• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/ast/scopes.h"
6 
7 #include "src/accessors.h"
8 #include "src/ast/scopeinfo.h"
9 #include "src/bootstrapper.h"
10 #include "src/messages.h"
11 #include "src/parsing/parser.h"  // for ParseInfo
12 
13 namespace v8 {
14 namespace internal {
15 
16 // ----------------------------------------------------------------------------
17 // Implementation of LocalsMap
18 //
19 // Note: We are storing the handle locations as key values in the hash map.
20 //       When inserting a new variable via Declare(), we rely on the fact that
21 //       the handle location remains alive for the duration of that variable
22 //       use. Because a Variable holding a handle with the same location exists
23 //       this is ensured.
24 
VariableMap(Zone * zone)25 VariableMap::VariableMap(Zone* zone)
26     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
27       zone_(zone) {}
~VariableMap()28 VariableMap::~VariableMap() {}
29 
Declare(Scope * scope,const AstRawString * name,VariableMode mode,Variable::Kind kind,InitializationFlag initialization_flag,MaybeAssignedFlag maybe_assigned_flag)30 Variable* VariableMap::Declare(Scope* scope, const AstRawString* name,
31                                VariableMode mode, Variable::Kind kind,
32                                InitializationFlag initialization_flag,
33                                MaybeAssignedFlag maybe_assigned_flag) {
34   // AstRawStrings are unambiguous, i.e., the same string is always represented
35   // by the same AstRawString*.
36   // FIXME(marja): fix the type of Lookup.
37   Entry* p =
38       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
39                                   ZoneAllocationPolicy(zone()));
40   if (p->value == NULL) {
41     // The variable has not been declared yet -> insert it.
42     DCHECK(p->key == name);
43     p->value = new (zone()) Variable(scope, name, mode, kind,
44                                      initialization_flag, maybe_assigned_flag);
45   }
46   return reinterpret_cast<Variable*>(p->value);
47 }
48 
49 
Lookup(const AstRawString * name)50 Variable* VariableMap::Lookup(const AstRawString* name) {
51   Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash());
52   if (p != NULL) {
53     DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
54     DCHECK(p->value != NULL);
55     return reinterpret_cast<Variable*>(p->value);
56   }
57   return NULL;
58 }
59 
60 
SloppyBlockFunctionMap(Zone * zone)61 SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone)
62     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
63       zone_(zone) {}
~SloppyBlockFunctionMap()64 SloppyBlockFunctionMap::~SloppyBlockFunctionMap() {}
65 
66 
Declare(const AstRawString * name,SloppyBlockFunctionStatement * stmt)67 void SloppyBlockFunctionMap::Declare(const AstRawString* name,
68                                      SloppyBlockFunctionStatement* stmt) {
69   // AstRawStrings are unambiguous, i.e., the same string is always represented
70   // by the same AstRawString*.
71   Entry* p =
72       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
73                                   ZoneAllocationPolicy(zone_));
74   if (p->value == nullptr) {
75     p->value = new (zone_->New(sizeof(Vector))) Vector(zone_);
76   }
77   Vector* delegates = static_cast<Vector*>(p->value);
78   delegates->push_back(stmt);
79 }
80 
81 
82 // ----------------------------------------------------------------------------
83 // Implementation of Scope
84 
Scope(Zone * zone,Scope * outer_scope,ScopeType scope_type,AstValueFactory * ast_value_factory,FunctionKind function_kind)85 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
86              AstValueFactory* ast_value_factory, FunctionKind function_kind)
87     : inner_scopes_(4, zone),
88       variables_(zone),
89       temps_(4, zone),
90       params_(4, zone),
91       unresolved_(16, zone),
92       decls_(4, zone),
93       module_descriptor_(
94           scope_type == MODULE_SCOPE ? ModuleDescriptor::New(zone) : NULL),
95       sloppy_block_function_map_(zone),
96       already_resolved_(false),
97       ast_value_factory_(ast_value_factory),
98       zone_(zone) {
99   SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null(),
100               function_kind);
101   // The outermost scope must be a script scope.
102   DCHECK(scope_type == SCRIPT_SCOPE || outer_scope != NULL);
103 }
104 
Scope(Zone * zone,Scope * inner_scope,ScopeType scope_type,Handle<ScopeInfo> scope_info,AstValueFactory * value_factory)105 Scope::Scope(Zone* zone, Scope* inner_scope, ScopeType scope_type,
106              Handle<ScopeInfo> scope_info, AstValueFactory* value_factory)
107     : inner_scopes_(4, zone),
108       variables_(zone),
109       temps_(4, zone),
110       params_(4, zone),
111       unresolved_(16, zone),
112       decls_(4, zone),
113       module_descriptor_(NULL),
114       sloppy_block_function_map_(zone),
115       already_resolved_(true),
116       ast_value_factory_(value_factory),
117       zone_(zone) {
118   SetDefaults(scope_type, NULL, scope_info);
119   if (!scope_info.is_null()) {
120     num_heap_slots_ = scope_info_->ContextLength();
121   }
122   // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
123   num_heap_slots_ = Max(num_heap_slots_,
124                         static_cast<int>(Context::MIN_CONTEXT_SLOTS));
125   AddInnerScope(inner_scope);
126 }
127 
Scope(Zone * zone,Scope * inner_scope,const AstRawString * catch_variable_name,AstValueFactory * value_factory)128 Scope::Scope(Zone* zone, Scope* inner_scope,
129              const AstRawString* catch_variable_name,
130              AstValueFactory* value_factory)
131     : inner_scopes_(1, zone),
132       variables_(zone),
133       temps_(0, zone),
134       params_(0, zone),
135       unresolved_(0, zone),
136       decls_(0, zone),
137       module_descriptor_(NULL),
138       sloppy_block_function_map_(zone),
139       already_resolved_(true),
140       ast_value_factory_(value_factory),
141       zone_(zone) {
142   SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
143   AddInnerScope(inner_scope);
144   ++num_var_or_const_;
145   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
146   Variable* variable = variables_.Declare(this,
147                                           catch_variable_name,
148                                           VAR,
149                                           Variable::NORMAL,
150                                           kCreatedInitialized);
151   AllocateHeapSlot(variable);
152 }
153 
154 
SetDefaults(ScopeType scope_type,Scope * outer_scope,Handle<ScopeInfo> scope_info,FunctionKind function_kind)155 void Scope::SetDefaults(ScopeType scope_type, Scope* outer_scope,
156                         Handle<ScopeInfo> scope_info,
157                         FunctionKind function_kind) {
158   outer_scope_ = outer_scope;
159   scope_type_ = scope_type;
160   is_declaration_scope_ =
161       is_eval_scope() || is_function_scope() ||
162       is_module_scope() || is_script_scope();
163   function_kind_ = function_kind;
164   scope_name_ = ast_value_factory_->empty_string();
165   dynamics_ = nullptr;
166   receiver_ = nullptr;
167   new_target_ = nullptr;
168   function_ = nullptr;
169   arguments_ = nullptr;
170   this_function_ = nullptr;
171   scope_inside_with_ = false;
172   scope_calls_eval_ = false;
173   scope_uses_arguments_ = false;
174   scope_uses_super_property_ = false;
175   asm_module_ = false;
176   asm_function_ = outer_scope != NULL && outer_scope->asm_module_;
177   // Inherit the language mode from the parent scope.
178   language_mode_ =
179       is_module_scope()
180           ? STRICT
181           : (outer_scope != NULL ? outer_scope->language_mode_ : SLOPPY);
182   outer_scope_calls_sloppy_eval_ = false;
183   inner_scope_calls_eval_ = false;
184   scope_nonlinear_ = false;
185   force_eager_compilation_ = false;
186   force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
187       ? outer_scope->has_forced_context_allocation() : false;
188   num_var_or_const_ = 0;
189   num_stack_slots_ = 0;
190   num_heap_slots_ = 0;
191   num_global_slots_ = 0;
192   arity_ = 0;
193   has_simple_parameters_ = true;
194   rest_parameter_ = NULL;
195   rest_index_ = -1;
196   scope_info_ = scope_info;
197   start_position_ = RelocInfo::kNoPosition;
198   end_position_ = RelocInfo::kNoPosition;
199   is_hidden_ = false;
200   if (!scope_info.is_null()) {
201     scope_calls_eval_ = scope_info->CallsEval();
202     language_mode_ = scope_info->language_mode();
203     is_declaration_scope_ = scope_info->is_declaration_scope();
204     function_kind_ = scope_info->function_kind();
205   }
206 }
207 
208 
DeserializeScopeChain(Isolate * isolate,Zone * zone,Context * context,Scope * script_scope)209 Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
210                                     Context* context, Scope* script_scope) {
211   // Reconstruct the outer scope chain from a closure's context chain.
212   Scope* current_scope = NULL;
213   Scope* innermost_scope = NULL;
214   while (!context->IsNativeContext()) {
215     if (context->IsWithContext() || context->IsDebugEvaluateContext()) {
216       // For scope analysis, debug-evaluate is equivalent to a with scope.
217       Scope* with_scope = new (zone)
218           Scope(zone, current_scope, WITH_SCOPE, Handle<ScopeInfo>::null(),
219                 script_scope->ast_value_factory_);
220       current_scope = with_scope;
221       // All the inner scopes are inside a with.
222       for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
223         s->scope_inside_with_ = true;
224       }
225     } else if (context->IsScriptContext()) {
226       ScopeInfo* scope_info = context->scope_info();
227       current_scope = new (zone) Scope(zone, current_scope, SCRIPT_SCOPE,
228                                        Handle<ScopeInfo>(scope_info),
229                                        script_scope->ast_value_factory_);
230     } else if (context->IsModuleContext()) {
231       ScopeInfo* scope_info = context->module()->scope_info();
232       current_scope = new (zone) Scope(zone, current_scope, MODULE_SCOPE,
233                                        Handle<ScopeInfo>(scope_info),
234                                        script_scope->ast_value_factory_);
235     } else if (context->IsFunctionContext()) {
236       ScopeInfo* scope_info = context->closure()->shared()->scope_info();
237       current_scope = new (zone) Scope(zone, current_scope, FUNCTION_SCOPE,
238                                        Handle<ScopeInfo>(scope_info),
239                                        script_scope->ast_value_factory_);
240       if (scope_info->IsAsmFunction()) current_scope->asm_function_ = true;
241       if (scope_info->IsAsmModule()) current_scope->asm_module_ = true;
242     } else if (context->IsBlockContext()) {
243       ScopeInfo* scope_info = context->scope_info();
244       current_scope = new (zone)
245           Scope(zone, current_scope, BLOCK_SCOPE, Handle<ScopeInfo>(scope_info),
246                 script_scope->ast_value_factory_);
247     } else {
248       DCHECK(context->IsCatchContext());
249       String* name = context->catch_name();
250       current_scope = new (zone) Scope(
251           zone, current_scope,
252           script_scope->ast_value_factory_->GetString(Handle<String>(name)),
253           script_scope->ast_value_factory_);
254     }
255     if (innermost_scope == NULL) innermost_scope = current_scope;
256     context = context->previous();
257   }
258 
259   script_scope->AddInnerScope(current_scope);
260   script_scope->PropagateScopeInfo(false);
261   return (innermost_scope == NULL) ? script_scope : innermost_scope;
262 }
263 
264 
Analyze(ParseInfo * info)265 bool Scope::Analyze(ParseInfo* info) {
266   DCHECK(info->literal() != NULL);
267   DCHECK(info->scope() == NULL);
268   Scope* scope = info->literal()->scope();
269   Scope* top = scope;
270 
271   // Traverse the scope tree up to the first unresolved scope or the global
272   // scope and start scope resolution and variable allocation from that scope.
273   while (!top->is_script_scope() &&
274          !top->outer_scope()->already_resolved()) {
275     top = top->outer_scope();
276   }
277 
278   // Allocate the variables.
279   {
280     AstNodeFactory ast_node_factory(info->ast_value_factory());
281     if (!top->AllocateVariables(info, &ast_node_factory)) {
282       DCHECK(top->pending_error_handler_.has_pending_error());
283       top->pending_error_handler_.ThrowPendingError(info->isolate(),
284                                                     info->script());
285       return false;
286     }
287   }
288 
289 #ifdef DEBUG
290   if (info->script_is_native() ? FLAG_print_builtin_scopes
291                                : FLAG_print_scopes) {
292     scope->Print();
293   }
294   scope->CheckScopePositions();
295 #endif
296 
297   info->set_scope(scope);
298   return true;
299 }
300 
301 
Initialize()302 void Scope::Initialize() {
303   DCHECK(!already_resolved());
304 
305   // Add this scope as a new inner scope of the outer scope.
306   if (outer_scope_ != NULL) {
307     outer_scope_->inner_scopes_.Add(this, zone());
308     scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
309   } else {
310     scope_inside_with_ = is_with_scope();
311   }
312 
313   // Declare convenience variables and the receiver.
314   if (is_declaration_scope() && has_this_declaration()) {
315     bool subclass_constructor = IsSubclassConstructor(function_kind_);
316     Variable* var = variables_.Declare(
317         this, ast_value_factory_->this_string(),
318         subclass_constructor ? CONST : VAR, Variable::THIS,
319         subclass_constructor ? kNeedsInitialization : kCreatedInitialized);
320     receiver_ = var;
321   }
322 
323   if (is_function_scope() && !is_arrow_scope()) {
324     // Declare 'arguments' variable which exists in all non arrow functions.
325     // Note that it might never be accessed, in which case it won't be
326     // allocated during variable allocation.
327     variables_.Declare(this, ast_value_factory_->arguments_string(), VAR,
328                        Variable::ARGUMENTS, kCreatedInitialized);
329 
330     variables_.Declare(this, ast_value_factory_->new_target_string(), CONST,
331                        Variable::NORMAL, kCreatedInitialized);
332 
333     if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
334         IsAccessorFunction(function_kind_)) {
335       variables_.Declare(this, ast_value_factory_->this_function_string(),
336                          CONST, Variable::NORMAL, kCreatedInitialized);
337     }
338   }
339 }
340 
341 
FinalizeBlockScope()342 Scope* Scope::FinalizeBlockScope() {
343   DCHECK(is_block_scope());
344   DCHECK(temps_.is_empty());
345   DCHECK(params_.is_empty());
346 
347   if (num_var_or_const() > 0 ||
348       (is_declaration_scope() && calls_sloppy_eval())) {
349     return this;
350   }
351 
352   // Remove this scope from outer scope.
353   outer_scope()->RemoveInnerScope(this);
354 
355   // Reparent inner scopes.
356   for (int i = 0; i < inner_scopes_.length(); i++) {
357     outer_scope()->AddInnerScope(inner_scopes_[i]);
358   }
359 
360   // Move unresolved variables
361   for (int i = 0; i < unresolved_.length(); i++) {
362     outer_scope()->unresolved_.Add(unresolved_[i], zone());
363   }
364 
365   PropagateUsageFlagsToScope(outer_scope_);
366 
367   return NULL;
368 }
369 
370 
ReplaceOuterScope(Scope * outer)371 void Scope::ReplaceOuterScope(Scope* outer) {
372   DCHECK_NOT_NULL(outer);
373   DCHECK_NOT_NULL(outer_scope_);
374   DCHECK(!already_resolved());
375   DCHECK(!outer->already_resolved());
376   DCHECK(!outer_scope_->already_resolved());
377   outer_scope_->RemoveInnerScope(this);
378   outer->AddInnerScope(this);
379   outer_scope_ = outer;
380 }
381 
382 
PropagateUsageFlagsToScope(Scope * other)383 void Scope::PropagateUsageFlagsToScope(Scope* other) {
384   DCHECK_NOT_NULL(other);
385   DCHECK(!already_resolved());
386   DCHECK(!other->already_resolved());
387   if (uses_arguments()) other->RecordArgumentsUsage();
388   if (uses_super_property()) other->RecordSuperPropertyUsage();
389   if (calls_eval()) other->RecordEvalCall();
390 }
391 
392 
LookupLocal(const AstRawString * name)393 Variable* Scope::LookupLocal(const AstRawString* name) {
394   Variable* result = variables_.Lookup(name);
395   if (result != NULL || scope_info_.is_null()) {
396     return result;
397   }
398   Handle<String> name_handle = name->string();
399   // The Scope is backed up by ScopeInfo. This means it cannot operate in a
400   // heap-independent mode, and all strings must be internalized immediately. So
401   // it's ok to get the Handle<String> here.
402   // If we have a serialized scope info, we might find the variable there.
403   // There should be no local slot with the given name.
404   DCHECK(scope_info_->StackSlotIndex(*name_handle) < 0 || is_block_scope());
405 
406   // Check context slot lookup.
407   VariableMode mode;
408   VariableLocation location = VariableLocation::CONTEXT;
409   InitializationFlag init_flag;
410   MaybeAssignedFlag maybe_assigned_flag;
411   int index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
412                                           &init_flag, &maybe_assigned_flag);
413   if (index < 0) {
414     location = VariableLocation::GLOBAL;
415     index = ScopeInfo::ContextGlobalSlotIndex(scope_info_, name_handle, &mode,
416                                               &init_flag, &maybe_assigned_flag);
417   }
418   if (index < 0) {
419     // Check parameters.
420     index = scope_info_->ParameterIndex(*name_handle);
421     if (index < 0) return NULL;
422 
423     mode = DYNAMIC;
424     location = VariableLocation::LOOKUP;
425     init_flag = kCreatedInitialized;
426     // Be conservative and flag parameters as maybe assigned. Better information
427     // would require ScopeInfo to serialize the maybe_assigned bit also for
428     // parameters.
429     maybe_assigned_flag = kMaybeAssigned;
430   } else {
431     DCHECK(location != VariableLocation::GLOBAL ||
432            (is_script_scope() && IsDeclaredVariableMode(mode) &&
433             !IsLexicalVariableMode(mode)));
434   }
435 
436   Variable::Kind kind = Variable::NORMAL;
437   if (location == VariableLocation::CONTEXT &&
438       index == scope_info_->ReceiverContextSlotIndex()) {
439     kind = Variable::THIS;
440   }
441   // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and
442   // ARGUMENTS bindings as their corresponding Variable::Kind.
443 
444   Variable* var = variables_.Declare(this, name, mode, kind, init_flag,
445                                      maybe_assigned_flag);
446   var->AllocateTo(location, index);
447   return var;
448 }
449 
450 
LookupFunctionVar(const AstRawString * name,AstNodeFactory * factory)451 Variable* Scope::LookupFunctionVar(const AstRawString* name,
452                                    AstNodeFactory* factory) {
453   if (function_ != NULL && function_->proxy()->raw_name() == name) {
454     return function_->proxy()->var();
455   } else if (!scope_info_.is_null()) {
456     // If we are backed by a scope info, try to lookup the variable there.
457     VariableMode mode;
458     int index = scope_info_->FunctionContextSlotIndex(*(name->string()), &mode);
459     if (index < 0) return NULL;
460     Variable* var = new (zone())
461         Variable(this, name, mode, Variable::NORMAL, kCreatedInitialized);
462     VariableProxy* proxy = factory->NewVariableProxy(var);
463     VariableDeclaration* declaration = factory->NewVariableDeclaration(
464         proxy, mode, this, RelocInfo::kNoPosition);
465     DeclareFunctionVar(declaration);
466     var->AllocateTo(VariableLocation::CONTEXT, index);
467     return var;
468   } else {
469     return NULL;
470   }
471 }
472 
473 
Lookup(const AstRawString * name)474 Variable* Scope::Lookup(const AstRawString* name) {
475   for (Scope* scope = this;
476        scope != NULL;
477        scope = scope->outer_scope()) {
478     Variable* var = scope->LookupLocal(name);
479     if (var != NULL) return var;
480   }
481   return NULL;
482 }
483 
484 
DeclareParameter(const AstRawString * name,VariableMode mode,bool is_optional,bool is_rest,bool * is_duplicate)485 Variable* Scope::DeclareParameter(
486     const AstRawString* name, VariableMode mode,
487     bool is_optional, bool is_rest, bool* is_duplicate) {
488   DCHECK(!already_resolved());
489   DCHECK(is_function_scope());
490   DCHECK(!is_optional || !is_rest);
491   Variable* var;
492   if (mode == TEMPORARY) {
493     var = NewTemporary(name);
494   } else {
495     var = variables_.Declare(this, name, mode, Variable::NORMAL,
496                              kCreatedInitialized);
497     // TODO(wingo): Avoid O(n^2) check.
498     *is_duplicate = IsDeclaredParameter(name);
499   }
500   if (!is_optional && !is_rest && arity_ == params_.length()) {
501     ++arity_;
502   }
503   if (is_rest) {
504     DCHECK_NULL(rest_parameter_);
505     rest_parameter_ = var;
506     rest_index_ = num_parameters();
507   }
508   params_.Add(var, zone());
509   return var;
510 }
511 
DeclareLocal(const AstRawString * name,VariableMode mode,InitializationFlag init_flag,Variable::Kind kind,MaybeAssignedFlag maybe_assigned_flag)512 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
513                               InitializationFlag init_flag, Variable::Kind kind,
514                               MaybeAssignedFlag maybe_assigned_flag) {
515   DCHECK(!already_resolved());
516   // This function handles VAR, LET, and CONST modes.  DYNAMIC variables are
517   // introduced during variable allocation, and TEMPORARY variables are
518   // allocated via NewTemporary().
519   DCHECK(IsDeclaredVariableMode(mode));
520   ++num_var_or_const_;
521   return variables_.Declare(this, name, mode, kind, init_flag,
522                             maybe_assigned_flag);
523 }
524 
525 
DeclareDynamicGlobal(const AstRawString * name)526 Variable* Scope::DeclareDynamicGlobal(const AstRawString* name) {
527   DCHECK(is_script_scope());
528   return variables_.Declare(this,
529                             name,
530                             DYNAMIC_GLOBAL,
531                             Variable::NORMAL,
532                             kCreatedInitialized);
533 }
534 
535 
RemoveUnresolved(VariableProxy * var)536 bool Scope::RemoveUnresolved(VariableProxy* var) {
537   // Most likely (always?) any variable we want to remove
538   // was just added before, so we search backwards.
539   for (int i = unresolved_.length(); i-- > 0;) {
540     if (unresolved_[i] == var) {
541       unresolved_.Remove(i);
542       return true;
543     }
544   }
545   return false;
546 }
547 
548 
NewTemporary(const AstRawString * name)549 Variable* Scope::NewTemporary(const AstRawString* name) {
550   DCHECK(!already_resolved());
551   Scope* scope = this->ClosureScope();
552   Variable* var = new(zone()) Variable(scope,
553                                        name,
554                                        TEMPORARY,
555                                        Variable::NORMAL,
556                                        kCreatedInitialized);
557   scope->AddTemporary(var);
558   return var;
559 }
560 
RemoveTemporary(Variable * var)561 int Scope::RemoveTemporary(Variable* var) {
562   DCHECK_NOT_NULL(var);
563   // Temporaries are only placed in ClosureScopes.
564   DCHECK_EQ(ClosureScope(), this);
565   DCHECK_EQ(var->scope()->ClosureScope(), var->scope());
566   // If the temporary is not here, return quickly.
567   if (var->scope() != this) return -1;
568   // Most likely (always?) any temporary variable we want to remove
569   // was just added before, so we search backwards.
570   for (int i = temps_.length(); i-- > 0;) {
571     if (temps_[i] == var) {
572       // Don't shrink temps_, as callers of this method expect
573       // the returned indices to be unique per-scope.
574       temps_[i] = nullptr;
575       return i;
576     }
577   }
578   return -1;
579 }
580 
581 
AddDeclaration(Declaration * declaration)582 void Scope::AddDeclaration(Declaration* declaration) {
583   decls_.Add(declaration, zone());
584 }
585 
586 
CheckConflictingVarDeclarations()587 Declaration* Scope::CheckConflictingVarDeclarations() {
588   int length = decls_.length();
589   for (int i = 0; i < length; i++) {
590     Declaration* decl = decls_[i];
591     // We don't create a separate scope to hold the function name of a function
592     // expression, so we have to make sure not to consider it when checking for
593     // conflicts (since it's conceptually "outside" the declaration scope).
594     if (is_function_scope() && decl == function()) continue;
595     if (IsLexicalVariableMode(decl->mode()) && !is_block_scope()) continue;
596     const AstRawString* name = decl->proxy()->raw_name();
597 
598     // Iterate through all scopes until and including the declaration scope.
599     Scope* previous = NULL;
600     Scope* current = decl->scope();
601     // Lexical vs lexical conflicts within the same scope have already been
602     // captured in Parser::Declare. The only conflicts we still need to check
603     // are lexical vs VAR, or any declarations within a declaration block scope
604     // vs lexical declarations in its surrounding (function) scope.
605     if (IsLexicalVariableMode(decl->mode())) current = current->outer_scope_;
606     do {
607       // There is a conflict if there exists a non-VAR binding.
608       Variable* other_var = current->variables_.Lookup(name);
609       if (other_var != NULL && IsLexicalVariableMode(other_var->mode())) {
610         return decl;
611       }
612       previous = current;
613       current = current->outer_scope_;
614     } while (!previous->is_declaration_scope());
615   }
616   return NULL;
617 }
618 
619 
620 class VarAndOrder {
621  public:
VarAndOrder(Variable * var,int order)622   VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
var() const623   Variable* var() const { return var_; }
order() const624   int order() const { return order_; }
Compare(const VarAndOrder * a,const VarAndOrder * b)625   static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
626     return a->order_ - b->order_;
627   }
628 
629  private:
630   Variable* var_;
631   int order_;
632 };
633 
CollectStackAndContextLocals(ZoneList<Variable * > * stack_locals,ZoneList<Variable * > * context_locals,ZoneList<Variable * > * context_globals)634 void Scope::CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
635                                          ZoneList<Variable*>* context_locals,
636                                          ZoneList<Variable*>* context_globals) {
637   DCHECK(stack_locals != NULL);
638   DCHECK(context_locals != NULL);
639   DCHECK(context_globals != NULL);
640 
641   // Collect temporaries which are always allocated on the stack, unless the
642   // context as a whole has forced context allocation.
643   for (int i = 0; i < temps_.length(); i++) {
644     Variable* var = temps_[i];
645     if (var == nullptr) continue;
646     if (var->is_used()) {
647       if (var->IsContextSlot()) {
648         DCHECK(has_forced_context_allocation());
649         context_locals->Add(var, zone());
650       } else if (var->IsStackLocal()) {
651         stack_locals->Add(var, zone());
652       } else {
653         DCHECK(var->IsParameter());
654       }
655     }
656   }
657 
658   // Collect declared local variables.
659   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
660   for (VariableMap::Entry* p = variables_.Start();
661        p != NULL;
662        p = variables_.Next(p)) {
663     Variable* var = reinterpret_cast<Variable*>(p->value);
664     if (var->is_used()) {
665       vars.Add(VarAndOrder(var, p->order), zone());
666     }
667   }
668   vars.Sort(VarAndOrder::Compare);
669   int var_count = vars.length();
670   for (int i = 0; i < var_count; i++) {
671     Variable* var = vars[i].var();
672     if (var->IsStackLocal()) {
673       stack_locals->Add(var, zone());
674     } else if (var->IsContextSlot()) {
675       context_locals->Add(var, zone());
676     } else if (var->IsGlobalSlot()) {
677       context_globals->Add(var, zone());
678     }
679   }
680 }
681 
682 
AllocateVariables(ParseInfo * info,AstNodeFactory * factory)683 bool Scope::AllocateVariables(ParseInfo* info, AstNodeFactory* factory) {
684   // 1) Propagate scope information.
685   bool outer_scope_calls_sloppy_eval = false;
686   if (outer_scope_ != NULL) {
687     outer_scope_calls_sloppy_eval =
688         outer_scope_->outer_scope_calls_sloppy_eval() |
689         outer_scope_->calls_sloppy_eval();
690   }
691   PropagateScopeInfo(outer_scope_calls_sloppy_eval);
692 
693   // 2) Resolve variables.
694   if (!ResolveVariablesRecursively(info, factory)) return false;
695 
696   // 3) Allocate variables.
697   AllocateVariablesRecursively(info->isolate());
698 
699   return true;
700 }
701 
702 
HasTrivialContext() const703 bool Scope::HasTrivialContext() const {
704   // A function scope has a trivial context if it always is the global
705   // context. We iteratively scan out the context chain to see if
706   // there is anything that makes this scope non-trivial; otherwise we
707   // return true.
708   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
709     if (scope->is_eval_scope()) return false;
710     if (scope->scope_inside_with_) return false;
711     if (scope->ContextLocalCount() > 0) return false;
712     if (scope->ContextGlobalCount() > 0) return false;
713   }
714   return true;
715 }
716 
717 
HasTrivialOuterContext() const718 bool Scope::HasTrivialOuterContext() const {
719   Scope* outer = outer_scope_;
720   if (outer == NULL) return true;
721   // Note that the outer context may be trivial in general, but the current
722   // scope may be inside a 'with' statement in which case the outer context
723   // for this scope is not trivial.
724   return !scope_inside_with_ && outer->HasTrivialContext();
725 }
726 
727 
AllowsLazyParsing() const728 bool Scope::AllowsLazyParsing() const {
729   // If we are inside a block scope, we must parse eagerly to find out how
730   // to allocate variables on the block scope. At this point, declarations may
731   // not have yet been parsed.
732   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
733     if (scope->is_block_scope()) return false;
734   }
735   return AllowsLazyCompilation();
736 }
737 
738 
AllowsLazyCompilation() const739 bool Scope::AllowsLazyCompilation() const { return !force_eager_compilation_; }
740 
741 
AllowsLazyCompilationWithoutContext() const742 bool Scope::AllowsLazyCompilationWithoutContext() const {
743   return !force_eager_compilation_ && HasTrivialOuterContext();
744 }
745 
746 
ContextChainLength(Scope * scope)747 int Scope::ContextChainLength(Scope* scope) {
748   int n = 0;
749   for (Scope* s = this; s != scope; s = s->outer_scope_) {
750     DCHECK(s != NULL);  // scope must be in the scope chain
751     if (s->NeedsContext()) n++;
752   }
753   return n;
754 }
755 
756 
MaxNestedContextChainLength()757 int Scope::MaxNestedContextChainLength() {
758   int max_context_chain_length = 0;
759   for (int i = 0; i < inner_scopes_.length(); i++) {
760     Scope* scope = inner_scopes_[i];
761     max_context_chain_length = std::max(scope->MaxNestedContextChainLength(),
762                                         max_context_chain_length);
763   }
764   if (NeedsContext()) {
765     max_context_chain_length += 1;
766   }
767   return max_context_chain_length;
768 }
769 
770 
DeclarationScope()771 Scope* Scope::DeclarationScope() {
772   Scope* scope = this;
773   while (!scope->is_declaration_scope()) {
774     scope = scope->outer_scope();
775   }
776   return scope;
777 }
778 
779 
ClosureScope()780 Scope* Scope::ClosureScope() {
781   Scope* scope = this;
782   while (!scope->is_declaration_scope() || scope->is_block_scope()) {
783     scope = scope->outer_scope();
784   }
785   return scope;
786 }
787 
788 
ReceiverScope()789 Scope* Scope::ReceiverScope() {
790   Scope* scope = this;
791   while (!scope->is_script_scope() &&
792          (!scope->is_function_scope() || scope->is_arrow_scope())) {
793     scope = scope->outer_scope();
794   }
795   return scope;
796 }
797 
798 
799 
GetScopeInfo(Isolate * isolate)800 Handle<ScopeInfo> Scope::GetScopeInfo(Isolate* isolate) {
801   if (scope_info_.is_null()) {
802     scope_info_ = ScopeInfo::Create(isolate, zone(), this);
803   }
804   return scope_info_;
805 }
806 
CollectNonLocals(Handle<StringSet> non_locals)807 Handle<StringSet> Scope::CollectNonLocals(Handle<StringSet> non_locals) {
808   // Collect non-local variables referenced in the scope.
809   // TODO(yangguo): store non-local variables explicitly if we can no longer
810   //                rely on unresolved_ to find them.
811   for (int i = 0; i < unresolved_.length(); i++) {
812     VariableProxy* proxy = unresolved_[i];
813     if (proxy->is_resolved() && proxy->var()->IsStackAllocated()) continue;
814     Handle<String> name = proxy->name();
815     non_locals = StringSet::Add(non_locals, name);
816   }
817   for (int i = 0; i < inner_scopes_.length(); i++) {
818     non_locals = inner_scopes_[i]->CollectNonLocals(non_locals);
819   }
820   return non_locals;
821 }
822 
823 
824 #ifdef DEBUG
Header(ScopeType scope_type,FunctionKind function_kind,bool is_declaration_scope)825 static const char* Header(ScopeType scope_type, FunctionKind function_kind,
826                           bool is_declaration_scope) {
827   switch (scope_type) {
828     case EVAL_SCOPE: return "eval";
829     // TODO(adamk): Should we print concise method scopes specially?
830     case FUNCTION_SCOPE:
831       if (IsGeneratorFunction(function_kind)) return "function*";
832       if (IsAsyncFunction(function_kind)) return "async function";
833       if (IsArrowFunction(function_kind)) return "arrow";
834       return "function";
835     case MODULE_SCOPE: return "module";
836     case SCRIPT_SCOPE: return "global";
837     case CATCH_SCOPE: return "catch";
838     case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
839     case WITH_SCOPE: return "with";
840   }
841   UNREACHABLE();
842   return NULL;
843 }
844 
845 
Indent(int n,const char * str)846 static void Indent(int n, const char* str) {
847   PrintF("%*s%s", n, "", str);
848 }
849 
850 
PrintName(const AstRawString * name)851 static void PrintName(const AstRawString* name) {
852   PrintF("%.*s", name->length(), name->raw_data());
853 }
854 
855 
PrintLocation(Variable * var)856 static void PrintLocation(Variable* var) {
857   switch (var->location()) {
858     case VariableLocation::UNALLOCATED:
859       break;
860     case VariableLocation::PARAMETER:
861       PrintF("parameter[%d]", var->index());
862       break;
863     case VariableLocation::LOCAL:
864       PrintF("local[%d]", var->index());
865       break;
866     case VariableLocation::CONTEXT:
867       PrintF("context[%d]", var->index());
868       break;
869     case VariableLocation::GLOBAL:
870       PrintF("global[%d]", var->index());
871       break;
872     case VariableLocation::LOOKUP:
873       PrintF("lookup");
874       break;
875   }
876 }
877 
878 
PrintVar(int indent,Variable * var)879 static void PrintVar(int indent, Variable* var) {
880   if (var->is_used() || !var->IsUnallocated()) {
881     Indent(indent, Variable::Mode2String(var->mode()));
882     PrintF(" ");
883     if (var->raw_name()->IsEmpty())
884       PrintF(".%p", reinterpret_cast<void*>(var));
885     else
886       PrintName(var->raw_name());
887     PrintF(";  // ");
888     PrintLocation(var);
889     bool comma = !var->IsUnallocated();
890     if (var->has_forced_context_allocation()) {
891       if (comma) PrintF(", ");
892       PrintF("forced context allocation");
893       comma = true;
894     }
895     if (var->maybe_assigned() == kMaybeAssigned) {
896       if (comma) PrintF(", ");
897       PrintF("maybe assigned");
898     }
899     PrintF("\n");
900   }
901 }
902 
903 
PrintMap(int indent,VariableMap * map)904 static void PrintMap(int indent, VariableMap* map) {
905   for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
906     Variable* var = reinterpret_cast<Variable*>(p->value);
907     if (var == NULL) {
908       Indent(indent, "<?>\n");
909     } else {
910       PrintVar(indent, var);
911     }
912   }
913 }
914 
915 
Print(int n)916 void Scope::Print(int n) {
917   int n0 = (n > 0 ? n : 0);
918   int n1 = n0 + 2;  // indentation
919 
920   // Print header.
921   Indent(n0, Header(scope_type_, function_kind_, is_declaration_scope()));
922   if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
923     PrintF(" ");
924     PrintName(scope_name_);
925   }
926 
927   // Print parameters, if any.
928   if (is_function_scope()) {
929     PrintF(" (");
930     for (int i = 0; i < params_.length(); i++) {
931       if (i > 0) PrintF(", ");
932       const AstRawString* name = params_[i]->raw_name();
933       if (name->IsEmpty())
934         PrintF(".%p", reinterpret_cast<void*>(params_[i]));
935       else
936         PrintName(name);
937     }
938     PrintF(")");
939   }
940 
941   PrintF(" { // (%d, %d)\n", start_position(), end_position());
942 
943   // Function name, if any (named function literals, only).
944   if (function_ != NULL) {
945     Indent(n1, "// (local) function name: ");
946     PrintName(function_->proxy()->raw_name());
947     PrintF("\n");
948   }
949 
950   // Scope info.
951   if (HasTrivialOuterContext()) {
952     Indent(n1, "// scope has trivial outer context\n");
953   }
954   if (is_strict(language_mode())) {
955     Indent(n1, "// strict mode scope\n");
956   }
957   if (asm_module_) Indent(n1, "// scope is an asm module\n");
958   if (asm_function_) Indent(n1, "// scope is an asm function\n");
959   if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
960   if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
961   if (scope_uses_arguments_) Indent(n1, "// scope uses 'arguments'\n");
962   if (scope_uses_super_property_)
963     Indent(n1, "// scope uses 'super' property\n");
964   if (outer_scope_calls_sloppy_eval_) {
965     Indent(n1, "// outer scope calls 'eval' in sloppy context\n");
966   }
967   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
968   if (num_stack_slots_ > 0) {
969     Indent(n1, "// ");
970     PrintF("%d stack slots\n", num_stack_slots_);
971   }
972   if (num_heap_slots_ > 0) {
973     Indent(n1, "// ");
974     PrintF("%d heap slots (including %d global slots)\n", num_heap_slots_,
975            num_global_slots_);
976   }
977 
978   // Print locals.
979   if (function_ != NULL) {
980     Indent(n1, "// function var:\n");
981     PrintVar(n1, function_->proxy()->var());
982   }
983 
984   if (temps_.length() > 0) {
985     bool printed_header = false;
986     for (int i = 0; i < temps_.length(); i++) {
987       if (temps_[i] != nullptr) {
988         if (!printed_header) {
989           printed_header = true;
990           Indent(n1, "// temporary vars:\n");
991         }
992         PrintVar(n1, temps_[i]);
993       }
994     }
995   }
996 
997   if (variables_.Start() != NULL) {
998     Indent(n1, "// local vars:\n");
999     PrintMap(n1, &variables_);
1000   }
1001 
1002   if (dynamics_ != NULL) {
1003     Indent(n1, "// dynamic vars:\n");
1004     PrintMap(n1, dynamics_->GetMap(DYNAMIC));
1005     PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
1006     PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
1007   }
1008 
1009   // Print inner scopes (disable by providing negative n).
1010   if (n >= 0) {
1011     for (int i = 0; i < inner_scopes_.length(); i++) {
1012       PrintF("\n");
1013       inner_scopes_[i]->Print(n1);
1014     }
1015   }
1016 
1017   Indent(n0, "}\n");
1018 }
1019 
CheckScopePositions()1020 void Scope::CheckScopePositions() {
1021   // A scope is allowed to have invalid positions if it is hidden and has no
1022   // inner scopes
1023   if (!is_hidden() && inner_scopes_.length() == 0) {
1024     CHECK_NE(RelocInfo::kNoPosition, start_position());
1025     CHECK_NE(RelocInfo::kNoPosition, end_position());
1026   }
1027   for (Scope* scope : inner_scopes_) scope->CheckScopePositions();
1028 }
1029 #endif  // DEBUG
1030 
1031 
NonLocal(const AstRawString * name,VariableMode mode)1032 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
1033   if (dynamics_ == NULL) dynamics_ = new (zone()) DynamicScopePart(zone());
1034   VariableMap* map = dynamics_->GetMap(mode);
1035   Variable* var = map->Lookup(name);
1036   if (var == NULL) {
1037     // Declare a new non-local.
1038     InitializationFlag init_flag = (mode == VAR)
1039         ? kCreatedInitialized : kNeedsInitialization;
1040     var = map->Declare(NULL,
1041                        name,
1042                        mode,
1043                        Variable::NORMAL,
1044                        init_flag);
1045     // Allocate it by giving it a dynamic lookup.
1046     var->AllocateTo(VariableLocation::LOOKUP, -1);
1047   }
1048   return var;
1049 }
1050 
1051 
LookupRecursive(VariableProxy * proxy,BindingKind * binding_kind,AstNodeFactory * factory)1052 Variable* Scope::LookupRecursive(VariableProxy* proxy,
1053                                  BindingKind* binding_kind,
1054                                  AstNodeFactory* factory) {
1055   DCHECK(binding_kind != NULL);
1056   if (already_resolved() && is_with_scope()) {
1057     // Short-cut: if the scope is deserialized from a scope info, variable
1058     // allocation is already fixed.  We can simply return with dynamic lookup.
1059     *binding_kind = DYNAMIC_LOOKUP;
1060     return NULL;
1061   }
1062 
1063   // Try to find the variable in this scope.
1064   Variable* var = LookupLocal(proxy->raw_name());
1065 
1066   // We found a variable and we are done. (Even if there is an 'eval' in
1067   // this scope which introduces the same variable again, the resulting
1068   // variable remains the same.)
1069   if (var != NULL) {
1070     *binding_kind = BOUND;
1071     return var;
1072   }
1073 
1074   // We did not find a variable locally. Check against the function variable,
1075   // if any. We can do this for all scopes, since the function variable is
1076   // only present - if at all - for function scopes.
1077   *binding_kind = UNBOUND;
1078   var = LookupFunctionVar(proxy->raw_name(), factory);
1079   if (var != NULL) {
1080     *binding_kind = BOUND;
1081   } else if (outer_scope_ != NULL) {
1082     var = outer_scope_->LookupRecursive(proxy, binding_kind, factory);
1083     if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
1084       var->ForceContextAllocation();
1085     }
1086   } else {
1087     DCHECK(is_script_scope());
1088   }
1089 
1090   // "this" can't be shadowed by "eval"-introduced bindings or by "with" scopes.
1091   // TODO(wingo): There are other variables in this category; add them.
1092   bool name_can_be_shadowed = var == nullptr || !var->is_this();
1093 
1094   if (is_with_scope() && name_can_be_shadowed) {
1095     DCHECK(!already_resolved());
1096     // The current scope is a with scope, so the variable binding can not be
1097     // statically resolved. However, note that it was necessary to do a lookup
1098     // in the outer scope anyway, because if a binding exists in an outer scope,
1099     // the associated variable has to be marked as potentially being accessed
1100     // from inside of an inner with scope (the property may not be in the 'with'
1101     // object).
1102     if (var != NULL && proxy->is_assigned()) var->set_maybe_assigned();
1103     *binding_kind = DYNAMIC_LOOKUP;
1104     return NULL;
1105   } else if (calls_sloppy_eval() && is_declaration_scope() &&
1106              !is_script_scope() && name_can_be_shadowed) {
1107     // A variable binding may have been found in an outer scope, but the current
1108     // scope makes a sloppy 'eval' call, so the found variable may not be
1109     // the correct one (the 'eval' may introduce a binding with the same name).
1110     // In that case, change the lookup result to reflect this situation.
1111     // Only scopes that can host var bindings (declaration scopes) need be
1112     // considered here (this excludes block and catch scopes), and variable
1113     // lookups at script scope are always dynamic.
1114     if (*binding_kind == BOUND) {
1115       *binding_kind = BOUND_EVAL_SHADOWED;
1116     } else if (*binding_kind == UNBOUND) {
1117       *binding_kind = UNBOUND_EVAL_SHADOWED;
1118     }
1119   }
1120   return var;
1121 }
1122 
1123 
ResolveVariable(ParseInfo * info,VariableProxy * proxy,AstNodeFactory * factory)1124 bool Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy,
1125                             AstNodeFactory* factory) {
1126   DCHECK(info->script_scope()->is_script_scope());
1127 
1128   // If the proxy is already resolved there's nothing to do
1129   // (functions and consts may be resolved by the parser).
1130   if (proxy->is_resolved()) return true;
1131 
1132   // Otherwise, try to resolve the variable.
1133   BindingKind binding_kind;
1134   Variable* var = LookupRecursive(proxy, &binding_kind, factory);
1135 
1136 #ifdef DEBUG
1137   if (info->script_is_native()) {
1138     // To avoid polluting the global object in native scripts
1139     //  - Variables must not be allocated to the global scope.
1140     CHECK_NOT_NULL(outer_scope());
1141     //  - Variables must be bound locally or unallocated.
1142     if (BOUND != binding_kind) {
1143       // The following variable name may be minified. If so, disable
1144       // minification in js2c.py for better output.
1145       Handle<String> name = proxy->raw_name()->string();
1146       V8_Fatal(__FILE__, __LINE__, "Unbound variable: '%s' in native script.",
1147                name->ToCString().get());
1148     }
1149     VariableLocation location = var->location();
1150     CHECK(location == VariableLocation::LOCAL ||
1151           location == VariableLocation::CONTEXT ||
1152           location == VariableLocation::PARAMETER ||
1153           location == VariableLocation::UNALLOCATED);
1154   }
1155 #endif
1156 
1157   switch (binding_kind) {
1158     case BOUND:
1159       break;
1160 
1161     case BOUND_EVAL_SHADOWED:
1162       // We either found a variable binding that might be shadowed by eval  or
1163       // gave up on it (e.g. by encountering a local with the same in the outer
1164       // scope which was not promoted to a context, this can happen if we use
1165       // debugger to evaluate arbitrary expressions at a break point).
1166       if (var->IsGlobalObjectProperty()) {
1167         var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
1168       } else if (var->is_dynamic()) {
1169         var = NonLocal(proxy->raw_name(), DYNAMIC);
1170       } else {
1171         Variable* invalidated = var;
1172         var = NonLocal(proxy->raw_name(), DYNAMIC_LOCAL);
1173         var->set_local_if_not_shadowed(invalidated);
1174       }
1175       break;
1176 
1177     case UNBOUND:
1178       // No binding has been found. Declare a variable on the global object.
1179       var = info->script_scope()->DeclareDynamicGlobal(proxy->raw_name());
1180       break;
1181 
1182     case UNBOUND_EVAL_SHADOWED:
1183       // No binding has been found. But some scope makes a sloppy 'eval' call.
1184       var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
1185       break;
1186 
1187     case DYNAMIC_LOOKUP:
1188       // The variable could not be resolved statically.
1189       var = NonLocal(proxy->raw_name(), DYNAMIC);
1190       break;
1191   }
1192 
1193   DCHECK(var != NULL);
1194   if (proxy->is_assigned()) var->set_maybe_assigned();
1195 
1196   proxy->BindTo(var);
1197 
1198   return true;
1199 }
1200 
1201 
ResolveVariablesRecursively(ParseInfo * info,AstNodeFactory * factory)1202 bool Scope::ResolveVariablesRecursively(ParseInfo* info,
1203                                         AstNodeFactory* factory) {
1204   DCHECK(info->script_scope()->is_script_scope());
1205 
1206   // Resolve unresolved variables for this scope.
1207   for (int i = 0; i < unresolved_.length(); i++) {
1208     if (!ResolveVariable(info, unresolved_[i], factory)) return false;
1209   }
1210 
1211   // Resolve unresolved variables for inner scopes.
1212   for (int i = 0; i < inner_scopes_.length(); i++) {
1213     if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
1214       return false;
1215   }
1216 
1217   return true;
1218 }
1219 
1220 
PropagateScopeInfo(bool outer_scope_calls_sloppy_eval)1221 void Scope::PropagateScopeInfo(bool outer_scope_calls_sloppy_eval ) {
1222   if (outer_scope_calls_sloppy_eval) {
1223     outer_scope_calls_sloppy_eval_ = true;
1224   }
1225 
1226   bool calls_sloppy_eval =
1227       this->calls_sloppy_eval() || outer_scope_calls_sloppy_eval_;
1228   for (int i = 0; i < inner_scopes_.length(); i++) {
1229     Scope* inner = inner_scopes_[i];
1230     inner->PropagateScopeInfo(calls_sloppy_eval);
1231     if (inner->scope_calls_eval_ || inner->inner_scope_calls_eval_) {
1232       inner_scope_calls_eval_ = true;
1233     }
1234     if (inner->force_eager_compilation_) {
1235       force_eager_compilation_ = true;
1236     }
1237     if (asm_module_ && inner->scope_type() == FUNCTION_SCOPE) {
1238       inner->asm_function_ = true;
1239     }
1240   }
1241 }
1242 
1243 
MustAllocate(Variable * var)1244 bool Scope::MustAllocate(Variable* var) {
1245   // Give var a read/write use if there is a chance it might be accessed
1246   // via an eval() call.  This is only possible if the variable has a
1247   // visible name.
1248   if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
1249       (var->has_forced_context_allocation() || scope_calls_eval_ ||
1250        inner_scope_calls_eval_ || is_catch_scope() || is_block_scope() ||
1251        is_module_scope() || is_script_scope())) {
1252     var->set_is_used();
1253     if (scope_calls_eval_ || inner_scope_calls_eval_) var->set_maybe_assigned();
1254   }
1255   // Global variables do not need to be allocated.
1256   return !var->IsGlobalObjectProperty() && var->is_used();
1257 }
1258 
1259 
MustAllocateInContext(Variable * var)1260 bool Scope::MustAllocateInContext(Variable* var) {
1261   // If var is accessed from an inner scope, or if there is a possibility
1262   // that it might be accessed from the current or an inner scope (through
1263   // an eval() call or a runtime with lookup), it must be allocated in the
1264   // context.
1265   //
1266   // Exceptions: If the scope as a whole has forced context allocation, all
1267   // variables will have context allocation, even temporaries.  Otherwise
1268   // temporary variables are always stack-allocated.  Catch-bound variables are
1269   // always context-allocated.
1270   if (has_forced_context_allocation()) return true;
1271   if (var->mode() == TEMPORARY) return false;
1272   if (is_catch_scope() || is_module_scope()) return true;
1273   if (is_script_scope() && IsLexicalVariableMode(var->mode())) return true;
1274   return var->has_forced_context_allocation() || scope_calls_eval_ ||
1275          inner_scope_calls_eval_;
1276 }
1277 
1278 
HasArgumentsParameter(Isolate * isolate)1279 bool Scope::HasArgumentsParameter(Isolate* isolate) {
1280   for (int i = 0; i < params_.length(); i++) {
1281     if (params_[i]->name().is_identical_to(
1282             isolate->factory()->arguments_string())) {
1283       return true;
1284     }
1285   }
1286   return false;
1287 }
1288 
1289 
AllocateStackSlot(Variable * var)1290 void Scope::AllocateStackSlot(Variable* var) {
1291   if (is_block_scope()) {
1292     outer_scope()->DeclarationScope()->AllocateStackSlot(var);
1293   } else {
1294     var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
1295   }
1296 }
1297 
1298 
AllocateHeapSlot(Variable * var)1299 void Scope::AllocateHeapSlot(Variable* var) {
1300   var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
1301 }
1302 
1303 
AllocateParameterLocals(Isolate * isolate)1304 void Scope::AllocateParameterLocals(Isolate* isolate) {
1305   DCHECK(is_function_scope());
1306   Variable* arguments = LookupLocal(ast_value_factory_->arguments_string());
1307   // Functions have 'arguments' declared implicitly in all non arrow functions.
1308   DCHECK(arguments != nullptr || is_arrow_scope());
1309 
1310   bool uses_sloppy_arguments = false;
1311 
1312   if (arguments != nullptr && MustAllocate(arguments) &&
1313       !HasArgumentsParameter(isolate)) {
1314     // 'arguments' is used. Unless there is also a parameter called
1315     // 'arguments', we must be conservative and allocate all parameters to
1316     // the context assuming they will be captured by the arguments object.
1317     // If we have a parameter named 'arguments', a (new) value is always
1318     // assigned to it via the function invocation. Then 'arguments' denotes
1319     // that specific parameter value and cannot be used to access the
1320     // parameters, which is why we don't need to allocate an arguments
1321     // object in that case.
1322 
1323     // We are using 'arguments'. Tell the code generator that is needs to
1324     // allocate the arguments object by setting 'arguments_'.
1325     arguments_ = arguments;
1326 
1327     // In strict mode 'arguments' does not alias formal parameters.
1328     // Therefore in strict mode we allocate parameters as if 'arguments'
1329     // were not used.
1330     // If the parameter list is not simple, arguments isn't sloppy either.
1331     uses_sloppy_arguments =
1332         is_sloppy(language_mode()) && has_simple_parameters();
1333   }
1334 
1335   if (rest_parameter_ && !MustAllocate(rest_parameter_)) {
1336     rest_parameter_ = NULL;
1337   }
1338 
1339   // The same parameter may occur multiple times in the parameters_ list.
1340   // If it does, and if it is not copied into the context object, it must
1341   // receive the highest parameter index for that parameter; thus iteration
1342   // order is relevant!
1343   for (int i = params_.length() - 1; i >= 0; --i) {
1344     Variable* var = params_[i];
1345     if (var == rest_parameter_) continue;
1346 
1347     DCHECK(var->scope() == this);
1348     if (uses_sloppy_arguments || has_forced_context_allocation()) {
1349       // Force context allocation of the parameter.
1350       var->ForceContextAllocation();
1351     }
1352     AllocateParameter(var, i);
1353   }
1354 }
1355 
1356 
AllocateParameter(Variable * var,int index)1357 void Scope::AllocateParameter(Variable* var, int index) {
1358   if (MustAllocate(var)) {
1359     if (MustAllocateInContext(var)) {
1360       DCHECK(var->IsUnallocated() || var->IsContextSlot());
1361       if (var->IsUnallocated()) {
1362         AllocateHeapSlot(var);
1363       }
1364     } else {
1365       DCHECK(var->IsUnallocated() || var->IsParameter());
1366       if (var->IsUnallocated()) {
1367         var->AllocateTo(VariableLocation::PARAMETER, index);
1368       }
1369     }
1370   } else {
1371     DCHECK(!var->IsGlobalSlot());
1372   }
1373 }
1374 
1375 
AllocateReceiver()1376 void Scope::AllocateReceiver() {
1377   DCHECK_NOT_NULL(receiver());
1378   DCHECK_EQ(receiver()->scope(), this);
1379 
1380   if (has_forced_context_allocation()) {
1381     // Force context allocation of the receiver.
1382     receiver()->ForceContextAllocation();
1383   }
1384   AllocateParameter(receiver(), -1);
1385 }
1386 
1387 
AllocateNonParameterLocal(Isolate * isolate,Variable * var)1388 void Scope::AllocateNonParameterLocal(Isolate* isolate, Variable* var) {
1389   DCHECK(var->scope() == this);
1390   DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
1391          !var->IsStackLocal());
1392   if (var->IsUnallocated() && MustAllocate(var)) {
1393     if (MustAllocateInContext(var)) {
1394       AllocateHeapSlot(var);
1395     } else {
1396       AllocateStackSlot(var);
1397     }
1398   }
1399 }
1400 
1401 
AllocateDeclaredGlobal(Isolate * isolate,Variable * var)1402 void Scope::AllocateDeclaredGlobal(Isolate* isolate, Variable* var) {
1403   DCHECK(var->scope() == this);
1404   DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
1405          !var->IsStackLocal());
1406   if (var->IsUnallocated()) {
1407     if (var->IsStaticGlobalObjectProperty()) {
1408       DCHECK_EQ(-1, var->index());
1409       DCHECK(var->name()->IsString());
1410       var->AllocateTo(VariableLocation::GLOBAL, num_heap_slots_++);
1411       num_global_slots_++;
1412     } else {
1413       // There must be only DYNAMIC_GLOBAL in the script scope.
1414       DCHECK(!is_script_scope() || DYNAMIC_GLOBAL == var->mode());
1415     }
1416   }
1417 }
1418 
1419 
AllocateNonParameterLocalsAndDeclaredGlobals(Isolate * isolate)1420 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate) {
1421   // All variables that have no rewrite yet are non-parameter locals.
1422   for (int i = 0; i < temps_.length(); i++) {
1423     if (temps_[i] == nullptr) continue;
1424     AllocateNonParameterLocal(isolate, temps_[i]);
1425   }
1426 
1427   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
1428   for (VariableMap::Entry* p = variables_.Start();
1429        p != NULL;
1430        p = variables_.Next(p)) {
1431     Variable* var = reinterpret_cast<Variable*>(p->value);
1432     vars.Add(VarAndOrder(var, p->order), zone());
1433   }
1434   vars.Sort(VarAndOrder::Compare);
1435   int var_count = vars.length();
1436   for (int i = 0; i < var_count; i++) {
1437     AllocateNonParameterLocal(isolate, vars[i].var());
1438   }
1439 
1440   if (FLAG_global_var_shortcuts) {
1441     for (int i = 0; i < var_count; i++) {
1442       AllocateDeclaredGlobal(isolate, vars[i].var());
1443     }
1444   }
1445 
1446   // For now, function_ must be allocated at the very end.  If it gets
1447   // allocated in the context, it must be the last slot in the context,
1448   // because of the current ScopeInfo implementation (see
1449   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
1450   if (function_ != nullptr) {
1451     AllocateNonParameterLocal(isolate, function_->proxy()->var());
1452   }
1453 
1454   if (rest_parameter_ != nullptr) {
1455     AllocateNonParameterLocal(isolate, rest_parameter_);
1456   }
1457 
1458   Variable* new_target_var =
1459       LookupLocal(ast_value_factory_->new_target_string());
1460   if (new_target_var != nullptr && MustAllocate(new_target_var)) {
1461     new_target_ = new_target_var;
1462   }
1463 
1464   Variable* this_function_var =
1465       LookupLocal(ast_value_factory_->this_function_string());
1466   if (this_function_var != nullptr && MustAllocate(this_function_var)) {
1467     this_function_ = this_function_var;
1468   }
1469 }
1470 
1471 
AllocateVariablesRecursively(Isolate * isolate)1472 void Scope::AllocateVariablesRecursively(Isolate* isolate) {
1473   if (!already_resolved()) {
1474     num_stack_slots_ = 0;
1475   }
1476   // Allocate variables for inner scopes.
1477   for (int i = 0; i < inner_scopes_.length(); i++) {
1478     inner_scopes_[i]->AllocateVariablesRecursively(isolate);
1479   }
1480 
1481   // If scope is already resolved, we still need to allocate
1482   // variables in inner scopes which might not have been resolved yet.
1483   if (already_resolved()) return;
1484   // The number of slots required for variables.
1485   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
1486 
1487   // Allocate variables for this scope.
1488   // Parameters must be allocated first, if any.
1489   if (is_function_scope()) AllocateParameterLocals(isolate);
1490   if (has_this_declaration()) AllocateReceiver();
1491   AllocateNonParameterLocalsAndDeclaredGlobals(isolate);
1492 
1493   // Force allocation of a context for this scope if necessary. For a 'with'
1494   // scope and for a function scope that makes an 'eval' call we need a context,
1495   // even if no local variables were statically allocated in the scope.
1496   // Likewise for modules.
1497   bool must_have_context =
1498       is_with_scope() || is_module_scope() ||
1499       (is_function_scope() && calls_sloppy_eval()) ||
1500       (is_block_scope() && is_declaration_scope() && calls_sloppy_eval());
1501 
1502   // If we didn't allocate any locals in the local context, then we only
1503   // need the minimal number of slots if we must have a context.
1504   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
1505     num_heap_slots_ = 0;
1506   }
1507 
1508   // Allocation done.
1509   DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
1510 }
1511 
1512 
StackLocalCount() const1513 int Scope::StackLocalCount() const {
1514   return num_stack_slots() -
1515       (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
1516 }
1517 
1518 
ContextLocalCount() const1519 int Scope::ContextLocalCount() const {
1520   if (num_heap_slots() == 0) return 0;
1521   bool is_function_var_in_context =
1522       function_ != NULL && function_->proxy()->var()->IsContextSlot();
1523   return num_heap_slots() - Context::MIN_CONTEXT_SLOTS - num_global_slots() -
1524          (is_function_var_in_context ? 1 : 0);
1525 }
1526 
1527 
ContextGlobalCount() const1528 int Scope::ContextGlobalCount() const { return num_global_slots(); }
1529 
1530 }  // namespace internal
1531 }  // namespace v8
1532