STUBs called from builtins, the function pointer is a SMI
506   // indicating an internal frame.
507   if (function->IsSmi()) {
508     function = nullptr;
509   }
510   DCHECK(from != nullptr);
511   if (function != nullptr && function->IsOptimized()) {
512     function->shared()->increment_deopt_count();
513     if (bailout_type_ == Deoptimizer::SOFT) {
514       isolate->counters()->soft_deopts_executed()->Increment();
515       // Soft deopts shouldn't count against the overall re-optimization count
516       // that can eventually lead to disabling optimization for a function.
517       int opt_count = function->shared()->opt_count();
518       if (opt_count > 0) opt_count--;
519       function->shared()->set_opt_count(opt_count);
520     }
521   }
522   compiled_code_ = FindOptimizedCode(function, optimized_code);
523 #if DEBUG
524   DCHECK(compiled_code_ != NULL);
525   if (type == EAGER || type == SOFT || type == LAZY) {
526     DCHECK(compiled_code_->kind() != Code::FUNCTION);
527   }
528 #endif
529 
530   StackFrame::Type frame_type = function == NULL
531       ? StackFrame::STUB
532       : StackFrame::JAVA_SCRIPT;
533   trace_scope_ = TraceEnabledFor(type, frame_type) ?
534       new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL;
535 #ifdef DEBUG
536   CHECK(AllowHeapAllocation::IsAllowed());
537   disallow_heap_allocation_ = new DisallowHeapAllocation();
538 #endif  // DEBUG
539   if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
540     PROFILE(isolate_, CodeDeoptEvent(compiled_code_, from_, fp_to_sp_delta_));
541   }
542   unsigned size = ComputeInputFrameSize();
543   int parameter_count =
544       function == nullptr
545           ? 0
546           : (function->shared()->internal_formal_parameter_count() + 1);
547   input_ = new (size) FrameDescription(size, parameter_count);
548   input_->SetFrameType(frame_type);
549 }
550 
551 
FindOptimizedCode(JSFunction * function,Code * optimized_code)552 Code* Deoptimizer::FindOptimizedCode(JSFunction* function,
553                                      Code* optimized_code) {
554   switch (bailout_type_) {
555     case Deoptimizer::SOFT:
556     case Deoptimizer::EAGER:
557     case Deoptimizer::LAZY: {
558       Code* compiled_code = FindDeoptimizingCode(from_);
559       return (compiled_code == NULL)
560           ? static_cast<Code*>(isolate_->FindCodeObject(from_))
561           : compiled_code;
562     }
563   }
564   FATAL("Could not find code for optimized function");
565   return NULL;
566 }
567 
568 
PrintFunctionName()569 void Deoptimizer::PrintFunctionName() {
570   if (function_ != nullptr && function_->IsJSFunction()) {
571     function_->ShortPrint(trace_scope_->file());
572   } else {
573     PrintF(trace_scope_->file(),
574            "%s", Code::Kind2String(compiled_code_->kind()));
575   }
576 }
577 
578 
~Deoptimizer()579 Deoptimizer::~Deoptimizer() {
580   DCHECK(input_ == NULL && output_ == NULL);
581   DCHECK(disallow_heap_allocation_ == NULL);
582   delete trace_scope_;
583 }
584 
585 
DeleteFrameDescriptions()586 void Deoptimizer::DeleteFrameDescriptions() {
587   delete input_;
588   for (int i = 0; i < output_count_; ++i) {
589     if (output_[i] != input_) delete output_[i];
590   }
591   delete[] output_;
592   input_ = NULL;
593   output_ = NULL;
594 #ifdef DEBUG
595   CHECK(!AllowHeapAllocation::IsAllowed());
596   CHECK(disallow_heap_allocation_ != NULL);
597   delete disallow_heap_allocation_;
598   disallow_heap_allocation_ = NULL;
599 #endif  // DEBUG
600 }
601 
602 
GetDeoptimizationEntry(Isolate * isolate,int id,BailoutType type,GetEntryMode mode)603 Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
604                                             int id,
605                                             BailoutType type,
606                                             GetEntryMode mode) {
607   CHECK_GE(id, 0);
608   if (id >= kMaxNumberOfEntries) return NULL;
609   if (mode == ENSURE_ENTRY_CODE) {
610     EnsureCodeForDeoptimizationEntry(isolate, type, id);
611   } else {
612     CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS);
613   }
614   DeoptimizerData* data = isolate->deoptimizer_data();
615   CHECK_LE(type, kLastBailoutType);
616   MemoryChunk* base = data->deopt_entry_code_[type];
617   return base->area_start() + (id * table_entry_size_);
618 }
619 
620 
GetDeoptimizationId(Isolate * isolate,Address addr,BailoutType type)621 int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
622                                      Address addr,
623                                      BailoutType type) {
624   DeoptimizerData* data = isolate->deoptimizer_data();
625   MemoryChunk* base = data->deopt_entry_code_[type];
626   Address start = base->area_start();
627   if (addr < start ||
628       addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
629     return kNotDeoptimizationEntry;
630   }
631   DCHECK_EQ(0,
632             static_cast<int>(addr - start) % table_entry_size_);
633   return static_cast<int>(addr - start) / table_entry_size_;
634 }
635 
636 
GetOutputInfo(DeoptimizationOutputData * data,BailoutId id,SharedFunctionInfo * shared)637 int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
638                                BailoutId id,
639                                SharedFunctionInfo* shared) {
640   // TODO(kasperl): For now, we do a simple linear search for the PC
641   // offset associated with the given node id. This should probably be
642   // changed to a binary search.
643   int length = data->DeoptPoints();
644   for (int i = 0; i < length; i++) {
645     if (data->AstId(i) == id) {
646       return data->PcAndState(i)->value();
647     }
648   }
649   OFStream os(stderr);
650   os << "[couldn't find pc offset for node=" << id.ToInt() << "]\n"
651      << "[method: " << shared->DebugName()->ToCString().get() << "]\n"
652      << "[source:\n" << SourceCodeOf(shared) << "\n]" << std::endl;
653 
654   shared->GetHeap()->isolate()->PushStackTraceAndDie(0xfefefefe, data, shared,
655                                                      0xfefefeff);
656   FATAL("unable to find pc offset during deoptimization");
657   return -1;
658 }
659 
660 
GetDeoptimizedCodeCount(Isolate * isolate)661 int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
662   int length = 0;
663   // Count all entries in the deoptimizing code list of every context.
664   Object* context = isolate->heap()->native_contexts_list();
665   while (!context->IsUndefined(isolate)) {
666     Context* native_context = Context::cast(context);
667     Object* element = native_context->DeoptimizedCodeListHead();
668     while (!element->IsUndefined(isolate)) {
669       Code* code = Code::cast(element);
670       DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
671       length++;
672       element = code->next_code_link();
673     }
674     context = Context::cast(context)->next_context_link();
675   }
676   return length;
677 }
678 
679 namespace {
680 
LookupCatchHandler(TranslatedFrame * translated_frame,int * data_out)681 int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) {
682   switch (translated_frame->kind()) {
683     case TranslatedFrame::kFunction: {
684       BailoutId node_id = translated_frame->node_id();
685       JSFunction* function =
686           JSFunction::cast(translated_frame->begin()->GetRawValue());
687       Code* non_optimized_code = function->shared()->code();
688       FixedArray* raw_data = non_optimized_code->deoptimization_data();
689       DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
690       unsigned pc_and_state =
691           Deoptimizer::GetOutputInfo(data, node_id, function->shared());
692       unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
693       HandlerTable* table =
694           HandlerTable::cast(non_optimized_code->handler_table());
695       HandlerTable::CatchPrediction prediction;
696       return table->LookupRange(pc_offset, data_out, &prediction);
697     }
698     case TranslatedFrame::kInterpretedFunction: {
699       int bytecode_offset = translated_frame->node_id().ToInt();
700       JSFunction* function =
701           JSFunction::cast(translated_frame->begin()->GetRawValue());
702       BytecodeArray* bytecode = function->shared()->bytecode_array();
703       HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
704       HandlerTable::CatchPrediction prediction;
705       return table->LookupRange(bytecode_offset, data_out, &prediction);
706     }
707     default:
708       break;
709   }
710   return -1;
711 }
712 
713 }  // namespace
714 
715 // We rely on this function not causing a GC.  It is called from generated code
716 // without having a real stack frame in place.
DoComputeOutputFrames()717 void Deoptimizer::DoComputeOutputFrames() {
718   base::ElapsedTimer timer;
719 
720   // Determine basic deoptimization information.  The optimized frame is
721   // described by the input data.
722   DeoptimizationInputData* input_data =
723       DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
724 
725   {
726     // Read caller's PC, caller's FP and caller's constant pool values
727     // from input frame. Compute caller's frame top address.
728 
729     Register fp_reg = JavaScriptFrame::fp_register();
730     stack_fp_ = input_->GetRegister(fp_reg.code());
731 
732     caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize();
733 
734     Address fp_address = input_->GetFramePointerAddress();
735     caller_fp_ = Memory::intptr_at(fp_address);
736     caller_pc_ =
737         Memory::intptr_at(fp_address + CommonFrameConstants::kCallerPCOffset);
738     input_frame_context_ = Memory::intptr_at(
739         fp_address + CommonFrameConstants::kContextOrFrameTypeOffset);
740 
741     if (FLAG_enable_embedded_constant_pool) {
742       caller_constant_pool_ = Memory::intptr_at(
743           fp_address + CommonFrameConstants::kConstantPoolOffset);
744     }
745   }
746 
747   if (trace_scope_ != NULL) {
748     timer.Start();
749     PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
750            MessageFor(bailout_type_));
751     PrintFunctionName();
752     PrintF(trace_scope_->file(),
753            " (opt #%d) @%d, FP to SP delta: %d, caller sp: 0x%08" V8PRIxPTR
754            "]\n",
755            input_data->OptimizationId()->value(), bailout_id_, fp_to_sp_delta_,
756            caller_frame_top_);
757     if (bailout_type_ == EAGER || bailout_type_ == SOFT ||
758         (compiled_code_->is_hydrogen_stub())) {
759       compiled_code_->PrintDeoptLocation(trace_scope_->file(), from_);
760     }
761   }
762 
763   BailoutId node_id = input_data->AstId(bailout_id_);
764   ByteArray* translations = input_data->TranslationByteArray();
765   unsigned translation_index =
766       input_data->TranslationIndex(bailout_id_)->value();
767 
768   TranslationIterator state_iterator(translations, translation_index);
769   translated_state_.Init(
770       input_->GetFramePointerAddress(), &state_iterator,
771       input_data->LiteralArray(), input_->GetRegisterValues(),
772       trace_scope_ == nullptr ? nullptr : trace_scope_->file());
773 
774   // Do the input frame to output frame(s) translation.
775   size_t count = translated_state_.frames().size();
776   // If we are supposed to go to the catch handler, find the catching frame
777   // for the catch and make sure we only deoptimize upto that frame.
778   if (deoptimizing_throw_) {
779     size_t catch_handler_frame_index = count;
780     for (size_t i = count; i-- > 0;) {
781       catch_handler_pc_offset_ = LookupCatchHandler(
782           &(translated_state_.frames()[i]), &catch_handler_data_);
783       if (catch_handler_pc_offset_ >= 0) {
784         catch_handler_frame_index = i;
785         break;
786       }
787     }
788     CHECK_LT(catch_handler_frame_index, count);
789     count = catch_handler_frame_index + 1;
790   }
791 
792   DCHECK(output_ == NULL);
793   output_ = new FrameDescription*[count];
794   for (size_t i = 0; i < count; ++i) {
795     output_[i] = NULL;
796   }
797   output_count_ = static_cast<int>(count);
798 
799   // Translate each output frame.
800   int frame_index = 0;  // output_frame_index
801   for (size_t i = 0; i < count; ++i, ++frame_index) {
802     // Read the ast node id, function, and frame height for this output frame.
803     TranslatedFrame* translated_frame = &(translated_state_.frames()[i]);
804     switch (translated_frame->kind()) {
805       case TranslatedFrame::kFunction:
806         DoComputeJSFrame(translated_frame, frame_index,
807                          deoptimizing_throw_ && i == count - 1);
808         jsframe_count_++;
809         break;
810       case TranslatedFrame::kInterpretedFunction:
811         DoComputeInterpretedFrame(translated_frame, frame_index,
812                                   deoptimizing_throw_ && i == count - 1);
813         jsframe_count_++;
814         break;
815       case TranslatedFrame::kArgumentsAdaptor:
816         DoComputeArgumentsAdaptorFrame(translated_frame, frame_index);
817         break;
818       case TranslatedFrame::kTailCallerFunction:
819         DoComputeTailCallerFrame(translated_frame, frame_index);
820         // Tail caller frame translations do not produce output frames.
821         frame_index--;
822         output_count_--;
823         break;
824       case TranslatedFrame::kConstructStub:
825         DoComputeConstructStubFrame(translated_frame, frame_index);
826         break;
827       case TranslatedFrame::kGetter:
828         DoComputeAccessorStubFrame(translated_frame, frame_index, false);
829         break;
830       case TranslatedFrame::kSetter:
831         DoComputeAccessorStubFrame(translated_frame, frame_index, true);
832         break;
833       case TranslatedFrame::kCompiledStub:
834         DoComputeCompiledStubFrame(translated_frame, frame_index);
835         break;
836       case TranslatedFrame::kInvalid:
837         FATAL("invalid frame");
838         break;
839     }
840   }
841 
842   // Print some helpful diagnostic information.
843   if (trace_scope_ != NULL) {
844     double ms = timer.Elapsed().InMillisecondsF();
845     int index = output_count_ - 1;  // Index of the topmost frame.
846     PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
847            MessageFor(bailout_type_));
848     PrintFunctionName();
849     PrintF(trace_scope_->file(),
850            " @%d => node=%d, pc=0x%08" V8PRIxPTR ", caller sp=0x%08" V8PRIxPTR
851            ", state=%s, took %0.3f ms]\n",
852            bailout_id_, node_id.ToInt(), output_[index]->GetPc(),
853            caller_frame_top_, BailoutStateToString(static_cast<BailoutState>(
854                                   output_[index]->GetState()->value())),
855            ms);
856   }
857 }
858 
DoComputeJSFrame(TranslatedFrame * translated_frame,int frame_index,bool goto_catch_handler)859 void Deoptimizer::DoComputeJSFrame(TranslatedFrame* translated_frame,
860                                    int frame_index, bool goto_catch_handler) {
861   SharedFunctionInfo* shared = translated_frame->raw_shared_info();
862 
863   TranslatedFrame::iterator value_iterator = translated_frame->begin();
864   bool is_bottommost = (0 == frame_index);
865   bool is_topmost = (output_count_ - 1 == frame_index);
866   int input_index = 0;
867 
868   BailoutId node_id = translated_frame->node_id();
869   unsigned height =
870       translated_frame->height() - 1;  // Do not count the context.
871   unsigned height_in_bytes = height * kPointerSize;
872   if (goto_catch_handler) {
873     // Take the stack height from the handler table.
874     height = catch_handler_data_;
875     // We also make space for the exception itself.
876     height_in_bytes = (height + 1) * kPointerSize;
877     CHECK(is_topmost);
878   }
879 
880   JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
881   value_iterator++;
882   input_index++;
883   if (trace_scope_ != NULL) {
884     PrintF(trace_scope_->file(), "  translating frame ");
885     base::SmartArrayPointer<char> name = shared->DebugName()->ToCString();
886     PrintF(trace_scope_->file(), "%s", name.get());
887     PrintF(trace_scope_->file(), " => node=%d, height=%d%s\n", node_id.ToInt(),
888            height_in_bytes, goto_catch_handler ? " (throw)" : "");
889   }
890 
891   // The 'fixed' part of the frame consists of the incoming parameters and
892   // the part described by JavaScriptFrameConstants.
893   unsigned fixed_frame_size = ComputeJavascriptFixedSize(shared);
894   unsigned output_frame_size = height_in_bytes + fixed_frame_size;
895 
896   // Allocate and store the output frame description.
897   int parameter_count = shared->internal_formal_parameter_count() + 1;
898   FrameDescription* output_frame = new (output_frame_size)
899       FrameDescription(output_frame_size, parameter_count);
900   output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
901 
902   CHECK(frame_index >= 0 && frame_index < output_count_);
903   CHECK_NULL(output_[frame_index]);
904   output_[frame_index] = output_frame;
905 
906   // The top address of the frame is computed from the previous frame's top and
907   // this frame's size.
908   intptr_t top_address;
909   if (is_bottommost) {
910     top_address = caller_frame_top_ - output_frame_size;
911   } else {
912     top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
913   }
914   output_frame->SetTop(top_address);
915 
916   // Compute the incoming parameter translation.
917   unsigned output_offset = output_frame_size;
918   for (int i = 0; i < parameter_count; ++i) {
919     output_offset -= kPointerSize;
920     WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
921                                  output_offset);
922   }
923 
924   // There are no translation commands for the caller's pc and fp, the
925   // context, and the function.  Synthesize their values and set them up
926   // explicitly.
927   //
928   // The caller's pc for the bottommost output frame is the same as in the
929   // input frame.  For all subsequent output frames, it can be read from the
930   // previous one.  This frame's pc can be computed from the non-optimized
931   // function code and AST id of the bailout.
932   output_offset -= kPCOnStackSize;
933   intptr_t value;
934   if (is_bottommost) {
935     value = caller_pc_;
936   } else {
937     value = output_[frame_index - 1]->GetPc();
938   }
939   output_frame->SetCallerPc(output_offset, value);
940   DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
941 
942   // The caller's frame pointer for the bottommost output frame is the same
943   // as in the input frame.  For all subsequent output frames, it can be
944   // read from the previous one.  Also compute and set this frame's frame
945   // pointer.
946   output_offset -= kFPOnStackSize;
947   if (is_bottommost) {
948     value = caller_fp_;
949   } else {
950     value = output_[frame_index - 1]->GetFp();
951   }
952   output_frame->SetCallerFp(output_offset, value);
953   intptr_t fp_value = top_address + output_offset;
954   output_frame->SetFp(fp_value);
955   if (is_topmost) {
956     Register fp_reg = JavaScriptFrame::fp_register();
957     output_frame->SetRegister(fp_reg.code(), fp_value);
958   }
959   DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
960 
961   if (FLAG_enable_embedded_constant_pool) {
962     // For the bottommost output frame the constant pool pointer can be gotten
963     // from the input frame. For subsequent output frames, it can be read from
964     // the previous frame.
965     output_offset -= kPointerSize;
966     if (is_bottommost) {
967       value = caller_constant_pool_;
968     } else {
969       value = output_[frame_index - 1]->GetConstantPool();
970     }
971     output_frame->SetCallerConstantPool(output_offset, value);
972     DebugPrintOutputSlot(value, frame_index, output_offset,
973                          "caller's constant_pool\n");
974   }
975 
976   // For the bottommost output frame the context can be gotten from the input
977   // frame. For all subsequent output frames it can be gotten from the function
978   // so long as we don't inline functions that need local contexts.
979   output_offset -= kPointerSize;
980 
981   TranslatedFrame::iterator context_pos = value_iterator;
982   int context_input_index = input_index;
983   // When deoptimizing into a catch block, we need to take the context
984   // from just above the top of the operand stack (we push the context
985   // at the entry of the try block).
986   if (goto_catch_handler) {
987     for (unsigned i = 0; i < height + 1; ++i) {
988       context_pos++;
989       context_input_index++;
990     }
991   }
992   // Read the context from the translations.
993   Object* context = context_pos->GetRawValue();
994   if (context->IsUndefined(isolate_)) {
995     // If the context was optimized away, just use the context from
996     // the activation. This should only apply to Crankshaft code.
997     CHECK(!compiled_code_->is_turbofanned());
998     context = is_bottommost ? reinterpret_cast<Object*>(input_frame_context_)
999                             : function->context();
1000   }
1001   value = reinterpret_cast<intptr_t>(context);
1002   output_frame->SetContext(value);
1003   if (is_topmost) {
1004     Register context_reg = JavaScriptFrame::context_register();
1005     output_frame->SetRegister(context_reg.code(), value);
1006   }
1007   WriteValueToOutput(context, context_input_index, frame_index, output_offset,
1008                      "context    ");
1009   if (context == isolate_->heap()->arguments_marker()) {
1010     Address output_address =
1011         reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
1012         output_offset;
1013     values_to_materialize_.push_back({output_address, context_pos});
1014   }
1015   value_iterator++;
1016   input_index++;
1017 
1018   // The function was mentioned explicitly in the BEGIN_FRAME.
1019   output_offset -= kPointerSize;
1020   value = reinterpret_cast<intptr_t>(function);
1021   WriteValueToOutput(function, 0, frame_index, output_offset, "function    ");
1022 
1023   // Translate the rest of the frame.
1024   for (unsigned i = 0; i < height; ++i) {
1025     output_offset -= kPointerSize;
1026     WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
1027                                  output_offset);
1028   }
1029   if (goto_catch_handler) {
1030     // Write out the exception for the catch handler.
1031     output_offset -= kPointerSize;
1032     Object* exception_obj = reinterpret_cast<Object*>(
1033         input_->GetRegister(FullCodeGenerator::result_register().code()));
1034     WriteValueToOutput(exception_obj, input_index, frame_index, output_offset,
1035                        "exception   ");
1036     input_index++;
1037   }
1038   CHECK_EQ(0u, output_offset);
1039 
1040   // Update constant pool.
1041   Code* non_optimized_code = shared->code();
1042   if (FLAG_enable_embedded_constant_pool) {
1043     intptr_t constant_pool_value =
1044         reinterpret_cast<intptr_t>(non_optimized_code->constant_pool());
1045     output_frame->SetConstantPool(constant_pool_value);
1046     if (is_topmost) {
1047       Register constant_pool_reg =
1048           JavaScriptFrame::constant_pool_pointer_register();
1049       output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
1050     }
1051   }
1052 
1053   // Compute this frame's PC, state, and continuation.
1054   FixedArray* raw_data = non_optimized_code->deoptimization_data();
1055   DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
1056   Address start = non_optimized_code->instruction_start();
1057   unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
1058   unsigned pc_offset = goto_catch_handler
1059                            ? catch_handler_pc_offset_
1060                            : FullCodeGenerator::PcField::decode(pc_and_state);
1061   intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
1062   output_frame->SetPc(pc_value);
1063 
1064   // If we are going to the catch handler, then the exception lives in
1065   // the accumulator.
1066   BailoutState state =
1067       goto_catch_handler
1068           ? BailoutState::TOS_REGISTER
1069           : FullCodeGenerator::BailoutStateField::decode(pc_and_state);
1070   output_frame->SetState(Smi::FromInt(static_cast<int>(state)));
1071 
1072   // Set the continuation for the topmost frame.
1073   if (is_topmost) {
1074     Builtins* builtins = isolate_->builtins();
1075     Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
1076     if (bailout_type_ == LAZY) {
1077       continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
1078     } else if (bailout_type_ == SOFT) {
1079       continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
1080     } else {
1081       CHECK_EQ(bailout_type_, EAGER);
1082     }
1083     output_frame->SetContinuation(
1084         reinterpret_cast<intptr_t>(continuation->entry()));
1085   }
1086 }
1087 
DoComputeInterpretedFrame(TranslatedFrame * translated_frame,int frame_index,bool goto_catch_handler)1088 void Deoptimizer::DoComputeInterpretedFrame(TranslatedFrame* translated_frame,
1089                                             int frame_index,
1090                                             bool goto_catch_handler) {
1091   SharedFunctionInfo* shared = translated_frame->raw_shared_info();
1092 
1093   TranslatedFrame::iterator value_iterator = translated_frame->begin();
1094   int input_index = 0;
1095 
1096   int bytecode_offset = translated_frame->node_id().ToInt();
1097   unsigned height = translated_frame->height();
1098   unsigned height_in_bytes = height * kPointerSize;
1099   JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
1100   value_iterator++;
1101   input_index++;
1102   if (trace_scope_ != NULL) {
1103     PrintF(trace_scope_->file(), "  translating interpreted frame ");
1104     base::SmartArrayPointer<char> name = shared->DebugName()->ToCString();
1105     PrintF(trace_scope_->file(), "%s", name.get());
1106     PrintF(trace_scope_->file(), " => bytecode_offset=%d, height=%d%s\n",
1107            bytecode_offset, height_in_bytes,
1108            goto_catch_handler ? " (throw)" : "");
1109   }
1110   if (goto_catch_handler) {
1111     bytecode_offset = catch_handler_pc_offset_;
1112   }
1113 
1114   // The 'fixed' part of the frame consists of the incoming parameters and
1115   // the part described by InterpreterFrameConstants.
1116   unsigned fixed_frame_size = ComputeInterpretedFixedSize(shared);
1117   unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1118 
1119   // Allocate and store the output frame description.
1120   int parameter_count = shared->internal_formal_parameter_count() + 1;
1121   FrameDescription* output_frame = new (output_frame_size)
1122       FrameDescription(output_frame_size, parameter_count);
1123   output_frame->SetFrameType(StackFrame::INTERPRETED);
1124 
1125   bool is_bottommost = (0 == frame_index);
1126   bool is_topmost = (output_count_ - 1 == frame_index);
1127   CHECK(frame_index >= 0 && frame_index < output_count_);
1128   CHECK_NULL(output_[frame_index]);
1129   output_[frame_index] = output_frame;
1130 
1131   // The top address of the frame is computed from the previous frame's top and
1132   // this frame's size.
1133   intptr_t top_address;
1134   if (is_bottommost) {
1135     top_address = caller_frame_top_ - output_frame_size;
1136   } else {
1137     top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1138   }
1139   output_frame->SetTop(top_address);
1140 
1141   // Compute the incoming parameter translation.
1142   unsigned output_offset = output_frame_size;
1143   for (int i = 0; i < parameter_count; ++i) {
1144     output_offset -= kPointerSize;
1145     WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
1146                                  output_offset);
1147   }
1148 
1149   // There are no translation commands for the caller's pc and fp, the
1150   // context, the function, new.target and the bytecode offset.  Synthesize
1151   // their values and set them up
1152   // explicitly.
1153   //
1154   // The caller's pc for the bottommost output frame is the same as in the
1155   // input frame.  For all subsequent output frames, it can be read from the
1156   // previous one.  This frame's pc can be computed from the non-optimized
1157   // function code and AST id of the bailout.
1158   output_offset -= kPCOnStackSize;
1159   intptr_t value;
1160   if (is_bottommost) {
1161     value = caller_pc_;
1162   } else {
1163     value = output_[frame_index - 1]->GetPc();
1164   }
1165   output_frame->SetCallerPc(output_offset, value);
1166   DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
1167 
1168   // The caller's frame pointer for the bottommost output frame is the same
1169   // as in the input frame.  For all subsequent output frames, it can be
1170   // read from the previous one.  Also compute and set this frame's frame
1171   // pointer.
1172   output_offset -= kFPOnStackSize;
1173   if (is_bottommost) {
1174     value = caller_fp_;
1175   } else {
1176     value = output_[frame_index - 1]->GetFp();
1177   }
1178   output_frame->SetCallerFp(output_offset, value);
1179   intptr_t fp_value = top_address + output_offset;
1180   output_frame->SetFp(fp_value);
1181   if (is_topmost) {
1182     Register fp_reg = InterpretedFrame::fp_register();
1183     output_frame->SetRegister(fp_reg.code(), fp_value);
1184   }
1185   DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
1186 
1187   if (FLAG_enable_embedded_constant_pool) {
1188     // For the bottommost output frame the constant pool pointer can be gotten
1189     // from the input frame. For subsequent output frames, it can be read from
1190     // the previous frame.
1191     output_offset -= kPointerSize;
1192     if (is_bottommost) {
1193       value = caller_constant_pool_;
1194     } else {
1195       value = output_[frame_index - 1]->GetConstantPool();
1196     }
1197     output_frame->SetCallerConstantPool(output_offset, value);
1198     DebugPrintOutputSlot(value, frame_index, output_offset,
1199                          "caller's constant_pool\n");
1200   }
1201 
1202   // For the bottommost output frame the context can be gotten from the input
1203   // frame. For all subsequent output frames it can be gotten from the function
1204   // so long as we don't inline functions that need local contexts.
1205   Register context_reg = InterpretedFrame::context_register();
1206   output_offset -= kPointerSize;
1207 
1208   // When deoptimizing into a catch block, we need to take the context
1209   // from a register that was specified in the handler table.
1210   TranslatedFrame::iterator context_pos = value_iterator;
1211   int context_input_index = input_index;
1212   if (goto_catch_handler) {
1213     // Skip to the translated value of the register specified
1214     // in the handler table.
1215     for (int i = 0; i < catch_handler_data_ + 1; ++i) {
1216       context_pos++;
1217       context_input_index++;
1218     }
1219   }
1220   // Read the context from the translations.
1221   Object* context = context_pos->GetRawValue();
1222   // The context should not be a placeholder for a materialized object.
1223   CHECK(context != isolate_->heap()->arguments_marker());
1224   value = reinterpret_cast<intptr_t>(context);
1225   output_frame->SetContext(value);
1226   if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
1227   WriteValueToOutput(context, context_input_index, frame_index, output_offset,
1228                      "context    ");
1229   value_iterator++;
1230   input_index++;
1231 
1232   // The function was mentioned explicitly in the BEGIN_FRAME.
1233   output_offset -= kPointerSize;
1234   value = reinterpret_cast<intptr_t>(function);
1235   WriteValueToOutput(function, 0, frame_index, output_offset, "function    ");
1236 
1237   // The new.target slot is only used during function activiation which is
1238   // before the first deopt point, so should never be needed. Just set it to
1239   // undefined.
1240   output_offset -= kPointerSize;
1241   Object* new_target = isolate_->heap()->undefined_value();
1242   WriteValueToOutput(new_target, 0, frame_index, output_offset, "new_target  ");
1243 
1244   // Set the bytecode array pointer.
1245   output_offset -= kPointerSize;
1246   Object* bytecode_array = shared->bytecode_array();
1247   WriteValueToOutput(bytecode_array, 0, frame_index, output_offset,
1248                      "bytecode array ");
1249 
1250   // The bytecode offset was mentioned explicitly in the BEGIN_FRAME.
1251   output_offset -= kPointerSize;
1252   int raw_bytecode_offset =
1253       BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset;
1254   Smi* smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset);
1255   WriteValueToOutput(smi_bytecode_offset, 0, frame_index, output_offset,
1256                      "bytecode offset ");
1257 
1258   // Translate the rest of the interpreter registers in the frame.
1259   for (unsigned i = 0; i < height - 1; ++i) {
1260     output_offset -= kPointerSize;
1261     WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
1262                                  output_offset);
1263   }
1264 
1265   // Put the accumulator on the stack. It will be popped by the
1266   // InterpreterNotifyDeopt builtin (possibly after materialization).
1267   output_offset -= kPointerSize;
1268   if (goto_catch_handler) {
1269     // If we are lazy deopting to a catch handler, we set the accumulator to
1270     // the exception (which lives in the result register).
1271     intptr_t accumulator_value =
1272         input_->GetRegister(FullCodeGenerator::result_register().code());
1273     WriteValueToOutput(reinterpret_cast<Object*>(accumulator_value), 0,
1274                        frame_index, output_offset, "accumulator ");
1275     value_iterator++;
1276   } else {
1277     WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
1278                                  output_offset);
1279   }
1280   CHECK_EQ(0u, output_offset);
1281 
1282   Builtins* builtins = isolate_->builtins();
1283   Code* dispatch_builtin =
1284       builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
1285   output_frame->SetPc(reinterpret_cast<intptr_t>(dispatch_builtin->entry()));
1286   // Restore accumulator (TOS) register.
1287   output_frame->SetState(
1288       Smi::FromInt(static_cast<int>(BailoutState::TOS_REGISTER)));
1289 
1290   // Update constant pool.
1291   if (FLAG_enable_embedded_constant_pool) {
1292     intptr_t constant_pool_value =
1293         reinterpret_cast<intptr_t>(dispatch_builtin->constant_pool());
1294     output_frame->SetConstantPool(constant_pool_value);
1295     if (is_topmost) {
1296       Register constant_pool_reg =
1297           InterpretedFrame::constant_pool_pointer_register();
1298       output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
1299     }
1300   }
1301 
1302   // Set the continuation for the topmost frame.
1303   if (is_topmost) {
1304     Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
1305     if (bailout_type_ == LAZY) {
1306       continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
1307     } else if (bailout_type_ == SOFT) {
1308       continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
1309     } else {
1310       CHECK_EQ(bailout_type_, EAGER);
1311     }
1312     output_frame->SetContinuation(
1313         reinterpret_cast<intptr_t>(continuation->entry()));
1314   }
1315 }
1316 
DoComputeArgumentsAdaptorFrame(TranslatedFrame * translated_frame,int frame_index)1317 void Deoptimizer::DoComputeArgumentsAdaptorFrame(
1318     TranslatedFrame* translated_frame, int frame_index) {
1319   TranslatedFrame::iterator value_iterator = translated_frame->begin();
1320   bool is_bottommost = (0 == frame_index);
1321   int input_index = 0;
1322 
1323   unsigned height = translated_frame->height();
1324   unsigned height_in_bytes = height * kPointerSize;
1325   JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
1326   value_iterator++;
1327   input_index++;
1328   if (trace_scope_ != NULL) {
1329     PrintF(trace_scope_->file(),
1330            "  translating arguments adaptor => height=%d\n", height_in_bytes);
1331   }
1332 
1333   unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFixedFrameSize;
1334   unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1335 
1336   // Allocate and store the output frame description.
1337   int parameter_count = height;
1338   FrameDescription* output_frame = new (output_frame_size)
1339       FrameDescription(output_frame_size, parameter_count);
1340   output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
1341 
1342   // Arguments adaptor can not be topmost.
1343   CHECK(frame_index < output_count_ - 1);
1344   CHECK(output_[frame_index] == NULL);
1345   output_[frame_index] = output_frame;
1346 
1347   // The top address of the frame is computed from the previous frame's top and
1348   // this frame's size.
1349   intptr_t top_address;
1350   if (is_bottommost) {
1351     top_address = caller_frame_top_ - output_frame_size;
1352   } else {
1353     top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1354   }
1355   output_frame->SetTop(top_address);
1356 
1357   // Compute the incoming parameter translation.
1358   unsigned output_offset = output_frame_size;
1359   for (int i = 0; i < parameter_count; ++i) {
1360     output_offset -= kPointerSize;
1361     WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
1362                                  output_offset);
1363   }
1364 
1365   // Read caller's PC from the previous frame.
1366   output_offset -= kPCOnStackSize;
1367   intptr_t value;
1368   if (is_bottommost) {
1369     value = caller_pc_;
1370   } else {
1371     value = output_[frame_index - 1]->GetPc();
1372   }
1373   output_frame->SetCallerPc(output_offset, value);
1374   DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
1375 
1376   // Read caller's FP from the previous frame, and set this frame's FP.
1377   output_offset -= kFPOnStackSize;
1378   if (is_bottommost) {
1379     value = caller_fp_;
1380   } else {
1381     value = output_[frame_index - 1]->GetFp();
1382   }
1383   output_frame->SetCallerFp(output_offset, value);
1384   intptr_t fp_value = top_address + output_offset;
1385   output_frame->SetFp(fp_value);
1386   DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
1387 
1388   if (FLAG_enable_embedded_constant_pool) {
1389     // Read the caller's constant pool from the previous frame.
1390     output_offset -= kPointerSize;
1391     if (is_bottommost) {
1392       value = caller_constant_pool_;
1393     } else {
1394       value = output_[frame_index - 1]->GetConstantPool();
1395     }
1396     output_frame->SetCallerConstantPool(output_offset, value);
1397     DebugPrintOutputSlot(value, frame_index, output_offset,
1398                          "caller's constant_pool\n");
1399   }
1400 
1401   // A marker value is used in place of the context.
1402   output_offset -= kPointerSize;
1403   intptr_t context = reinterpret_cast<intptr_t>(
1404       Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1405   output_frame->SetFrameSlot(output_offset, context);
1406   DebugPrintOutputSlot(context, frame_index, output_offset,
1407                        "context (adaptor sentinel)\n");
1408 
1409   // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
1410   output_offset -= kPointerSize;
1411   value = reinterpret_cast<intptr_t>(function);
1412   WriteValueToOutput(function, 0, frame_index, output_offset, "function    ");
1413 
1414   // Number of incoming arguments.
1415   output_offset -= kPointerSize;
1416   value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
1417   output_frame->SetFrameSlot(output_offset, value);
1418   DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
1419   if (trace_scope_ != nullptr) {
1420     PrintF(trace_scope_->file(), "(%d)\n", height - 1);
1421   }
1422 
1423   DCHECK(0 == output_offset);
1424 
1425   Builtins* builtins = isolate_->builtins();
1426   Code* adaptor_trampoline =
1427       builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
1428   intptr_t pc_value = reinterpret_cast<intptr_t>(
1429       adaptor_trampoline->instruction_start() +
1430       isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
1431   output_frame->SetPc(pc_value);
1432   if (FLAG_enable_embedded_constant_pool) {
1433     intptr_t constant_pool_value =
1434         reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
1435     output_frame->SetConstantPool(constant_pool_value);
1436   }
1437 }
1438 
DoComputeTailCallerFrame(TranslatedFrame * translated_frame,int frame_index)1439 void Deoptimizer::DoComputeTailCallerFrame(TranslatedFrame* translated_frame,
1440                                            int frame_index) {
1441   SharedFunctionInfo* shared = translated_frame->raw_shared_info();
1442 
1443   bool is_bottommost = (0 == frame_index);
1444   // Tail caller frame can't be topmost.
1445   CHECK_NE(output_count_ - 1, frame_index);
1446 
1447   if (trace_scope_ != NULL) {
1448     PrintF(trace_scope_->file(), "  translating tail caller frame ");
1449     base::SmartArrayPointer<char> name = shared->DebugName()->ToCString();
1450     PrintF(trace_scope_->file(), "%s\n", name.get());
1451   }
1452 
1453   if (!is_bottommost) return;
1454 
1455   // Drop arguments adaptor frame below current frame if it exsits.
1456   Address fp_address = input_->GetFramePointerAddress();
1457   Address adaptor_fp_address =
1458       Memory::Address_at(fp_address + CommonFrameConstants::kCallerFPOffset);
1459 
1460   if (Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR) !=
1461       Memory::Object_at(adaptor_fp_address +
1462                         CommonFrameConstants::kContextOrFrameTypeOffset)) {
1463     return;
1464   }
1465 
1466   int caller_params_count =
1467       Smi::cast(
1468           Memory::Object_at(adaptor_fp_address +
1469                             ArgumentsAdaptorFrameConstants::kLengthOffset))
1470           ->value();
1471 
1472   int callee_params_count =
1473       function_->shared()->internal_formal_parameter_count();
1474 
1475   // Both caller and callee parameters count do not include receiver.
1476   int offset = (caller_params_count - callee_params_count) * kPointerSize;
1477   intptr_t new_stack_fp =
1478       reinterpret_cast<intptr_t>(adaptor_fp_address) + offset;
1479 
1480   intptr_t new_caller_frame_top = new_stack_fp +
1481                                   (callee_params_count + 1) * kPointerSize +
1482                                   CommonFrameConstants::kFixedFrameSizeAboveFp;
1483 
1484   intptr_t adaptor_caller_pc = Memory::intptr_at(
1485       adaptor_fp_address + CommonFrameConstants::kCallerPCOffset);
1486   intptr_t adaptor_caller_fp = Memory::intptr_at(
1487       adaptor_fp_address + CommonFrameConstants::kCallerFPOffset);
1488 
1489   if (trace_scope_ != NULL) {
1490     PrintF(trace_scope_->file(),
1491            "    dropping caller arguments adaptor frame: offset=%d, "
1492            "fp: 0x%08" V8PRIxPTR " -> 0x%08" V8PRIxPTR
1493            ", "
1494            "caller sp: 0x%08" V8PRIxPTR " -> 0x%08" V8PRIxPTR "\n",
1495            offset, stack_fp_, new_stack_fp, caller_frame_top_,
1496            new_caller_frame_top);
1497   }
1498   caller_frame_top_ = new_caller_frame_top;
1499   caller_fp_ = adaptor_caller_fp;
1500   caller_pc_ = adaptor_caller_pc;
1501 }
1502 
DoComputeConstructStubFrame(TranslatedFrame * translated_frame,int frame_index)1503 void Deoptimizer::DoComputeConstructStubFrame(TranslatedFrame* translated_frame,
1504                                               int frame_index) {
1505   TranslatedFrame::iterator value_iterator = translated_frame->begin();
1506   bool is_topmost = (output_count_ - 1 == frame_index);
1507   // The construct frame could become topmost only if we inlined a constructor
1508   // call which does a tail call (otherwise the tail callee's frame would be
1509   // the topmost one). So it could only be the LAZY case.
1510   CHECK(!is_topmost || bailout_type_ == LAZY);
1511   int input_index = 0;
1512 
1513   Builtins* builtins = isolate_->builtins();
1514   Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
1515   unsigned height = translated_frame->height();
1516   unsigned height_in_bytes = height * kPointerSize;
1517 
1518   // If the construct frame appears to be topmost we should ensure that the
1519   // value of result register is preserved during continuation execution.
1520   // We do this here by "pushing" the result of the constructor function to the
1521   // top of the reconstructed stack and then using the
1522   // BailoutState::TOS_REGISTER machinery.
1523   if (is_topmost) {
1524     height_in_bytes += kPointerSize;
1525   }
1526 
1527   // Skip function.
1528   value_iterator++;
1529   input_index++;
1530   if (trace_scope_ != NULL) {
1531     PrintF(trace_scope_->file(),
1532            "  translating construct stub => height=%d\n", height_in_bytes);
1533   }
1534 
1535   unsigned fixed_frame_size = ConstructFrameConstants::kFixedFrameSize;
1536   unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1537 
1538   // Allocate and store the output frame description.
1539   FrameDescription* output_frame =
1540       new (output_frame_size) FrameDescription(output_frame_size);
1541   output_frame->SetFrameType(StackFrame::CONSTRUCT);
1542 
1543   // Construct stub can not be topmost.
1544   DCHECK(frame_index > 0 && frame_index < output_count_);
1545   DCHECK(output_[frame_index] == NULL);
1546   output_[frame_index] = output_frame;
1547 
1548   // The top address of the frame is computed from the previous frame's top and
1549   // this frame's size.
1550   intptr_t top_address;
1551   top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1552   output_frame->SetTop(top_address);
1553 
1554   // Compute the incoming parameter translation.
1555   int parameter_count = height;
1556   unsigned output_offset = output_frame_size;
1557   for (int i = 0; i < parameter_count; ++i) {
1558     output_offset -= kPointerSize;
1559     // The allocated receiver of a construct stub frame is passed as the
1560     // receiver parameter through the translation. It might be encoding
1561     // a captured object, override the slot address for a captured object.
1562     WriteTranslatedValueToOutput(
1563         &value_iterator, &input_index, frame_index, output_offset, nullptr,
1564         (i == 0) ? reinterpret_cast<Address>(top_address) : nullptr);
1565   }
1566 
1567   // Read caller's PC from the previous frame.
1568   output_offset -= kPCOnStackSize;
1569   intptr_t callers_pc = output_[frame_index - 1]->GetPc();
1570   output_frame->SetCallerPc(output_offset, callers_pc);
1571   DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
1572 
1573   // Read caller's FP from the previous frame, and set this frame's FP.
1574   output_offset -= kFPOnStackSize;
1575   intptr_t value = output_[frame_index - 1]->GetFp();
1576   output_frame->SetCallerFp(output_offset, value);
1577   intptr_t fp_value = top_address + output_offset;
1578   output_frame->SetFp(fp_value);
1579   if (is_topmost) {
1580     Register fp_reg = JavaScriptFrame::fp_register();
1581     output_frame->SetRegister(fp_reg.code(), fp_value);
1582   }
1583   DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
1584 
1585   if (FLAG_enable_embedded_constant_pool) {
1586     // Read the caller's constant pool from the previous frame.
1587     output_offset -= kPointerSize;
1588     value = output_[frame_index - 1]->GetConstantPool();
1589     output_frame->SetCallerConstantPool(output_offset, value);
1590     DebugPrintOutputSlot(value, frame_index, output_offset,
1591                          "caller's constant_pool\n");
1592   }
1593 
1594   // A marker value is used to mark the frame.
1595   output_offset -= kPointerSize;
1596   value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
1597   output_frame->SetFrameSlot(output_offset, value);
1598   DebugPrintOutputSlot(value, frame_index, output_offset,
1599                        "typed frame marker\n");
1600 
1601   // The context can be gotten from the previous frame.
1602   output_offset -= kPointerSize;
1603   value = output_[frame_index - 1]->GetContext();
1604   output_frame->SetFrameSlot(output_offset, value);
1605   if (is_topmost) {
1606     Register context_reg = JavaScriptFrame::context_register();
1607     output_frame->SetRegister(context_reg.code(), value);
1608   }
1609   DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
1610 
1611   // The allocation site.
1612   output_offset -= kPointerSize;
1613   value = reinterpret_cast<intptr_t>(isolate_->heap()->undefined_value());
1614   output_frame->SetFrameSlot(output_offset, value);
1615   DebugPrintOutputSlot(value, frame_index, output_offset, "allocation site\n");
1616 
1617   // Number of incoming arguments.
1618   output_offset -= kPointerSize;
1619   value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
1620   output_frame->SetFrameSlot(output_offset, value);
1621   DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
1622   if (trace_scope_ != nullptr) {
1623     PrintF(trace_scope_->file(), "(%d)\n", height - 1);
1624   }
1625 
1626   // The newly allocated object was passed as receiver in the artificial
1627   // constructor stub environment created by HEnvironment::CopyForInlining().
1628   output_offset -= kPointerSize;
1629   value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
1630   output_frame->SetFrameSlot(output_offset, value);
1631   DebugPrintOutputSlot(value, frame_index, output_offset,
1632                        "allocated receiver\n");
1633 
1634   if (is_topmost) {
1635     // Ensure the result is restored back when we return to the stub.
1636     output_offset -= kPointerSize;
1637     Register result_reg = FullCodeGenerator::result_register();
1638     value = input_->GetRegister(result_reg.code());
1639     output_frame->SetFrameSlot(output_offset, value);
1640     DebugPrintOutputSlot(value, frame_index, output_offset,
1641                          "constructor result\n");
1642 
1643     output_frame->SetState(
1644         Smi::FromInt(static_cast<int>(BailoutState::TOS_REGISTER)));
1645   }
1646 
1647   CHECK_EQ(0u, output_offset);
1648 
1649   intptr_t pc = reinterpret_cast<intptr_t>(
1650       construct_stub->instruction_start() +
1651       isolate_->heap()->construct_stub_deopt_pc_offset()->value());
1652   output_frame->SetPc(pc);
1653   if (FLAG_enable_embedded_constant_pool) {
1654     intptr_t constant_pool_value =
1655         reinterpret_cast<intptr_t>(construct_stub->constant_pool());
1656     output_frame->SetConstantPool(constant_pool_value);
1657     if (is_topmost) {
1658       Register constant_pool_reg =
1659           JavaScriptFrame::constant_pool_pointer_register();
1660       output_frame->SetRegister(constant_pool_reg.code(), fp_value);
1661     }
1662   }
1663 
1664   // Set the continuation for the topmost frame.
1665   if (is_topmost) {
1666     Builtins* builtins = isolate_->builtins();
1667     DCHECK_EQ(LAZY, bailout_type_);
1668     Code* continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
1669     output_frame->SetContinuation(
1670         reinterpret_cast<intptr_t>(continuation->entry()));
1671   }
1672 }
1673 
DoComputeAccessorStubFrame(TranslatedFrame * translated_frame,int frame_index,bool is_setter_stub_frame)1674 void Deoptimizer::DoComputeAccessorStubFrame(TranslatedFrame* translated_frame,
1675                                              int frame_index,
1676                                              bool is_setter_stub_frame) {
1677   TranslatedFrame::iterator value_iterator = translated_frame->begin();
1678   bool is_topmost = (output_count_ - 1 == frame_index);
1679   // The accessor frame could become topmost only if we inlined an accessor
1680   // call which does a tail call (otherwise the tail callee's frame would be
1681   // the topmost one). So it could only be the LAZY case.
1682   CHECK(!is_topmost || bailout_type_ == LAZY);
1683   int input_index = 0;
1684 
1685   // Skip accessor.
1686   value_iterator++;
1687   input_index++;
1688   // The receiver (and the implicit return value, if any) are expected in
1689   // registers by the LoadIC/StoreIC, so they don't belong to the output stack
1690   // frame. This means that we have to use a height of 0.
1691   unsigned height = 0;
1692   unsigned height_in_bytes = height * kPointerSize;
1693 
1694   // If the accessor frame appears to be topmost we should ensure that the
1695   // value of result register is preserved during continuation execution.
1696   // We do this here by "pushing" the result of the accessor function to the
1697   // top of the reconstructed stack and then using the
1698   // BailoutState::TOS_REGISTER machinery.
1699   // We don't need to restore the result in case of a setter call because we
1700   // have to return the stored value but not the result of the setter function.
1701   bool should_preserve_result = is_topmost && !is_setter_stub_frame;
1702   if (should_preserve_result) {
1703     height_in_bytes += kPointerSize;
1704   }
1705 
1706   const char* kind = is_setter_stub_frame ? "setter" : "getter";
1707   if (trace_scope_ != NULL) {
1708     PrintF(trace_scope_->file(),
1709            "  translating %s stub => height=%u\n", kind, height_in_bytes);
1710   }
1711 
1712   // We need 1 stack entry for the return address and enough entries for the
1713   // StackFrame::INTERNAL (FP, frame type, context, code object and constant
1714   // pool (if enabled)- see MacroAssembler::EnterFrame).
1715   // For a setter stub frame we need one additional entry for the implicit
1716   // return value, see StoreStubCompiler::CompileStoreViaSetter.
1717   unsigned fixed_frame_entries =
1718       (StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 +
1719       (is_setter_stub_frame ? 1 : 0);
1720   unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
1721   unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1722 
1723   // Allocate and store the output frame description.
1724   FrameDescription* output_frame =
1725       new (output_frame_size) FrameDescription(output_frame_size);
1726   output_frame->SetFrameType(StackFrame::INTERNAL);
1727 
1728   // A frame for an accessor stub can not be bottommost.
1729   CHECK(frame_index > 0 && frame_index < output_count_);
1730   CHECK_NULL(output_[frame_index]);
1731   output_[frame_index] = output_frame;
1732 
1733   // The top address of the frame is computed from the previous frame's top and
1734   // this frame's size.
1735   intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1736   output_frame->SetTop(top_address);
1737 
1738   unsigned output_offset = output_frame_size;
1739 
1740   // Read caller's PC from the previous frame.
1741   output_offset -= kPCOnStackSize;
1742   intptr_t callers_pc = output_[frame_index - 1]->GetPc();
1743   output_frame->SetCallerPc(output_offset, callers_pc);
1744   DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
1745 
1746   // Read caller's FP from the previous frame, and set this frame's FP.
1747   output_offset -= kFPOnStackSize;
1748   intptr_t value = output_[frame_index - 1]->GetFp();
1749   output_frame->SetCallerFp(output_offset, value);
1750   intptr_t fp_value = top_address + output_offset;
1751   output_frame->SetFp(fp_value);
1752   if (is_topmost) {
1753     Register fp_reg = JavaScriptFrame::fp_register();
1754     output_frame->SetRegister(fp_reg.code(), fp_value);
1755   }
1756   DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
1757 
1758   if (FLAG_enable_embedded_constant_pool) {
1759     // Read the caller's constant pool from the previous frame.
1760     output_offset -= kPointerSize;
1761     value = output_[frame_index - 1]->GetConstantPool();
1762     output_frame->SetCallerConstantPool(output_offset, value);
1763     DebugPrintOutputSlot(value, frame_index, output_offset,
1764                          "caller's constant_pool\n");
1765   }
1766 
1767   // Set the frame type.
1768   output_offset -= kPointerSize;
1769   value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
1770   output_frame->SetFrameSlot(output_offset, value);
1771   DebugPrintOutputSlot(value, frame_index, output_offset, "frame type ");
1772   if (trace_scope_ != nullptr) {
1773     PrintF(trace_scope_->file(), "(%s sentinel)\n", kind);
1774   }
1775 
1776   // Get Code object from accessor stub.
1777   output_offset -= kPointerSize;
1778   Builtins::Name name = is_setter_stub_frame ?
1779       Builtins::kStoreIC_Setter_ForDeopt :
1780       Builtins::kLoadIC_Getter_ForDeopt;
1781   Code* accessor_stub = isolate_->builtins()->builtin(name);
1782   value = reinterpret_cast<intptr_t>(accessor_stub);
1783   output_frame->SetFrameSlot(output_offset, value);
1784   DebugPrintOutputSlot(value, frame_index, output_offset, "code object\n");
1785 
1786   // The context can be gotten from the previous frame.
1787   output_offset -= kPointerSize;
1788   value = output_[frame_index - 1]->GetContext();
1789   output_frame->SetFrameSlot(output_offset, value);
1790   if (is_topmost) {
1791     Register context_reg = JavaScriptFrame::context_register();
1792     output_frame->SetRegister(context_reg.code(), value);
1793   }
1794   DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
1795 
1796   // Skip receiver.
1797   value_iterator++;
1798   input_index++;
1799 
1800   if (is_setter_stub_frame) {
1801     // The implicit return value was part of the artificial setter stub
1802     // environment.
1803     output_offset -= kPointerSize;
1804     WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
1805                                  output_offset);
1806   }
1807 
1808   if (should_preserve_result) {
1809     // Ensure the result is restored back when we return to the stub.
1810     output_offset -= kPointerSize;
1811     Register result_reg = FullCodeGenerator::result_register();
1812     value = input_->GetRegister(result_reg.code());
1813     output_frame->SetFrameSlot(output_offset, value);
1814     DebugPrintOutputSlot(value, frame_index, output_offset,
1815                          "accessor result\n");
1816 
1817     output_frame->SetState(
1818         Smi::FromInt(static_cast<int>(BailoutState::TOS_REGISTER)));
1819   } else {
1820     output_frame->SetState(
1821         Smi::FromInt(static_cast<int>(BailoutState::NO_REGISTERS)));
1822   }
1823 
1824   CHECK_EQ(0u, output_offset);
1825 
1826   Smi* offset = is_setter_stub_frame ?
1827       isolate_->heap()->setter_stub_deopt_pc_offset() :
1828       isolate_->heap()->getter_stub_deopt_pc_offset();
1829   intptr_t pc = reinterpret_cast<intptr_t>(
1830       accessor_stub->instruction_start() + offset->value());
1831   output_frame->SetPc(pc);
1832   if (FLAG_enable_embedded_constant_pool) {
1833     intptr_t constant_pool_value =
1834         reinterpret_cast<intptr_t>(accessor_stub->constant_pool());
1835     output_frame->SetConstantPool(constant_pool_value);
1836     if (is_topmost) {
1837       Register constant_pool_reg =
1838           JavaScriptFrame::constant_pool_pointer_register();
1839       output_frame->SetRegister(constant_pool_reg.code(), fp_value);
1840     }
1841   }
1842 
1843   // Set the continuation for the topmost frame.
1844   if (is_topmost) {
1845     Builtins* builtins = isolate_->builtins();
1846     DCHECK_EQ(LAZY, bailout_type_);
1847     Code* continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
1848     output_frame->SetContinuation(
1849         reinterpret_cast<intptr_t>(continuation->entry()));
1850   }
1851 }
1852 
DoComputeCompiledStubFrame(TranslatedFrame * translated_frame,int frame_index)1853 void Deoptimizer::DoComputeCompiledStubFrame(TranslatedFrame* translated_frame,
1854                                              int frame_index) {
1855   //
1856   //               FROM                                  TO
1857   //    |          ....           |          |          ....           |
1858   //    +-------------------------+          +-------------------------+
1859   //    | JSFunction continuation |          | JSFunction continuation |
1860   //    +-------------------------+          +-------------------------+
1861   // |  |    saved frame (FP)     |          |    saved frame (FP)     |
1862   // |  +=========================+<-fpreg   +=========================+<-fpreg
1863   // |  |constant pool (if ool_cp)|          |constant pool (if ool_cp)|
1864   // |  +-------------------------+          +-------------------------|
1865   // |  |   JSFunction context    |          |   JSFunction context    |
1866   // v  +-------------------------+          +-------------------------|
1867   //    |   COMPILED_STUB marker  |          |   STUB_FAILURE marker   |
1868   //    +-------------------------+          +-------------------------+
1869   //    |                         |          |  caller args.arguments_ |
1870   //    | ...                     |          +-------------------------+
1871   //    |                         |          |  caller args.length_    |
1872   //    |-------------------------|<-spreg   +-------------------------+
1873   //                                         |  caller args pointer    |
1874   //                                         +-------------------------+
1875   //                                         |  caller stack param 1   |
1876   //      parameters in registers            +-------------------------+
1877   //       and spilled to stack              |           ....          |
1878   //                                         +-------------------------+
1879   //                                         |  caller stack param n   |
1880   //                                         +-------------------------+<-spreg
1881   //                                         reg = number of parameters
1882   //                                         reg = failure handler address
1883   //                                         reg = saved frame
1884   //                                         reg = JSFunction context
1885   //
1886   // Caller stack params contain the register parameters to the stub first,
1887   // and then, if the descriptor specifies a constant number of stack
1888   // parameters, the stack parameters as well.
1889 
1890   TranslatedFrame::iterator value_iterator = translated_frame->begin();
1891   int input_index = 0;
1892 
1893   CHECK(compiled_code_->is_hydrogen_stub());
1894   int major_key = CodeStub::GetMajorKey(compiled_code_);
1895   CodeStubDescriptor descriptor(isolate_, compiled_code_->stub_key());
1896 
1897   // The output frame must have room for all pushed register parameters
1898   // and the standard stack frame slots.  Include space for an argument
1899   // object to the callee and optionally the space to pass the argument
1900   // object to the stub failure handler.
1901   int param_count = descriptor.GetRegisterParameterCount();
1902   int stack_param_count = descriptor.GetStackParameterCount();
1903   // The translated frame contains all of the register parameters
1904   // plus the context.
1905   CHECK_EQ(translated_frame->height(), param_count + 1);
1906   CHECK_GE(param_count, 0);
1907 
1908   int height_in_bytes = kPointerSize * (param_count + stack_param_count);
1909   int fixed_frame_size = StubFailureTrampolineFrameConstants::kFixedFrameSize;
1910   int output_frame_size = height_in_bytes + fixed_frame_size;
1911   if (trace_scope_ != NULL) {
1912     PrintF(trace_scope_->file(),
1913            "  translating %s => StubFailureTrampolineStub, height=%d\n",
1914            CodeStub::MajorName(static_cast<CodeStub::Major>(major_key)),
1915            height_in_bytes);
1916   }
1917 
1918   // The stub failure trampoline is a single frame.
1919   FrameDescription* output_frame =
1920       new (output_frame_size) FrameDescription(output_frame_size);
1921   output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
1922   CHECK_EQ(frame_index, 0);
1923   output_[frame_index] = output_frame;
1924 
1925   // The top address of the frame is computed from the previous frame's top and
1926   // this frame's size.
1927   intptr_t top_address = caller_frame_top_ - output_frame_size;
1928   output_frame->SetTop(top_address);
1929 
1930   // Set caller's PC (JSFunction continuation).
1931   unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
1932   intptr_t value = caller_pc_;
1933   output_frame->SetCallerPc(output_frame_offset, value);
1934   DebugPrintOutputSlot(value, frame_index, output_frame_offset,
1935                        "caller's pc\n");
1936 
1937   // Read caller's FP from the input frame, and set this frame's FP.
1938   value = caller_fp_;
1939   output_frame_offset -= kFPOnStackSize;
1940   output_frame->SetCallerFp(output_frame_offset, value);
1941   intptr_t frame_ptr = top_address + output_frame_offset;
1942   Register fp_reg = StubFailureTrampolineFrame::fp_register();
1943   output_frame->SetRegister(fp_reg.code(), frame_ptr);
1944   output_frame->SetFp(frame_ptr);
1945   DebugPrintOutputSlot(value, frame_index, output_frame_offset,
1946                        "caller's fp\n");
1947 
1948   if (FLAG_enable_embedded_constant_pool) {
1949     // Read the caller's constant pool from the input frame.
1950     value = caller_constant_pool_;
1951     output_frame_offset -= kPointerSize;
1952     output_frame->SetCallerConstantPool(output_frame_offset, value);
1953     DebugPrintOutputSlot(value, frame_index, output_frame_offset,
1954                          "caller's constant_pool\n");
1955   }
1956 
1957   // The marker for the typed stack frame
1958   output_frame_offset -= kPointerSize;
1959   value = reinterpret_cast<intptr_t>(
1960       Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
1961   output_frame->SetFrameSlot(output_frame_offset, value);
1962   DebugPrintOutputSlot(value, frame_index, output_frame_offset,
1963                        "function (stub failure sentinel)\n");
1964 
1965   intptr_t caller_arg_count = stack_param_count;
1966   bool arg_count_known = !descriptor.stack_parameter_count().is_valid();
1967 
1968   // Build the Arguments object for the caller's parameters and a pointer to it.
1969   output_frame_offset -= kPointerSize;
1970   int args_arguments_offset = output_frame_offset;
1971   intptr_t the_hole = reinterpret_cast<intptr_t>(
1972       isolate_->heap()->the_hole_value());
1973   if (arg_count_known) {
1974     value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
1975         (caller_arg_count - 1) * kPointerSize;
1976   } else {
1977     value = the_hole;
1978   }
1979 
1980   output_frame->SetFrameSlot(args_arguments_offset, value);
1981   DebugPrintOutputSlot(
1982       value, frame_index, args_arguments_offset,
1983       arg_count_known ? "args.arguments\n" : "args.arguments (the hole)\n");
1984 
1985   output_frame_offset -= kPointerSize;
1986   int length_frame_offset = output_frame_offset;
1987   value = arg_count_known ? caller_arg_count : the_hole;
1988   output_frame->SetFrameSlot(length_frame_offset, value);
1989   DebugPrintOutputSlot(
1990       value, frame_index, length_frame_offset,
1991       arg_count_known ? "args.length\n" : "args.length (the hole)\n");
1992 
1993   output_frame_offset -= kPointerSize;
1994   value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
1995       (output_frame_size - output_frame_offset) + kPointerSize;
1996   output_frame->SetFrameSlot(output_frame_offset, value);
1997   DebugPrintOutputSlot(value, frame_index, output_frame_offset, "args*\n");
1998 
1999   // Copy the register parameters to the failure frame.
2000   int arguments_length_offset = -1;
2001   for (int i = 0; i < param_count; ++i) {
2002     output_frame_offset -= kPointerSize;
2003     WriteTranslatedValueToOutput(&value_iterator, &input_index, 0,
2004                                  output_frame_offset);
2005 
2006     if (!arg_count_known &&
2007         descriptor.GetRegisterParameter(i)
2008             .is(descriptor.stack_parameter_count())) {
2009       arguments_length_offset = output_frame_offset;
2010     }
2011   }
2012 
2013   Object* maybe_context = value_iterator->GetRawValue();
2014   CHECK(maybe_context->IsContext());
2015   Register context_reg = StubFailureTrampolineFrame::context_register();
2016   value = reinterpret_cast<intptr_t>(maybe_context);
2017   output_frame->SetRegister(context_reg.code(), value);
2018   ++value_iterator;
2019 
2020   // Copy constant stack parameters to the failure frame. If the number of stack
2021   // parameters is not known in the descriptor, the arguments object is the way
2022   // to access them.
2023   for (int i = 0; i < stack_param_count; i++) {
2024     output_frame_offset -= kPointerSize;
2025     Object** stack_parameter = reinterpret_cast<Object**>(
2026         frame_ptr + StandardFrameConstants::kCallerSPOffset +
2027         (stack_param_count - i - 1) * kPointerSize);
2028     value = reinterpret_cast<intptr_t>(*stack_parameter);
2029     output_frame->SetFrameSlot(output_frame_offset, value);
2030     DebugPrintOutputSlot(value, frame_index, output_frame_offset,
2031                          "stack parameter\n");
2032   }
2033 
2034   CHECK_EQ(0u, output_frame_offset);
2035 
2036   if (!arg_count_known) {
2037     CHECK_GE(arguments_length_offset, 0);
2038     // We know it's a smi because 1) the code stub guarantees the stack
2039     // parameter count is in smi range, and 2) the DoTranslateCommand in the
2040     // parameter loop above translated that to a tagged value.
2041     Smi* smi_caller_arg_count = reinterpret_cast<Smi*>(
2042         output_frame->GetFrameSlot(arguments_length_offset));
2043     caller_arg_count = smi_caller_arg_count->value();
2044     output_frame->SetFrameSlot(length_frame_offset, caller_arg_count);
2045     DebugPrintOutputSlot(caller_arg_count, frame_index, length_frame_offset,
2046                          "args.length\n");
2047     value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
2048         (caller_arg_count - 1) * kPointerSize;
2049     output_frame->SetFrameSlot(args_arguments_offset, value);
2050     DebugPrintOutputSlot(value, frame_index, args_arguments_offset,
2051                          "args.arguments");
2052   }
2053 
2054   // Copy the double registers from the input into the output frame.
2055   CopyDoubleRegisters(output_frame);
2056 
2057   // Fill registers containing handler and number of parameters.
2058   SetPlatformCompiledStubRegisters(output_frame, &descriptor);
2059 
2060   // Compute this frame's PC, state, and continuation.
2061   Code* trampoline = NULL;
2062   StubFunctionMode function_mode = descriptor.function_mode();
2063   StubFailureTrampolineStub(isolate_, function_mode)
2064       .FindCodeInCache(&trampoline);
2065   DCHECK(trampoline != NULL);
2066   output_frame->SetPc(reinterpret_cast<intptr_t>(
2067       trampoline->instruction_start()));
2068   if (FLAG_enable_embedded_constant_pool) {
2069     Register constant_pool_reg =
2070         StubFailureTrampolineFrame::constant_pool_pointer_register();
2071     intptr_t constant_pool_value =
2072         reinterpret_cast<intptr_t>(trampoline->constant_pool());
2073     output_frame->SetConstantPool(constant_pool_value);
2074     output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
2075   }
2076   output_frame->SetState(
2077       Smi::FromInt(static_cast<int>(BailoutState::NO_REGISTERS)));
2078   Code* notify_failure =
2079       isolate_->builtins()->builtin(Builtins::kNotifyStubFailureSaveDoubles);
2080   output_frame->SetContinuation(
2081       reinterpret_cast<intptr_t>(notify_failure->entry()));
2082 }
2083 
2084 
MaterializeHeapObjects(JavaScriptFrameIterator * it)2085 void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
2086   // Walk to the last JavaScript output frame to find out if it has
2087   // adapted arguments.
2088   for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
2089     if (frame_index != 0) it->Advance();
2090   }
2091   translated_state_.Prepare(it->frame()->has_adapted_arguments(),
2092                             reinterpret_cast<Address>(stack_fp_));
2093 
2094   for (auto& materialization : values_to_materialize_) {
2095     Handle<Object> value = materialization.value_->GetValue();
2096 
2097     if (trace_scope_ != nullptr) {
2098       PrintF("Materialization [0x%08" V8PRIxPTR "] <- 0x%08" V8PRIxPTR " ;  ",
2099              reinterpret_cast<intptr_t>(materialization.output_slot_address_),
2100              reinterpret_cast<intptr_t>(*value));
2101       value->ShortPrint(trace_scope_->file());
2102       PrintF(trace_scope_->file(), "\n");
2103     }
2104 
2105     *(reinterpret_cast<intptr_t*>(materialization.output_slot_address_)) =
2106         reinterpret_cast<intptr_t>(*value);
2107   }
2108 
2109   isolate_->materialized_object_store()->Remove(
2110       reinterpret_cast<Address>(stack_fp_));
2111 }
2112 
2113 
WriteTranslatedValueToOutput(TranslatedFrame::iterator * iterator,int * input_index,int frame_index,unsigned output_offset,const char * debug_hint_string,Address output_address_for_materialization)2114 void Deoptimizer::WriteTranslatedValueToOutput(
2115     TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
2116     unsigned output_offset, const char* debug_hint_string,
2117     Address output_address_for_materialization) {
2118   Object* value = (*iterator)->GetRawValue();
2119 
2120   WriteValueToOutput(value, *input_index, frame_index, output_offset,
2121                      debug_hint_string);
2122 
2123   if (value == isolate_->heap()->arguments_marker()) {
2124     Address output_address =
2125         reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
2126         output_offset;
2127     if (output_address_for_materialization == nullptr) {
2128       output_address_for_materialization = output_address;
2129     }
2130     values_to_materialize_.push_back(
2131         {output_address_for_materialization, *iterator});
2132   }
2133 
2134   (*iterator)++;
2135   (*input_index)++;
2136 }
2137 
2138 
WriteValueToOutput(Object * value,int input_index,int frame_index,unsigned output_offset,const char * debug_hint_string)2139 void Deoptimizer::WriteValueToOutput(Object* value, int input_index,
2140                                      int frame_index, unsigned output_offset,
2141                                      const char* debug_hint_string) {
2142   output_[frame_index]->SetFrameSlot(output_offset,
2143                                      reinterpret_cast<intptr_t>(value));
2144 
2145   if (trace_scope_ != nullptr) {
2146     DebugPrintOutputSlot(reinterpret_cast<intptr_t>(value), frame_index,
2147                          output_offset, debug_hint_string);
2148     value->ShortPrint(trace_scope_->file());
2149     PrintF(trace_scope_->file(), "  (input #%d)\n", input_index);
2150   }
2151 }
2152 
2153 
DebugPrintOutputSlot(intptr_t value,int frame_index,unsigned output_offset,const char * debug_hint_string)2154 void Deoptimizer::DebugPrintOutputSlot(intptr_t value, int frame_index,
2155                                        unsigned output_offset,
2156                                        const char* debug_hint_string) {
2157   if (trace_scope_ != nullptr) {
2158     Address output_address =
2159         reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
2160         output_offset;
2161     PrintF(trace_scope_->file(),
2162            "    0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ;  %s",
2163            reinterpret_cast<intptr_t>(output_address), output_offset, value,
2164            debug_hint_string == nullptr ? "" : debug_hint_string);
2165   }
2166 }
2167 
ComputeInputFrameAboveFpFixedSize() const2168 unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const {
2169   unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp;
2170   if (!function_->IsSmi()) {
2171     fixed_size += ComputeIncomingArgumentSize(function_->shared());
2172   }
2173   return fixed_size;
2174 }
2175 
ComputeInputFrameSize() const2176 unsigned Deoptimizer::ComputeInputFrameSize() const {
2177   // The fp-to-sp delta already takes the context, constant pool pointer and the
2178   // function into account so we have to avoid double counting them.
2179   unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize();
2180   unsigned result = fixed_size_above_fp + fp_to_sp_delta_;
2181   if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
2182     unsigned stack_slots = compiled_code_->stack_slots();
2183     unsigned outgoing_size =
2184         ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
2185     CHECK_EQ(fixed_size_above_fp + (stack_slots * kPointerSize) -
2186                  CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size,
2187              result);
2188   }
2189   return result;
2190 }
2191 
2192 // static
ComputeJavascriptFixedSize(SharedFunctionInfo * shared)2193 unsigned Deoptimizer::ComputeJavascriptFixedSize(SharedFunctionInfo* shared) {
2194   // The fixed part of the frame consists of the return address, frame
2195   // pointer, function, context, and all the incoming arguments.
2196   return ComputeIncomingArgumentSize(shared) +
2197          StandardFrameConstants::kFixedFrameSize;
2198 }
2199 
2200 // static
ComputeInterpretedFixedSize(SharedFunctionInfo * shared)2201 unsigned Deoptimizer::ComputeInterpretedFixedSize(SharedFunctionInfo* shared) {
2202   // The fixed part of the frame consists of the return address, frame
2203   // pointer, function, context, new.target, bytecode offset and all the
2204   // incoming arguments.
2205   return ComputeIncomingArgumentSize(shared) +
2206          InterpreterFrameConstants::kFixedFrameSize;
2207 }
2208 
2209 // static
ComputeIncomingArgumentSize(SharedFunctionInfo * shared)2210 unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo* shared) {
2211   return (shared->internal_formal_parameter_count() + 1) * kPointerSize;
2212 }
2213 
2214 
2215 // static
ComputeOutgoingArgumentSize(Code * code,unsigned bailout_id)2216 unsigned Deoptimizer::ComputeOutgoingArgumentSize(Code* code,
2217                                                   unsigned bailout_id) {
2218   DeoptimizationInputData* data =
2219       DeoptimizationInputData::cast(code->deoptimization_data());
2220   unsigned height = data->ArgumentsStackHeight(bailout_id)->value();
2221   return height * kPointerSize;
2222 }
2223 
2224 
ComputeLiteral(int index) const2225 Object* Deoptimizer::ComputeLiteral(int index) const {
2226   DeoptimizationInputData* data =
2227       DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
2228   FixedArray* literals = data->LiteralArray();
2229   return literals->get(index);
2230 }
2231 
2232 
EnsureCodeForDeoptimizationEntry(Isolate * isolate,BailoutType type,int max_entry_id)2233 void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
2234                                                    BailoutType type,
2235                                                    int max_entry_id) {
2236   // We cannot run this if the serializer is enabled because this will
2237   // cause us to emit relocation information for the external
2238   // references. This is fine because the deoptimizer's code section
2239   // isn't meant to be serialized at all.
2240   CHECK(type == EAGER || type == SOFT || type == LAZY);
2241   DeoptimizerData* data = isolate->deoptimizer_data();
2242   int entry_count = data->deopt_entry_code_entries_[type];
2243   if (max_entry_id < entry_count) return;
2244   entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
2245   while (max_entry_id >= entry_count) entry_count *= 2;
2246   CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries);
2247 
2248   MacroAssembler masm(isolate, NULL, 16 * KB, CodeObjectRequired::kYes);
2249   masm.set_emit_debug_code(false);
2250   GenerateDeoptimizationEntries(&masm, entry_count, type);
2251   CodeDesc desc;
2252   masm.GetCode(&desc);
2253   DCHECK(!RelocInfo::RequiresRelocation(desc));
2254 
2255   MemoryChunk* chunk = data->deopt_entry_code_[type];
2256   CHECK(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
2257         desc.instr_size);
2258   if (!chunk->CommitArea(desc.instr_size)) {
2259     V8::FatalProcessOutOfMemory(
2260         "Deoptimizer::EnsureCodeForDeoptimizationEntry");
2261   }
2262   CopyBytes(chunk->area_start(), desc.buffer,
2263             static_cast<size_t>(desc.instr_size));
2264   Assembler::FlushICache(isolate, chunk->area_start(), desc.instr_size);
2265 
2266   data->deopt_entry_code_entries_[type] = entry_count;
2267 }
2268 
FrameDescription(uint32_t frame_size,int parameter_count)2269 FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count)
2270     : frame_size_(frame_size),
2271       parameter_count_(parameter_count),
2272       top_(kZapUint32),
2273       pc_(kZapUint32),
2274       fp_(kZapUint32),
2275       context_(kZapUint32),
2276       constant_pool_(kZapUint32) {
2277   // Zap all the registers.
2278   for (int r = 0; r < Register::kNumRegisters; r++) {
2279     // TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
2280     // isn't used before the next safepoint, the GC will try to scan it as a
2281     // tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
2282     SetRegister(r, kZapUint32);
2283   }
2284 
2285   // Zap all the slots.
2286   for (unsigned o = 0; o < frame_size; o += kPointerSize) {
2287     SetFrameSlot(o, kZapUint32);
2288   }
2289 }
2290 
2291 
ComputeFixedSize()2292 int FrameDescription::ComputeFixedSize() {
2293   if (type_ == StackFrame::INTERPRETED) {
2294     return InterpreterFrameConstants::kFixedFrameSize +
2295            parameter_count() * kPointerSize;
2296   } else {
2297     return StandardFrameConstants::kFixedFrameSize +
2298            parameter_count() * kPointerSize;
2299   }
2300 }
2301 
2302 
GetOffsetFromSlotIndex(int slot_index)2303 unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
2304   if (slot_index >= 0) {
2305     // Local or spill slots. Skip the fixed part of the frame
2306     // including all arguments.
2307     unsigned base = GetFrameSize() - ComputeFixedSize();
2308     return base - ((slot_index + 1) * kPointerSize);
2309   } else {
2310     // Incoming parameter.
2311     int arg_size = parameter_count() * kPointerSize;
2312     unsigned base = GetFrameSize() - arg_size;
2313     return base - ((slot_index + 1) * kPointerSize);
2314   }
2315 }
2316 
2317 
Add(int32_t value,Zone * zone)2318 void TranslationBuffer::Add(int32_t value, Zone* zone) {
2319   // This wouldn't handle kMinInt correctly if it ever encountered it.
2320   DCHECK(value != kMinInt);
2321   // Encode the sign bit in the least significant bit.
2322   bool is_negative = (value < 0);
2323   uint32_t bits = ((is_negative ? -value : value) << 1) |
2324       static_cast<int32_t>(is_negative);
2325   // Encode the individual bytes using the least significant bit of
2326   // each byte to indicate whether or not more bytes follow.
2327   do {
2328     uint32_t next = bits >> 7;
2329     contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
2330     bits = next;
2331   } while (bits != 0);
2332 }
2333 
2334 
Next()2335 int32_t TranslationIterator::Next() {
2336   // Run through the bytes until we reach one with a least significant
2337   // bit of zero (marks the end).
2338   uint32_t bits = 0;
2339   for (int i = 0; true; i += 7) {
2340     DCHECK(HasNext());
2341     uint8_t next = buffer_->get(index_++);
2342     bits |= (next >> 1) << i;
2343     if ((next & 1) == 0) break;
2344   }
2345   // The bits encode the sign in the least significant bit.
2346   bool is_negative = (bits & 1) == 1;
2347   int32_t result = bits >> 1;
2348   return is_negative ? -result : result;
2349 }
2350 
2351 
CreateByteArray(Factory * factory)2352 Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
2353   int length = contents_.length();
2354   Handle<ByteArray> result = factory->NewByteArray(length, TENURED);
2355   MemCopy(result->GetDataStartAddress(), contents_.ToVector().start(), length);
2356   return result;
2357 }
2358 
2359 
BeginConstructStubFrame(int literal_id,unsigned height)2360 void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
2361   buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
2362   buffer_->Add(literal_id, zone());
2363   buffer_->Add(height, zone());
2364 }
2365 
2366 
BeginGetterStubFrame(int literal_id)2367 void Translation::BeginGetterStubFrame(int literal_id) {
2368   buffer_->Add(GETTER_STUB_FRAME, zone());
2369   buffer_->Add(literal_id, zone());
2370 }
2371 
2372 
BeginSetterStubFrame(int literal_id)2373 void Translation::BeginSetterStubFrame(int literal_id) {
2374   buffer_->Add(SETTER_STUB_FRAME, zone());
2375   buffer_->Add(literal_id, zone());
2376 }
2377 
2378 
BeginArgumentsAdaptorFrame(int literal_id,unsigned height)2379 void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
2380   buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
2381   buffer_->Add(literal_id, zone());
2382   buffer_->Add(height, zone());
2383 }
2384 
BeginTailCallerFrame(int literal_id)2385 void Translation::BeginTailCallerFrame(int literal_id) {
2386   buffer_->Add(TAIL_CALLER_FRAME, zone());
2387   buffer_->Add(literal_id, zone());
2388 }
2389 
BeginJSFrame(BailoutId node_id,int literal_id,unsigned height)2390 void Translation::BeginJSFrame(BailoutId node_id,
2391                                int literal_id,
2392                                unsigned height) {
2393   buffer_->Add(JS_FRAME, zone());
2394   buffer_->Add(node_id.ToInt(), zone());
2395   buffer_->Add(literal_id, zone());
2396   buffer_->Add(height, zone());
2397 }
2398 
2399 
BeginInterpretedFrame(BailoutId bytecode_offset,int literal_id,unsigned height)2400 void Translation::BeginInterpretedFrame(BailoutId bytecode_offset,
2401                                         int literal_id, unsigned height) {
2402   buffer_->Add(INTERPRETED_FRAME, zone());
2403   buffer_->Add(bytecode_offset.ToInt(), zone());
2404   buffer_->Add(literal_id, zone());
2405   buffer_->Add(height, zone());
2406 }
2407 
2408 
BeginCompiledStubFrame(int height)2409 void Translation::BeginCompiledStubFrame(int height) {
2410   buffer_->Add(COMPILED_STUB_FRAME, zone());
2411   buffer_->Add(height, zone());
2412 }
2413 
2414 
BeginArgumentsObject(int args_length)2415 void Translation::BeginArgumentsObject(int args_length) {
2416   buffer_->Add(ARGUMENTS_OBJECT, zone());
2417   buffer_->Add(args_length, zone());
2418 }
2419 
2420 
BeginCapturedObject(int length)2421 void Translation::BeginCapturedObject(int length) {
2422   buffer_->Add(CAPTURED_OBJECT, zone());
2423   buffer_->Add(length, zone());
2424 }
2425 
2426 
DuplicateObject(int object_index)2427 void Translation::DuplicateObject(int object_index) {
2428   buffer_->Add(DUPLICATED_OBJECT, zone());
2429   buffer_->Add(object_index, zone());
2430 }
2431 
2432 
StoreRegister(Register reg)2433 void Translation::StoreRegister(Register reg) {
2434   buffer_->Add(REGISTER, zone());
2435   buffer_->Add(reg.code(), zone());
2436 }
2437 
2438 
StoreInt32Register(Register reg)2439 void Translation::StoreInt32Register(Register reg) {
2440   buffer_->Add(INT32_REGISTER, zone());
2441   buffer_->Add(reg.code(), zone());
2442 }
2443 
2444 
StoreUint32Register(Register reg)2445 void Translation::StoreUint32Register(Register reg) {
2446   buffer_->Add(UINT32_REGISTER, zone());
2447   buffer_->Add(reg.code(), zone());
2448 }
2449 
2450 
StoreBoolRegister(Register reg)2451 void Translation::StoreBoolRegister(Register reg) {
2452   buffer_->Add(BOOL_REGISTER, zone());
2453   buffer_->Add(reg.code(), zone());
2454 }
2455 
StoreFloatRegister(FloatRegister reg)2456 void Translation::StoreFloatRegister(FloatRegister reg) {
2457   buffer_->Add(FLOAT_REGISTER, zone());
2458   buffer_->Add(reg.code(), zone());
2459 }
2460 
StoreDoubleRegister(DoubleRegister reg)2461 void Translation::StoreDoubleRegister(DoubleRegister reg) {
2462   buffer_->Add(DOUBLE_REGISTER, zone());
2463   buffer_->Add(reg.code(), zone());
2464 }
2465 
2466 
StoreStackSlot(int index)2467 void Translation::StoreStackSlot(int index) {
2468   buffer_->Add(STACK_SLOT, zone());
2469   buffer_->Add(index, zone());
2470 }
2471 
2472 
StoreInt32StackSlot(int index)2473 void Translation::StoreInt32StackSlot(int index) {
2474   buffer_->Add(INT32_STACK_SLOT, zone());
2475   buffer_->Add(index, zone());
2476 }
2477 
2478 
StoreUint32StackSlot(int index)2479 void Translation::StoreUint32StackSlot(int index) {
2480   buffer_->Add(UINT32_STACK_SLOT, zone());
2481   buffer_->Add(index, zone());
2482 }
2483 
2484 
StoreBoolStackSlot(int index)2485 void Translation::StoreBoolStackSlot(int index) {
2486   buffer_->Add(BOOL_STACK_SLOT, zone());
2487   buffer_->Add(index, zone());
2488 }
2489 
StoreFloatStackSlot(int index)2490 void Translation::StoreFloatStackSlot(int index) {
2491   buffer_->Add(FLOAT_STACK_SLOT, zone());
2492   buffer_->Add(index, zone());
2493 }
2494 
StoreDoubleStackSlot(int index)2495 void Translation::StoreDoubleStackSlot(int index) {
2496   buffer_->Add(DOUBLE_STACK_SLOT, zone());
2497   buffer_->Add(index, zone());
2498 }
2499 
2500 
StoreLiteral(int literal_id)2501 void Translation::StoreLiteral(int literal_id) {
2502   buffer_->Add(LITERAL, zone());
2503   buffer_->Add(literal_id, zone());
2504 }
2505 
2506 
StoreArgumentsObject(bool args_known,int args_index,int args_length)2507 void Translation::StoreArgumentsObject(bool args_known,
2508                                        int args_index,
2509                                        int args_length) {
2510   buffer_->Add(ARGUMENTS_OBJECT, zone());
2511   buffer_->Add(args_known, zone());
2512   buffer_->Add(args_index, zone());
2513   buffer_->Add(args_length, zone());
2514 }
2515 
2516 
StoreJSFrameFunction()2517 void Translation::StoreJSFrameFunction() {
2518   StoreStackSlot((StandardFrameConstants::kCallerPCOffset -
2519                   StandardFrameConstants::kFunctionOffset) /
2520                  kPointerSize);
2521 }
2522 
NumberOfOperandsFor(Opcode opcode)2523 int Translation::NumberOfOperandsFor(Opcode opcode) {
2524   switch (opcode) {
2525     case GETTER_STUB_FRAME:
2526     case SETTER_STUB_FRAME:
2527     case DUPLICATED_OBJECT:
2528     case ARGUMENTS_OBJECT:
2529     case CAPTURED_OBJECT:
2530     case REGISTER:
2531     case INT32_REGISTER:
2532     case UINT32_REGISTER:
2533     case BOOL_REGISTER:
2534     case FLOAT_REGISTER:
2535     case DOUBLE_REGISTER:
2536     case STACK_SLOT:
2537     case INT32_STACK_SLOT:
2538     case UINT32_STACK_SLOT:
2539     case BOOL_STACK_SLOT:
2540     case FLOAT_STACK_SLOT:
2541     case DOUBLE_STACK_SLOT:
2542     case LITERAL:
2543     case COMPILED_STUB_FRAME:
2544     case TAIL_CALLER_FRAME:
2545       return 1;
2546     case BEGIN:
2547     case ARGUMENTS_ADAPTOR_FRAME:
2548     case CONSTRUCT_STUB_FRAME:
2549       return 2;
2550     case JS_FRAME:
2551     case INTERPRETED_FRAME:
2552       return 3;
2553   }
2554   FATAL("Unexpected translation type");
2555   return -1;
2556 }
2557 
2558 
2559 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
2560 
StringFor(Opcode opcode)2561 const char* Translation::StringFor(Opcode opcode) {
2562 #define TRANSLATION_OPCODE_CASE(item)   case item: return #item;
2563   switch (opcode) {
2564     TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
2565   }
2566 #undef TRANSLATION_OPCODE_CASE
2567   UNREACHABLE();
2568   return "";
2569 }
2570 
2571 #endif
2572 
2573 
Get(Address fp)2574 Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
2575   int index = StackIdToIndex(fp);
2576   if (index == -1) {
2577     return Handle<FixedArray>::null();
2578   }
2579   Handle<FixedArray> array = GetStackEntries();
2580   CHECK_GT(array->length(), index);
2581   return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
2582 }
2583 
2584 
Set(Address fp,Handle<FixedArray> materialized_objects)2585 void MaterializedObjectStore::Set(Address fp,
2586                                   Handle<FixedArray> materialized_objects) {
2587   int index = StackIdToIndex(fp);
2588   if (index == -1) {
2589     index = frame_fps_.length();
2590     frame_fps_.Add(fp);
2591   }
2592 
2593   Handle<FixedArray> array = EnsureStackEntries(index + 1);
2594   array->set(index, *materialized_objects);
2595 }
2596 
2597 
Remove(Address fp)2598 bool MaterializedObjectStore::Remove(Address fp) {
2599   int index = StackIdToIndex(fp);
2600   if (index == -1) {
2601     return false;
2602   }
2603   CHECK_GE(index, 0);
2604 
2605   frame_fps_.Remove(index);
2606   FixedArray* array = isolate()->heap()->materialized_objects();
2607   CHECK_LT(index, array->length());
2608   for (int i = index; i < frame_fps_.length(); i++) {
2609     array->set(i, array->get(i + 1));
2610   }
2611   array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
2612   return true;
2613 }
2614 
2615 
StackIdToIndex(Address fp)2616 int MaterializedObjectStore::StackIdToIndex(Address fp) {
2617   for (int i = 0; i < frame_fps_.length(); i++) {
2618     if (frame_fps_[i] == fp) {
2619       return i;
2620     }
2621   }
2622   return -1;
2623 }
2624 
2625 
GetStackEntries()2626 Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
2627   return Handle<FixedArray>(isolate()->heap()->materialized_objects());
2628 }
2629 
2630 
EnsureStackEntries(int length)2631 Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
2632   Handle<FixedArray> array = GetStackEntries();
2633   if (array->length() >= length) {
2634     return array;
2635   }
2636 
2637   int new_length = length > 10 ? length : 10;
2638   if (new_length < 2 * array->length()) {
2639     new_length = 2 * array->length();
2640   }
2641 
2642   Handle<FixedArray> new_array =
2643       isolate()->factory()->NewFixedArray(new_length, TENURED);
2644   for (int i = 0; i < array->length(); i++) {
2645     new_array->set(i, array->get(i));
2646   }
2647   for (int i = array->length(); i < length; i++) {
2648     new_array->set(i, isolate()->heap()->undefined_value());
2649   }
2650   isolate()->heap()->SetRootMaterializedObjects(*new_array);
2651   return new_array;
2652 }
2653 
2654 namespace {
2655 
GetValueForDebugger(TranslatedFrame::iterator it,Isolate * isolate)2656 Handle<Object> GetValueForDebugger(TranslatedFrame::iterator it,
2657                                    Isolate* isolate) {
2658   if (it->GetRawValue() == isolate->heap()->arguments_marker()) {
2659     if (!it->IsMaterializableByDebugger()) {
2660       return isolate->factory()->undefined_value();
2661     }
2662   }
2663   return it->GetValue();
2664 }
2665 
2666 }  // namespace
2667 
DeoptimizedFrameInfo(TranslatedState * state,TranslatedState::iterator frame_it,Isolate * isolate)2668 DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state,
2669                                            TranslatedState::iterator frame_it,
2670                                            Isolate* isolate) {
2671   // If the previous frame is an adaptor frame, we will take the parameters
2672   // from there.
2673   TranslatedState::iterator parameter_frame = frame_it;
2674   if (parameter_frame != state->begin()) {
2675     parameter_frame--;
2676   }
2677   int parameter_count;
2678   if (parameter_frame->kind() == TranslatedFrame::kArgumentsAdaptor) {
2679     parameter_count = parameter_frame->height() - 1;  // Ignore the receiver.
2680   } else {
2681     parameter_frame = frame_it;
2682     parameter_count =
2683         frame_it->shared_info()->internal_formal_parameter_count();
2684   }
2685   TranslatedFrame::iterator parameter_it = parameter_frame->begin();
2686   parameter_it++;  // Skip the function.
2687   parameter_it++;  // Skip the receiver.
2688 
2689   // Figure out whether there is a construct stub frame on top of
2690   // the parameter frame.
2691   has_construct_stub_ =
2692       parameter_frame != state->begin() &&
2693       (parameter_frame - 1)->kind() == TranslatedFrame::kConstructStub;
2694 
2695   source_position_ = Deoptimizer::ComputeSourcePosition(
2696       *frame_it->shared_info(), frame_it->node_id());
2697 
2698   TranslatedFrame::iterator value_it = frame_it->begin();
2699   // Get the function. Note that this might materialize the function.
2700   // In case the debugger mutates this value, we should deoptimize
2701   // the function and remember the value in the materialized value store.
2702   function_ = Handle<JSFunction>::cast(value_it->GetValue());
2703 
2704   parameters_.resize(static_cast<size_t>(parameter_count));
2705   for (int i = 0; i < parameter_count; i++) {
2706     Handle<Object> parameter = GetValueForDebugger(parameter_it, isolate);
2707     SetParameter(i, parameter);
2708     parameter_it++;
2709   }
2710 
2711   // Skip the function, the receiver and the arguments.
2712   int skip_count =
2713       frame_it->shared_info()->internal_formal_parameter_count() + 2;
2714   TranslatedFrame::iterator stack_it = frame_it->begin();
2715   for (int i = 0; i < skip_count; i++) {
2716     stack_it++;
2717   }
2718 
2719   // Get the context.
2720   context_ = GetValueForDebugger(stack_it, isolate);
2721   stack_it++;
2722 
2723   // Get the expression stack.
2724   int stack_height = frame_it->height();
2725   if (frame_it->kind() == TranslatedFrame::kFunction ||
2726       frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
2727     // For full-code frames, we should not count the context.
2728     // For interpreter frames, we should not count the accumulator.
2729     // TODO(jarin): Clean up the indexing in translated frames.
2730     stack_height--;
2731   }
2732   expression_stack_.resize(static_cast<size_t>(stack_height));
2733   for (int i = 0; i < stack_height; i++) {
2734     Handle<Object> expression = GetValueForDebugger(stack_it, isolate);
2735     SetExpression(i, expression);
2736     stack_it++;
2737   }
2738 
2739   // For interpreter frame, skip the accumulator.
2740   if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
2741     stack_it++;
2742   }
2743   CHECK(stack_it == frame_it->end());
2744 }
2745 
2746 
GetDeoptReason(DeoptReason deopt_reason)2747 const char* Deoptimizer::GetDeoptReason(DeoptReason deopt_reason) {
2748   DCHECK(deopt_reason < kLastDeoptReason);
2749 #define DEOPT_MESSAGES_TEXTS(C, T) T,
2750   static const char* deopt_messages_[] = {
2751       DEOPT_MESSAGES_LIST(DEOPT_MESSAGES_TEXTS)};
2752 #undef DEOPT_MESSAGES_TEXTS
2753   return deopt_messages_[deopt_reason];
2754 }
2755 
2756 
GetDeoptInfo(Code * code,Address pc)2757 Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) {
2758   SourcePosition last_position = SourcePosition::Unknown();
2759   Deoptimizer::DeoptReason last_reason = Deoptimizer::kNoReason;
2760   int last_deopt_id = Deoptimizer::DeoptInfo::kNoDeoptId;
2761   int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
2762              RelocInfo::ModeMask(RelocInfo::DEOPT_ID) |
2763              RelocInfo::ModeMask(RelocInfo::POSITION);
2764   for (RelocIterator it(code, mask); !it.done(); it.next()) {
2765     RelocInfo* info = it.rinfo();
2766     if (info->pc() >= pc) {
2767       return DeoptInfo(last_position, last_reason, last_deopt_id);
2768     }
2769     if (info->rmode() == RelocInfo::POSITION) {
2770       int raw_position = static_cast<int>(info->data());
2771       last_position = raw_position ? SourcePosition::FromRaw(raw_position)
2772                                    : SourcePosition::Unknown();
2773     } else if (info->rmode() == RelocInfo::DEOPT_ID) {
2774       last_deopt_id = static_cast<int>(info->data());
2775     } else if (info->rmode() == RelocInfo::DEOPT_REASON) {
2776       last_reason = static_cast<Deoptimizer::DeoptReason>(info->data());
2777     }
2778   }
2779   return DeoptInfo(SourcePosition::Unknown(), Deoptimizer::kNoReason, -1);
2780 }
2781 
2782 
2783 // static
ComputeSourcePosition(SharedFunctionInfo * shared,BailoutId node_id)2784 int Deoptimizer::ComputeSourcePosition(SharedFunctionInfo* shared,
2785                                        BailoutId node_id) {
2786   if (shared->HasBytecodeArray()) {
2787     BytecodeArray* bytecodes = shared->bytecode_array();
2788     // BailoutId points to the next bytecode in the bytecode aray. Subtract
2789     // 1 to get the end of current bytecode.
2790     return bytecodes->SourcePosition(node_id.ToInt() - 1);
2791   } else {
2792     Code* non_optimized_code = shared->code();
2793     FixedArray* raw_data = non_optimized_code->deoptimization_data();
2794     DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
2795     unsigned pc_and_state = Deoptimizer::GetOutputInfo(data, node_id, shared);
2796     unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
2797     return non_optimized_code->SourcePosition(pc_offset);
2798   }
2799 }
2800 
2801 // static
NewArgumentsObject(TranslatedState * container,int length,int object_index)2802 TranslatedValue TranslatedValue::NewArgumentsObject(TranslatedState* container,
2803                                                     int length,
2804                                                     int object_index) {
2805   TranslatedValue slot(container, kArgumentsObject);
2806   slot.materialization_info_ = {object_index, length};
2807   return slot;
2808 }
2809 
2810 
2811 // static
NewDeferredObject(TranslatedState * container,int length,int object_index)2812 TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
2813                                                    int length,
2814                                                    int object_index) {
2815   TranslatedValue slot(container, kCapturedObject);
2816   slot.materialization_info_ = {object_index, length};
2817   return slot;
2818 }
2819 
2820 
2821 // static
NewDuplicateObject(TranslatedState * container,int id)2822 TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
2823                                                     int id) {
2824   TranslatedValue slot(container, kDuplicatedObject);
2825   slot.materialization_info_ = {id, -1};
2826   return slot;
2827 }
2828 
2829 
2830 // static
NewFloat(TranslatedState * container,float value)2831 TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
2832                                           float value) {
2833   TranslatedValue slot(container, kFloat);
2834   slot.float_value_ = value;
2835   return slot;
2836 }
2837 
2838 // static
NewDouble(TranslatedState * container,double value)2839 TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
2840                                            double value) {
2841   TranslatedValue slot(container, kDouble);
2842   slot.double_value_ = value;
2843   return slot;
2844 }
2845 
2846 
2847 // static
NewInt32(TranslatedState * container,int32_t value)2848 TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
2849                                           int32_t value) {
2850   TranslatedValue slot(container, kInt32);
2851   slot.int32_value_ = value;
2852   return slot;
2853 }
2854 
2855 
2856 // static
NewUInt32(TranslatedState * container,uint32_t value)2857 TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
2858                                            uint32_t value) {
2859   TranslatedValue slot(container, kUInt32);
2860   slot.uint32_value_ = value;
2861   return slot;
2862 }
2863 
2864 
2865 // static
NewBool(TranslatedState * container,uint32_t value)2866 TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
2867                                          uint32_t value) {
2868   TranslatedValue slot(container, kBoolBit);
2869   slot.uint32_value_ = value;
2870   return slot;
2871 }
2872 
2873 
2874 // static
NewTagged(TranslatedState * container,Object * literal)2875 TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
2876                                            Object* literal) {
2877   TranslatedValue slot(container, kTagged);
2878   slot.raw_literal_ = literal;
2879   return slot;
2880 }
2881 
2882 
2883 // static
NewInvalid(TranslatedState * container)2884 TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
2885   return TranslatedValue(container, kInvalid);
2886 }
2887 
2888 
isolate() const2889 Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
2890 
2891 
raw_literal() const2892 Object* TranslatedValue::raw_literal() const {
2893   DCHECK_EQ(kTagged, kind());
2894   return raw_literal_;
2895 }
2896 
2897 
int32_value() const2898 int32_t TranslatedValue::int32_value() const {
2899   DCHECK_EQ(kInt32, kind());
2900   return int32_value_;
2901 }
2902 
2903 
uint32_value() const2904 uint32_t TranslatedValue::uint32_value() const {
2905   DCHECK(kind() == kUInt32 || kind() == kBoolBit);
2906   return uint32_value_;
2907 }
2908 
float_value() const2909 float TranslatedValue::float_value() const {
2910   DCHECK_EQ(kFloat, kind());
2911   return float_value_;
2912 }
2913 
double_value() const2914 double TranslatedValue::double_value() const {
2915   DCHECK_EQ(kDouble, kind());
2916   return double_value_;
2917 }
2918 
2919 
object_length() const2920 int TranslatedValue::object_length() const {
2921   DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject);
2922   return materialization_info_.length_;
2923 }
2924 
2925 
object_index() const2926 int TranslatedValue::object_index() const {
2927   DCHECK(kind() == kArgumentsObject || kind() == kCapturedObject ||
2928          kind() == kDuplicatedObject);
2929   return materialization_info_.id_;
2930 }
2931 
2932 
GetRawValue() const2933 Object* TranslatedValue::GetRawValue() const {
2934   // If we have a value, return it.
2935   Handle<Object> result_handle;
2936   if (value_.ToHandle(&result_handle)) {
2937     return *result_handle;
2938   }
2939 
2940   // Otherwise, do a best effort to get the value without allocation.
2941   switch (kind()) {
2942     case kTagged:
2943       return raw_literal();
2944 
2945     case kInt32: {
2946       bool is_smi = Smi::IsValid(int32_value());
2947       if (is_smi) {
2948         return Smi::FromInt(int32_value());
2949       }
2950       break;
2951     }
2952 
2953     case kUInt32: {
2954       bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
2955       if (is_smi) {
2956         return Smi::FromInt(static_cast<int32_t>(uint32_value()));
2957       }
2958       break;
2959     }
2960 
2961     case kBoolBit: {
2962       if (uint32_value() == 0) {
2963         return isolate()->heap()->false_value();
2964       } else {
2965         CHECK_EQ(1U, uint32_value());
2966         return isolate()->heap()->true_value();
2967       }
2968     }
2969 
2970     default:
2971       break;
2972   }
2973 
2974   // If we could not get the value without allocation, return the arguments
2975   // marker.
2976   return isolate()->heap()->arguments_marker();
2977 }
2978 
2979 
GetValue()2980 Handle<Object> TranslatedValue::GetValue() {
2981   Handle<Object> result;
2982   // If we already have a value, then get it.
2983   if (value_.ToHandle(&result)) return result;
2984 
2985   // Otherwise we have to materialize.
2986   switch (kind()) {
2987     case TranslatedValue::kTagged:
2988     case TranslatedValue::kInt32:
2989     case TranslatedValue::kUInt32:
2990     case TranslatedValue::kBoolBit:
2991     case TranslatedValue::kFloat:
2992     case TranslatedValue::kDouble: {
2993       MaterializeSimple();
2994       return value_.ToHandleChecked();
2995     }
2996 
2997     case TranslatedValue::kArgumentsObject:
2998     case TranslatedValue::kCapturedObject:
2999     case TranslatedValue::kDuplicatedObject:
3000       return container_->MaterializeObjectAt(object_index());
3001 
3002     case TranslatedValue::kInvalid:
3003       FATAL("unexpected case");
3004       return Handle<Object>::null();
3005   }
3006 
3007   FATAL("internal error: value missing");
3008   return Handle<Object>::null();
3009 }
3010 
3011 
MaterializeSimple()3012 void TranslatedValue::MaterializeSimple() {
3013   // If we already have materialized, return.
3014   if (!value_.is_null()) return;
3015 
3016   Object* raw_value = GetRawValue();
3017   if (raw_value != isolate()->heap()->arguments_marker()) {
3018     // We can get the value without allocation, just return it here.
3019     value_ = Handle<Object>(raw_value, isolate());
3020     return;
3021   }
3022 
3023   switch (kind()) {
3024     case kInt32: {
3025       value_ = Handle<Object>(isolate()->factory()->NewNumber(int32_value()));
3026       return;
3027     }
3028 
3029     case kUInt32:
3030       value_ = Handle<Object>(isolate()->factory()->NewNumber(uint32_value()));
3031       return;
3032 
3033     case kFloat:
3034       value_ = Handle<Object>(isolate()->factory()->NewNumber(float_value()));
3035       return;
3036 
3037     case kDouble:
3038       value_ = Handle<Object>(isolate()->factory()->NewNumber(double_value()));
3039       return;
3040 
3041     case kCapturedObject:
3042     case kDuplicatedObject:
3043     case kArgumentsObject:
3044     case kInvalid:
3045     case kTagged:
3046     case kBoolBit:
3047       FATAL("internal error: unexpected materialization.");
3048       break;
3049   }
3050 }
3051 
3052 
IsMaterializedObject() const3053 bool TranslatedValue::IsMaterializedObject() const {
3054   switch (kind()) {
3055     case kCapturedObject:
3056     case kDuplicatedObject:
3057     case kArgumentsObject:
3058       return true;
3059     default:
3060       return false;
3061   }
3062 }
3063 
IsMaterializableByDebugger() const3064 bool TranslatedValue::IsMaterializableByDebugger() const {
3065   // At the moment, we only allow materialization of doubles.
3066   return (kind() == kDouble);
3067 }
3068 
GetChildrenCount() const3069 int TranslatedValue::GetChildrenCount() const {
3070   if (kind() == kCapturedObject || kind() == kArgumentsObject) {
3071     return object_length();
3072   } else {
3073     return 0;
3074   }
3075 }
3076 
3077 
GetUInt32Slot(Address fp,int slot_offset)3078 uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
3079   Address address = fp + slot_offset;
3080 #if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
3081   return Memory::uint32_at(address + kIntSize);
3082 #else
3083   return Memory::uint32_at(address);
3084 #endif
3085 }
3086 
3087 
Handlify()3088 void TranslatedValue::Handlify() {
3089   if (kind() == kTagged) {
3090     value_ = Handle<Object>(raw_literal(), isolate());
3091     raw_literal_ = nullptr;
3092   }
3093 }
3094 
3095 
JSFrame(BailoutId node_id,SharedFunctionInfo * shared_info,int height)3096 TranslatedFrame TranslatedFrame::JSFrame(BailoutId node_id,
3097                                          SharedFunctionInfo* shared_info,
3098                                          int height) {
3099   TranslatedFrame frame(kFunction, shared_info->GetIsolate(), shared_info,
3100                         height);
3101   frame.node_id_ = node_id;
3102   return frame;
3103 }
3104 
3105 
InterpretedFrame(BailoutId bytecode_offset,SharedFunctionInfo * shared_info,int height)3106 TranslatedFrame TranslatedFrame::InterpretedFrame(
3107     BailoutId bytecode_offset, SharedFunctionInfo* shared_info, int height) {
3108   TranslatedFrame frame(kInterpretedFunction, shared_info->GetIsolate(),
3109                         shared_info, height);
3110   frame.node_id_ = bytecode_offset;
3111   return frame;
3112 }
3113 
3114 
AccessorFrame(Kind kind,SharedFunctionInfo * shared_info)3115 TranslatedFrame TranslatedFrame::AccessorFrame(
3116     Kind kind, SharedFunctionInfo* shared_info) {
3117   DCHECK(kind == kSetter || kind == kGetter);
3118   return TranslatedFrame(kind, shared_info->GetIsolate(), shared_info);
3119 }
3120 
3121 
ArgumentsAdaptorFrame(SharedFunctionInfo * shared_info,int height)3122 TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
3123     SharedFunctionInfo* shared_info, int height) {
3124   return TranslatedFrame(kArgumentsAdaptor, shared_info->GetIsolate(),
3125                          shared_info, height);
3126 }
3127 
TailCallerFrame(SharedFunctionInfo * shared_info)3128 TranslatedFrame TranslatedFrame::TailCallerFrame(
3129     SharedFunctionInfo* shared_info) {
3130   return TranslatedFrame(kTailCallerFunction, shared_info->GetIsolate(),
3131                          shared_info, 0);
3132 }
3133 
ConstructStubFrame(SharedFunctionInfo * shared_info,int height)3134 TranslatedFrame TranslatedFrame::ConstructStubFrame(
3135     SharedFunctionInfo* shared_info, int height) {
3136   return TranslatedFrame(kConstructStub, shared_info->GetIsolate(), shared_info,
3137                          height);
3138 }
3139 
3140 
GetValueCount()3141 int TranslatedFrame::GetValueCount() {
3142   switch (kind()) {
3143     case kFunction: {
3144       int parameter_count =
3145           raw_shared_info_->internal_formal_parameter_count() + 1;
3146       // + 1 for function.
3147       return height_ + parameter_count + 1;
3148     }
3149 
3150     case kInterpretedFunction: {
3151       int parameter_count =
3152           raw_shared_info_->internal_formal_parameter_count() + 1;
3153       // + 2 for function and context.
3154       return height_ + parameter_count + 2;
3155     }
3156 
3157     case kGetter:
3158       return 2;  // Function and receiver.
3159 
3160     case kSetter:
3161       return 3;  // Function, receiver and the value to set.
3162 
3163     case kArgumentsAdaptor:
3164     case kConstructStub:
3165       return 1 + height_;
3166 
3167     case kTailCallerFunction:
3168       return 1;  // Function.
3169 
3170     case kCompiledStub:
3171       return height_;
3172 
3173     case kInvalid:
3174       UNREACHABLE();
3175       break;
3176   }
3177   UNREACHABLE();
3178   return -1;
3179 }
3180 
3181 
Handlify()3182 void TranslatedFrame::Handlify() {
3183   if (raw_shared_info_ != nullptr) {
3184     shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_);
3185     raw_shared_info_ = nullptr;
3186   }
3187   for (auto& value : values_) {
3188     value.Handlify();
3189   }
3190 }
3191 
3192 
CreateNextTranslatedFrame(TranslationIterator * iterator,FixedArray * literal_array,Address fp,FILE * trace_file)3193 TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
3194     TranslationIterator* iterator, FixedArray* literal_array, Address fp,
3195     FILE* trace_file) {
3196   Translation::Opcode opcode =
3197       static_cast<Translation::Opcode>(iterator->Next());
3198   switch (opcode) {
3199     case Translation::JS_FRAME: {
3200       BailoutId node_id = BailoutId(iterator->Next());
3201       SharedFunctionInfo* shared_info =
3202           SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
3203       int height = iterator->Next();
3204       if (trace_file != nullptr) {
3205         base::SmartArrayPointer<char> name =
3206             shared_info->DebugName()->ToCString();
3207         PrintF(trace_file, "  reading input frame %s", name.get());
3208         int arg_count = shared_info->internal_formal_parameter_count() + 1;
3209         PrintF(trace_file, " => node=%d, args=%d, height=%d; inputs:\n",
3210                node_id.ToInt(), arg_count, height);
3211       }
3212       return TranslatedFrame::JSFrame(node_id, shared_info, height);
3213     }
3214 
3215     case Translation::INTERPRETED_FRAME: {
3216       BailoutId bytecode_offset = BailoutId(iterator->Next());
3217       SharedFunctionInfo* shared_info =
3218           SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
3219       int height = iterator->Next();
3220       if (trace_file != nullptr) {
3221         base::SmartArrayPointer<char> name =
3222             shared_info->DebugName()->ToCString();
3223         PrintF(trace_file, "  reading input frame %s", name.get());
3224         int arg_count = shared_info->internal_formal_parameter_count() + 1;
3225         PrintF(trace_file,
3226                " => bytecode_offset=%d, args=%d, height=%d; inputs:\n",
3227                bytecode_offset.ToInt(), arg_count, height);
3228       }
3229       return TranslatedFrame::InterpretedFrame(bytecode_offset, shared_info,
3230                                                height);
3231     }
3232 
3233     case Translation::ARGUMENTS_ADAPTOR_FRAME: {
3234       SharedFunctionInfo* shared_info =
3235           SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
3236       int height = iterator->Next();
3237       if (trace_file != nullptr) {
3238         base::SmartArrayPointer<char> name =
3239             shared_info->DebugName()->ToCString();
3240         PrintF(trace_file, "  reading arguments adaptor frame %s", name.get());
3241         PrintF(trace_file, " => height=%d; inputs:\n", height);
3242       }
3243       return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
3244     }
3245 
3246     case Translation::TAIL_CALLER_FRAME: {
3247       SharedFunctionInfo* shared_info =
3248           SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
3249       if (trace_file != nullptr) {
3250         base::SmartArrayPointer<char> name =
3251             shared_info->DebugName()->ToCString();
3252         PrintF(trace_file, "  reading tail caller frame marker %s\n",
3253                name.get());
3254       }
3255       return TranslatedFrame::TailCallerFrame(shared_info);
3256     }
3257 
3258     case Translation::CONSTRUCT_STUB_FRAME: {
3259       SharedFunctionInfo* shared_info =
3260           SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
3261       int height = iterator->Next();
3262       if (trace_file != nullptr) {
3263         base::SmartArrayPointer<char> name =
3264             shared_info->DebugName()->ToCString();
3265         PrintF(trace_file, "  reading construct stub frame %s", name.get());
3266         PrintF(trace_file, " => height=%d; inputs:\n", height);
3267       }
3268       return TranslatedFrame::ConstructStubFrame(shared_info, height);
3269     }
3270 
3271     case Translation::GETTER_STUB_FRAME: {
3272       SharedFunctionInfo* shared_info =
3273           SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
3274       if (trace_file != nullptr) {
3275         base::SmartArrayPointer<char> name =
3276             shared_info->DebugName()->ToCString();
3277         PrintF(trace_file, "  reading getter frame %s; inputs:\n", name.get());
3278       }
3279       return TranslatedFrame::AccessorFrame(TranslatedFrame::kGetter,
3280                                             shared_info);
3281     }
3282 
3283     case Translation::SETTER_STUB_FRAME: {
3284       SharedFunctionInfo* shared_info =
3285           SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
3286       if (trace_file != nullptr) {
3287         base::SmartArrayPointer<char> name =
3288             shared_info->DebugName()->ToCString();
3289         PrintF(trace_file, "  reading setter frame %s; inputs:\n", name.get());
3290       }
3291       return TranslatedFrame::AccessorFrame(TranslatedFrame::kSetter,
3292                                             shared_info);
3293     }
3294 
3295     case Translation::COMPILED_STUB_FRAME: {
3296       int height = iterator->Next();
3297       if (trace_file != nullptr) {
3298         PrintF(trace_file,
3299                "  reading compiler stub frame => height=%d; inputs:\n", height);
3300       }
3301       return TranslatedFrame::CompiledStubFrame(height,
3302                                                 literal_array->GetIsolate());
3303     }
3304 
3305     case Translation::BEGIN:
3306     case Translation::DUPLICATED_OBJECT:
3307     case Translation::ARGUMENTS_OBJECT:
3308     case Translation::CAPTURED_OBJECT:
3309     case Translation::REGISTER:
3310     case Translation::INT32_REGISTER:
3311     case Translation::UINT32_REGISTER:
3312     case Translation::BOOL_REGISTER:
3313     case Translation::FLOAT_REGISTER:
3314     case Translation::DOUBLE_REGISTER:
3315     case Translation::STACK_SLOT:
3316     case Translation::INT32_STACK_SLOT:
3317     case Translation::UINT32_STACK_SLOT:
3318     case Translation::BOOL_STACK_SLOT:
3319     case Translation::FLOAT_STACK_SLOT:
3320     case Translation::DOUBLE_STACK_SLOT:
3321     case Translation::LITERAL:
3322       break;
3323   }
3324   FATAL("We should never get here - unexpected deopt info.");
3325   return TranslatedFrame::InvalidFrame();
3326 }
3327 
3328 
3329 // static
AdvanceIterator(std::deque<TranslatedValue>::iterator * iter)3330 void TranslatedFrame::AdvanceIterator(
3331     std::deque<TranslatedValue>::iterator* iter) {
3332   int values_to_skip = 1;
3333   while (values_to_skip > 0) {
3334     // Consume the current element.
3335     values_to_skip--;
3336     // Add all the children.
3337     values_to_skip += (*iter)->GetChildrenCount();
3338 
3339     (*iter)++;
3340   }
3341 }
3342 
3343 
3344 // We can't intermix stack decoding and allocations because
3345 // deoptimization infrastracture is not GC safe.
3346 // Thus we build a temporary structure in malloced space.
CreateNextTranslatedValue(int frame_index,int value_index,TranslationIterator * iterator,FixedArray * literal_array,Address fp,RegisterValues * registers,FILE * trace_file)3347 TranslatedValue TranslatedState::CreateNextTranslatedValue(
3348     int frame_index, int value_index, TranslationIterator* iterator,
3349     FixedArray* literal_array, Address fp, RegisterValues* registers,
3350     FILE* trace_file) {
3351   disasm::NameConverter converter;
3352 
3353   Translation::Opcode opcode =
3354       static_cast<Translation::Opcode>(iterator->Next());
3355   switch (opcode) {
3356     case Translation::BEGIN:
3357     case Translation::JS_FRAME:
3358     case Translation::INTERPRETED_FRAME:
3359     case Translation::ARGUMENTS_ADAPTOR_FRAME:
3360     case Translation::TAIL_CALLER_FRAME:
3361     case Translation::CONSTRUCT_STUB_FRAME:
3362     case Translation::GETTER_STUB_FRAME:
3363     case Translation::SETTER_STUB_FRAME:
3364     case Translation::COMPILED_STUB_FRAME:
3365       // Peeled off before getting here.
3366       break;
3367 
3368     case Translation::DUPLICATED_OBJECT: {
3369       int object_id = iterator->Next();
3370       if (trace_file != nullptr) {
3371         PrintF(trace_file, "duplicated object #%d", object_id);
3372       }
3373       object_positions_.push_back(object_positions_[object_id]);
3374       return TranslatedValue::NewDuplicateObject(this, object_id);
3375     }
3376 
3377     case Translation::ARGUMENTS_OBJECT: {
3378       int arg_count = iterator->Next();
3379       int object_index = static_cast<int>(object_positions_.size());
3380       if (trace_file != nullptr) {
3381         PrintF(trace_file, "argumets object #%d (length = %d)", object_index,
3382                arg_count);
3383       }
3384       object_positions_.push_back({frame_index, value_index});
3385       return TranslatedValue::NewArgumentsObject(this, arg_count, object_index);
3386     }
3387 
3388     case Translation::CAPTURED_OBJECT: {
3389       int field_count = iterator->Next();
3390       int object_index = static_cast<int>(object_positions_.size());
3391       if (trace_file != nullptr) {
3392         PrintF(trace_file, "captured object #%d (length = %d)", object_index,
3393                field_count);
3394       }
3395       object_positions_.push_back({frame_index, value_index});
3396       return TranslatedValue::NewDeferredObject(this, field_count,
3397                                                 object_index);
3398     }
3399 
3400     case Translation::REGISTER: {
3401       int input_reg = iterator->Next();
3402       if (registers == nullptr) return TranslatedValue::NewInvalid(this);
3403       intptr_t value = registers->GetRegister(input_reg);
3404       if (trace_file != nullptr) {
3405         PrintF(trace_file, "0x%08" V8PRIxPTR " ; %s ", value,
3406                converter.NameOfCPURegister(input_reg));
3407         reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
3408       }
3409       return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
3410     }
3411 
3412     case Translation::INT32_REGISTER: {
3413       int input_reg = iterator->Next();
3414       if (registers == nullptr) return TranslatedValue::NewInvalid(this);
3415       intptr_t value = registers->GetRegister(input_reg);
3416       if (trace_file != nullptr) {
3417         PrintF(trace_file, "%" V8PRIdPTR " ; %s ", value,
3418                converter.NameOfCPURegister(input_reg));
3419       }
3420       return TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
3421     }
3422 
3423     case Translation::UINT32_REGISTER: {
3424       int input_reg = iterator->Next();
3425       if (registers == nullptr) return TranslatedValue::NewInvalid(this);
3426       intptr_t value = registers->GetRegister(input_reg);
3427       if (trace_file != nullptr) {
3428         PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint)", value,
3429                converter.NameOfCPURegister(input_reg));
3430         reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
3431       }
3432       return TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
3433     }
3434 
3435     case Translation::BOOL_REGISTER: {
3436       int input_reg = iterator->Next();
3437       if (registers == nullptr) return TranslatedValue::NewInvalid(this);
3438       intptr_t value = registers->GetRegister(input_reg);
3439       if (trace_file != nullptr) {
3440         PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
3441                converter.NameOfCPURegister(input_reg));
3442       }
3443       return TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
3444     }
3445 
3446     case Translation::FLOAT_REGISTER: {
3447       int input_reg = iterator->Next();
3448       if (registers == nullptr) return TranslatedValue::NewInvalid(this);
3449       float value = registers->GetFloatRegister(input_reg);
3450       if (trace_file != nullptr) {
3451         PrintF(trace_file, "%e ; %s (float)", value,
3452                RegisterConfiguration::Crankshaft()->GetFloatRegisterName(
3453                    input_reg));
3454       }
3455       return TranslatedValue::NewFloat(this, value);
3456     }
3457 
3458     case Translation::DOUBLE_REGISTER: {
3459       int input_reg = iterator->Next();
3460       if (registers == nullptr) return TranslatedValue::NewInvalid(this);
3461       double value = registers->GetDoubleRegister(input_reg);
3462       if (trace_file != nullptr) {
3463         PrintF(trace_file, "%e ; %s (double)", value,
3464                RegisterConfiguration::Crankshaft()->GetDoubleRegisterName(
3465                    input_reg));
3466       }
3467       return TranslatedValue::NewDouble(this, value);
3468     }
3469 
3470     case Translation::STACK_SLOT: {
3471       int slot_offset =
3472           OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3473       intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
3474       if (trace_file != nullptr) {
3475         PrintF(trace_file, "0x%08" V8PRIxPTR " ; [fp %c %d] ", value,
3476                slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3477         reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
3478       }
3479       return TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
3480     }
3481 
3482     case Translation::INT32_STACK_SLOT: {
3483       int slot_offset =
3484           OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3485       uint32_t value = GetUInt32Slot(fp, slot_offset);
3486       if (trace_file != nullptr) {
3487         PrintF(trace_file, "%d ; (int) [fp %c %d] ",
3488                static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
3489                std::abs(slot_offset));
3490       }
3491       return TranslatedValue::NewInt32(this, value);
3492     }
3493 
3494     case Translation::UINT32_STACK_SLOT: {
3495       int slot_offset =
3496           OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3497       uint32_t value = GetUInt32Slot(fp, slot_offset);
3498       if (trace_file != nullptr) {
3499         PrintF(trace_file, "%u ; (uint) [fp %c %d] ", value,
3500                slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3501       }
3502       return TranslatedValue::NewUInt32(this, value);
3503     }
3504 
3505     case Translation::BOOL_STACK_SLOT: {
3506       int slot_offset =
3507           OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3508       uint32_t value = GetUInt32Slot(fp, slot_offset);
3509       if (trace_file != nullptr) {
3510         PrintF(trace_file, "%u ; (bool) [fp %c %d] ", value,
3511                slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3512       }
3513       return TranslatedValue::NewBool(this, value);
3514     }
3515 
3516     case Translation::FLOAT_STACK_SLOT: {
3517       int slot_offset =
3518           OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3519       float value = ReadFloatValue(fp + slot_offset);
3520       if (trace_file != nullptr) {
3521         PrintF(trace_file, "%e ; (float) [fp %c %d] ", value,
3522                slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3523       }
3524       return TranslatedValue::NewFloat(this, value);
3525     }
3526 
3527     case Translation::DOUBLE_STACK_SLOT: {
3528       int slot_offset =
3529           OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3530       double value = ReadDoubleValue(fp + slot_offset);
3531       if (trace_file != nullptr) {
3532         PrintF(trace_file, "%e ; (double) [fp %c %d] ", value,
3533                slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3534       }
3535       return TranslatedValue::NewDouble(this, value);
3536     }
3537 
3538     case Translation::LITERAL: {
3539       int literal_index = iterator->Next();
3540       Object* value = literal_array->get(literal_index);
3541       if (trace_file != nullptr) {
3542         PrintF(trace_file, "0x%08" V8PRIxPTR " ; (literal %d) ",
3543                reinterpret_cast<intptr_t>(value), literal_index);
3544         reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
3545       }
3546 
3547       return TranslatedValue::NewTagged(this, value);
3548     }
3549   }
3550 
3551   FATAL("We should never get here - unexpected deopt info.");
3552   return TranslatedValue(nullptr, TranslatedValue::kInvalid);
3553 }
3554 
3555 
TranslatedState(JavaScriptFrame * frame)3556 TranslatedState::TranslatedState(JavaScriptFrame* frame)
3557     : isolate_(nullptr),
3558       stack_frame_pointer_(nullptr),
3559       has_adapted_arguments_(false) {
3560   int deopt_index = Safepoint::kNoDeoptimizationIndex;
3561   DeoptimizationInputData* data =
3562       static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
3563   DCHECK(data != nullptr && deopt_index != Safepoint::kNoDeoptimizationIndex);
3564   TranslationIterator it(data->TranslationByteArray(),
3565                          data->TranslationIndex(deopt_index)->value());
3566   Init(frame->fp(), &it, data->LiteralArray(), nullptr /* registers */,
3567        nullptr /* trace file */);
3568 }
3569 
3570 
TranslatedState()3571 TranslatedState::TranslatedState()
3572     : isolate_(nullptr),
3573       stack_frame_pointer_(nullptr),
3574       has_adapted_arguments_(false) {}
3575 
3576 
Init(Address input_frame_pointer,TranslationIterator * iterator,FixedArray * literal_array,RegisterValues * registers,FILE * trace_file)3577 void TranslatedState::Init(Address input_frame_pointer,
3578                            TranslationIterator* iterator,
3579                            FixedArray* literal_array, RegisterValues* registers,
3580                            FILE* trace_file) {
3581   DCHECK(frames_.empty());
3582 
3583   isolate_ = literal_array->GetIsolate();
3584   // Read out the 'header' translation.
3585   Translation::Opcode opcode =
3586       static_cast<Translation::Opcode>(iterator->Next());
3587   CHECK(opcode == Translation::BEGIN);
3588 
3589   int count = iterator->Next();
3590   iterator->Next();  // Drop JS frames count.
3591 
3592   frames_.reserve(count);
3593 
3594   std::stack<int> nested_counts;
3595 
3596   // Read the frames
3597   for (int i = 0; i < count; i++) {
3598     // Read the frame descriptor.
3599     frames_.push_back(CreateNextTranslatedFrame(
3600         iterator, literal_array, input_frame_pointer, trace_file));
3601     TranslatedFrame& frame = frames_.back();
3602 
3603     // Read the values.
3604     int values_to_process = frame.GetValueCount();
3605     while (values_to_process > 0 || !nested_counts.empty()) {
3606       if (trace_file != nullptr) {
3607         if (nested_counts.empty()) {
3608           // For top level values, print the value number.
3609           PrintF(trace_file, "    %3i: ",
3610                  frame.GetValueCount() - values_to_process);
3611         } else {
3612           // Take care of indenting for nested values.
3613           PrintF(trace_file, "         ");
3614           for (size_t j = 0; j < nested_counts.size(); j++) {
3615             PrintF(trace_file, "  ");
3616           }
3617         }
3618       }
3619 
3620       TranslatedValue value = CreateNextTranslatedValue(
3621           i, static_cast<int>(frame.values_.size()), iterator, literal_array,
3622           input_frame_pointer, registers, trace_file);
3623       frame.Add(value);
3624 
3625       if (trace_file != nullptr) {
3626         PrintF(trace_file, "\n");
3627       }
3628 
3629       // Update the value count and resolve the nesting.
3630       values_to_process--;
3631       int children_count = value.GetChildrenCount();
3632       if (children_count > 0) {
3633         nested_counts.push(values_to_process);
3634         values_to_process = children_count;
3635       } else {
3636         while (values_to_process == 0 && !nested_counts.empty()) {
3637           values_to_process = nested_counts.top();
3638           nested_counts.pop();
3639         }
3640       }
3641     }
3642   }
3643 
3644   CHECK(!iterator->HasNext() ||
3645         static_cast<Translation::Opcode>(iterator->Next()) ==
3646             Translation::BEGIN);
3647 }
3648 
3649 
Prepare(bool has_adapted_arguments,Address stack_frame_pointer)3650 void TranslatedState::Prepare(bool has_adapted_arguments,
3651                               Address stack_frame_pointer) {
3652   for (auto& frame : frames_) frame.Handlify();
3653 
3654   stack_frame_pointer_ = stack_frame_pointer;
3655   has_adapted_arguments_ = has_adapted_arguments;
3656 
3657   UpdateFromPreviouslyMaterializedObjects();
3658 }
3659 
3660 
MaterializeAt(int frame_index,int * value_index)3661 Handle<Object> TranslatedState::MaterializeAt(int frame_index,
3662                                               int* value_index) {
3663   TranslatedFrame* frame = &(frames_[frame_index]);
3664   CHECK(static_cast<size_t>(*value_index) < frame->values_.size());
3665 
3666   TranslatedValue* slot = &(frame->values_[*value_index]);
3667   (*value_index)++;
3668 
3669   switch (slot->kind()) {
3670     case TranslatedValue::kTagged:
3671     case TranslatedValue::kInt32:
3672     case TranslatedValue::kUInt32:
3673     case TranslatedValue::kBoolBit:
3674     case TranslatedValue::kFloat:
3675     case TranslatedValue::kDouble: {
3676       slot->MaterializeSimple();
3677       Handle<Object> value = slot->GetValue();
3678       if (value->IsMutableHeapNumber()) {
3679         HeapNumber::cast(*value)->set_map(isolate()->heap()->heap_number_map());
3680       }
3681       return value;
3682     }
3683 
3684     case TranslatedValue::kArgumentsObject: {
3685       int length = slot->GetChildrenCount();
3686       Handle<JSObject> arguments;
3687       if (GetAdaptedArguments(&arguments, frame_index)) {
3688         // Store the materialized object and consume the nested values.
3689         for (int i = 0; i < length; ++i) {
3690           MaterializeAt(frame_index, value_index);
3691         }
3692       } else {
3693         Handle<JSFunction> function =
3694             Handle<JSFunction>::cast(frame->front().GetValue());
3695         arguments = isolate_->factory()->NewArgumentsObject(function, length);
3696         Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
3697         DCHECK_EQ(array->length(), length);
3698         arguments->set_elements(*array);
3699         for (int i = 0; i < length; ++i) {
3700           Handle<Object> value = MaterializeAt(frame_index, value_index);
3701           array->set(i, *value);
3702         }
3703       }
3704       slot->value_ = arguments;
3705       return arguments;
3706     }
3707     case TranslatedValue::kCapturedObject: {
3708       int length = slot->GetChildrenCount();
3709 
3710       // The map must be a tagged object.
3711       CHECK(frame->values_[*value_index].kind() == TranslatedValue::kTagged);
3712 
3713       Handle<Object> result;
3714       if (slot->value_.ToHandle(&result)) {
3715         // This has been previously materialized, return the previous value.
3716         // We still need to skip all the nested objects.
3717         for (int i = 0; i < length; i++) {
3718           MaterializeAt(frame_index, value_index);
3719         }
3720 
3721         return result;
3722       }
3723 
3724       Handle<Object> map_object = MaterializeAt(frame_index, value_index);
3725       Handle<Map> map =
3726           Map::GeneralizeAllFieldRepresentations(Handle<Map>::cast(map_object));
3727       switch (map->instance_type()) {
3728         case MUTABLE_HEAP_NUMBER_TYPE:
3729         case HEAP_NUMBER_TYPE: {
3730           // Reuse the HeapNumber value directly as it is already properly
3731           // tagged and skip materializing the HeapNumber explicitly.
3732           Handle<Object> object = MaterializeAt(frame_index, value_index);
3733           slot->value_ = object;
3734           // On 32-bit architectures, there is an extra slot there because
3735           // the escape analysis calculates the number of slots as
3736           // object-size/pointer-size. To account for this, we read out
3737           // any extra slots.
3738           for (int i = 0; i < length - 2; i++) {
3739             MaterializeAt(frame_index, value_index);
3740           }
3741           return object;
3742         }
3743         case JS_OBJECT_TYPE:
3744         case JS_ERROR_TYPE:
3745         case JS_ARGUMENTS_TYPE: {
3746           Handle<JSObject> object =
3747               isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED);
3748           slot->value_ = object;
3749           Handle<Object> properties = MaterializeAt(frame_index, value_index);
3750           Handle<Object> elements = MaterializeAt(frame_index, value_index);
3751           object->set_properties(FixedArray::cast(*properties));
3752           object->set_elements(FixedArrayBase::cast(*elements));
3753           for (int i = 0; i < length - 3; ++i) {
3754             Handle<Object> value = MaterializeAt(frame_index, value_index);
3755             FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
3756             object->FastPropertyAtPut(index, *value);
3757           }
3758           return object;
3759         }
3760         case JS_ARRAY_TYPE: {
3761           Handle<JSArray> object =
3762               isolate_->factory()->NewJSArray(0, map->elements_kind());
3763           slot->value_ = object;
3764           Handle<Object> properties = MaterializeAt(frame_index, value_index);
3765           Handle<Object> elements = MaterializeAt(frame_index, value_index);
3766           Handle<Object> length = MaterializeAt(frame_index, value_index);
3767           object->set_properties(FixedArray::cast(*properties));
3768           object->set_elements(FixedArrayBase::cast(*elements));
3769           object->set_length(*length);
3770           return object;
3771         }
3772         case JS_FUNCTION_TYPE: {
3773           Handle<JSFunction> object =
3774               isolate_->factory()->NewFunctionFromSharedFunctionInfo(
3775                   handle(isolate_->object_function()->shared()),
3776                   handle(isolate_->context()));
3777           slot->value_ = object;
3778           // We temporarily allocated a JSFunction for the {Object} function
3779           // within the current context, to break cycles in the object graph.
3780           // The correct function and context will be set below once available.
3781           Handle<Object> properties = MaterializeAt(frame_index, value_index);
3782           Handle<Object> elements = MaterializeAt(frame_index, value_index);
3783           Handle<Object> prototype = MaterializeAt(frame_index, value_index);
3784           Handle<Object> shared = MaterializeAt(frame_index, value_index);
3785           Handle<Object> context = MaterializeAt(frame_index, value_index);
3786           Handle<Object> literals = MaterializeAt(frame_index, value_index);
3787           Handle<Object> entry = MaterializeAt(frame_index, value_index);
3788           Handle<Object> next_link = MaterializeAt(frame_index, value_index);
3789           object->ReplaceCode(*isolate_->builtins()->CompileLazy());
3790           object->set_map(*map);
3791           object->set_properties(FixedArray::cast(*properties));
3792           object->set_elements(FixedArrayBase::cast(*elements));
3793           object->set_prototype_or_initial_map(*prototype);
3794           object->set_shared(SharedFunctionInfo::cast(*shared));
3795           object->set_context(Context::cast(*context));
3796           object->set_literals(LiteralsArray::cast(*literals));
3797           CHECK(entry->IsNumber());  // Entry to compile lazy stub.
3798           CHECK(next_link->IsUndefined(isolate_));
3799           return object;
3800         }
3801         case FIXED_ARRAY_TYPE: {
3802           Handle<Object> lengthObject = MaterializeAt(frame_index, value_index);
3803           int32_t length = 0;
3804           CHECK(lengthObject->ToInt32(&length));
3805           Handle<FixedArray> object =
3806               isolate_->factory()->NewFixedArray(length);
3807           // We need to set the map, because the fixed array we are
3808           // materializing could be a context or an arguments object,
3809           // in which case we must retain that information.
3810           object->set_map(*map);
3811           slot->value_ = object;
3812           for (int i = 0; i < length; ++i) {
3813             Handle<Object> value = MaterializeAt(frame_index, value_index);
3814             object->set(i, *value);
3815           }
3816           return object;
3817         }
3818         case FIXED_DOUBLE_ARRAY_TYPE: {
3819           DCHECK_EQ(*map, isolate_->heap()->fixed_double_array_map());
3820           Handle<Object> lengthObject = MaterializeAt(frame_index, value_index);
3821           int32_t length = 0;
3822           CHECK(lengthObject->ToInt32(&length));
3823           Handle<FixedArrayBase> object =
3824               isolate_->factory()->NewFixedDoubleArray(length);
3825           slot->value_ = object;
3826           if (length > 0) {
3827             Handle<FixedDoubleArray> double_array =
3828                 Handle<FixedDoubleArray>::cast(object);
3829             for (int i = 0; i < length; ++i) {
3830               Handle<Object> value = MaterializeAt(frame_index, value_index);
3831               CHECK(value->IsNumber());
3832               double_array->set(i, value->Number());
3833             }
3834           }
3835           return object;
3836         }
3837         default:
3838           PrintF(stderr, "[couldn't handle instance type %d]\n",
3839                  map->instance_type());
3840           FATAL("unreachable");
3841           return Handle<Object>::null();
3842       }
3843       UNREACHABLE();
3844       break;
3845     }
3846 
3847     case TranslatedValue::kDuplicatedObject: {
3848       int object_index = slot->object_index();
3849       TranslatedState::ObjectPosition pos = object_positions_[object_index];
3850 
3851       // Make sure the duplicate is refering to a previous object.
3852       CHECK(pos.frame_index_ < frame_index ||
3853             (pos.frame_index_ == frame_index &&
3854              pos.value_index_ < *value_index - 1));
3855 
3856       Handle<Object> object =
3857           frames_[pos.frame_index_].values_[pos.value_index_].GetValue();
3858 
3859       // The object should have a (non-sentinel) value.
3860       CHECK(!object.is_null() &&
3861             !object.is_identical_to(isolate_->factory()->arguments_marker()));
3862 
3863       slot->value_ = object;
3864       return object;
3865     }
3866 
3867     case TranslatedValue::kInvalid:
3868       UNREACHABLE();
3869       break;
3870   }
3871 
3872   FATAL("We should never get here - unexpected deopt slot kind.");
3873   return Handle<Object>::null();
3874 }
3875 
3876 
MaterializeObjectAt(int object_index)3877 Handle<Object> TranslatedState::MaterializeObjectAt(int object_index) {
3878   TranslatedState::ObjectPosition pos = object_positions_[object_index];
3879   return MaterializeAt(pos.frame_index_, &(pos.value_index_));
3880 }
3881 
3882 
GetAdaptedArguments(Handle<JSObject> * result,int frame_index)3883 bool TranslatedState::GetAdaptedArguments(Handle<JSObject>* result,
3884                                           int frame_index) {
3885   if (frame_index == 0) {
3886     // Top level frame -> we need to go to the parent frame on the stack.
3887     if (!has_adapted_arguments_) return false;
3888 
3889     // This is top level frame, so we need to go to the stack to get
3890     // this function's argument. (Note that this relies on not inlining
3891     // recursive functions!)
3892     Handle<JSFunction> function =
3893         Handle<JSFunction>::cast(frames_[frame_index].front().GetValue());
3894     *result = Accessors::FunctionGetArguments(function);
3895     return true;
3896   } else {
3897     TranslatedFrame* previous_frame = &(frames_[frame_index]);
3898     if (previous_frame->kind() != TranslatedFrame::kArgumentsAdaptor) {
3899       return false;
3900     }
3901     // We get the adapted arguments from the parent translation.
3902     int length = previous_frame->height();
3903     Handle<JSFunction> function =
3904         Handle<JSFunction>::cast(previous_frame->front().GetValue());
3905     Handle<JSObject> arguments =
3906         isolate_->factory()->NewArgumentsObject(function, length);
3907     Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
3908     arguments->set_elements(*array);
3909     TranslatedFrame::iterator arg_iterator = previous_frame->begin();
3910     arg_iterator++;  // Skip function.
3911     for (int i = 0; i < length; ++i) {
3912       Handle<Object> value = arg_iterator->GetValue();
3913       array->set(i, *value);
3914       arg_iterator++;
3915     }
3916     CHECK(arg_iterator == previous_frame->end());
3917     *result = arguments;
3918     return true;
3919   }
3920 }
3921 
3922 
GetArgumentsInfoFromJSFrameIndex(int jsframe_index,int * args_count)3923 TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
3924     int jsframe_index, int* args_count) {
3925   for (size_t i = 0; i < frames_.size(); i++) {
3926     if (frames_[i].kind() == TranslatedFrame::kFunction ||
3927         frames_[i].kind() == TranslatedFrame::kInterpretedFunction) {
3928       if (jsframe_index > 0) {
3929         jsframe_index--;
3930       } else {
3931         // We have the JS function frame, now check if it has arguments adaptor.
3932         if (i > 0 &&
3933             frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
3934           *args_count = frames_[i - 1].height();
3935           return &(frames_[i - 1]);
3936         }
3937         *args_count =
3938             frames_[i].shared_info()->internal_formal_parameter_count() + 1;
3939         return &(frames_[i]);
3940       }
3941     }
3942   }
3943   return nullptr;
3944 }
3945 
3946 
StoreMaterializedValuesAndDeopt()3947 void TranslatedState::StoreMaterializedValuesAndDeopt() {
3948   MaterializedObjectStore* materialized_store =
3949       isolate_->materialized_object_store();
3950   Handle<FixedArray> previously_materialized_objects =
3951       materialized_store->Get(stack_frame_pointer_);
3952 
3953   Handle<Object> marker = isolate_->factory()->arguments_marker();
3954 
3955   int length = static_cast<int>(object_positions_.size());
3956   bool new_store = false;
3957   if (previously_materialized_objects.is_null()) {
3958     previously_materialized_objects =
3959         isolate_->factory()->NewFixedArray(length);
3960     for (int i = 0; i < length; i++) {
3961       previously_materialized_objects->set(i, *marker);
3962     }
3963     new_store = true;
3964   }
3965 
3966   CHECK_EQ(length, previously_materialized_objects->length());
3967 
3968   bool value_changed = false;
3969   for (int i = 0; i < length; i++) {
3970     TranslatedState::ObjectPosition pos = object_positions_[i];
3971     TranslatedValue* value_info =
3972         &(frames_[pos.frame_index_].values_[pos.value_index_]);
3973 
3974     CHECK(value_info->IsMaterializedObject());
3975 
3976     Handle<Object> value(value_info->GetRawValue(), isolate_);
3977 
3978     if (!value.is_identical_to(marker)) {
3979       if (previously_materialized_objects->get(i) == *marker) {
3980         previously_materialized_objects->set(i, *value);
3981         value_changed = true;
3982       } else {
3983         CHECK(previously_materialized_objects->get(i) == *value);
3984       }
3985     }
3986   }
3987   if (new_store && value_changed) {
3988     materialized_store->Set(stack_frame_pointer_,
3989                             previously_materialized_objects);
3990     CHECK(frames_[0].kind() == TranslatedFrame::kFunction ||
3991           frames_[0].kind() == TranslatedFrame::kInterpretedFunction ||
3992           frames_[0].kind() == TranslatedFrame::kTailCallerFunction);
3993     Object* const function = frames_[0].front().GetRawValue();
3994     Deoptimizer::DeoptimizeFunction(JSFunction::cast(function));
3995   }
3996 }
3997 
3998 
UpdateFromPreviouslyMaterializedObjects()3999 void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
4000   MaterializedObjectStore* materialized_store =
4001       isolate_->materialized_object_store();
4002   Handle<FixedArray> previously_materialized_objects =
4003       materialized_store->Get(stack_frame_pointer_);
4004 
4005   // If we have no previously materialized objects, there is nothing to do.
4006   if (previously_materialized_objects.is_null()) return;
4007 
4008   Handle<Object> marker = isolate_->factory()->arguments_marker();
4009 
4010   int length = static_cast<int>(object_positions_.size());
4011   CHECK_EQ(length, previously_materialized_objects->length());
4012 
4013   for (int i = 0; i < length; i++) {
4014     // For a previously materialized objects, inject their value into the
4015     // translated values.
4016     if (previously_materialized_objects->get(i) != *marker) {
4017       TranslatedState::ObjectPosition pos = object_positions_[i];
4018       TranslatedValue* value_info =
4019           &(frames_[pos.frame_index_].values_[pos.value_index_]);
4020       CHECK(value_info->IsMaterializedObject());
4021 
4022       value_info->value_ =
4023           Handle<Object>(previously_materialized_objects->get(i), isolate_);
4024     }
4025   }
4026 }
4027 
4028 }  // namespace internal
4029 }  // namespace v8
4030