• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HEAP_HEAP_INL_H_
6 #define V8_HEAP_HEAP_INL_H_
7 
8 #include <cmath>
9 
10 #include "src/base/platform/platform.h"
11 #include "src/counters.h"
12 #include "src/heap/heap.h"
13 #include "src/heap/incremental-marking-inl.h"
14 #include "src/heap/mark-compact.h"
15 #include "src/heap/remembered-set.h"
16 #include "src/heap/spaces-inl.h"
17 #include "src/heap/store-buffer.h"
18 #include "src/isolate.h"
19 #include "src/list-inl.h"
20 #include "src/log.h"
21 #include "src/msan.h"
22 #include "src/objects-inl.h"
23 #include "src/type-feedback-vector-inl.h"
24 
25 namespace v8 {
26 namespace internal {
27 
insert(HeapObject * target,int32_t size,bool was_marked_black)28 void PromotionQueue::insert(HeapObject* target, int32_t size,
29                             bool was_marked_black) {
30   if (emergency_stack_ != NULL) {
31     emergency_stack_->Add(Entry(target, size, was_marked_black));
32     return;
33   }
34 
35   if ((rear_ - 1) < limit_) {
36     RelocateQueueHead();
37     emergency_stack_->Add(Entry(target, size, was_marked_black));
38     return;
39   }
40 
41   struct Entry* entry = reinterpret_cast<struct Entry*>(--rear_);
42   entry->obj_ = target;
43   entry->size_ = size;
44   entry->was_marked_black_ = was_marked_black;
45 
46 // Assert no overflow into live objects.
47 #ifdef DEBUG
48   SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
49                               reinterpret_cast<Address>(rear_));
50 #endif
51 }
52 
53 
54 #define ROOT_ACCESSOR(type, name, camel_name) \
55   type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); }
56 ROOT_LIST(ROOT_ACCESSOR)
57 #undef ROOT_ACCESSOR
58 
59 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
60   Map* Heap::name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
STRUCT_LIST(STRUCT_MAP_ACCESSOR)61 STRUCT_LIST(STRUCT_MAP_ACCESSOR)
62 #undef STRUCT_MAP_ACCESSOR
63 
64 #define STRING_ACCESSOR(name, str) \
65   String* Heap::name() { return String::cast(roots_[k##name##RootIndex]); }
66 INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
67 #undef STRING_ACCESSOR
68 
69 #define SYMBOL_ACCESSOR(name) \
70   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
71 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
72 #undef SYMBOL_ACCESSOR
73 
74 #define SYMBOL_ACCESSOR(name, description) \
75   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
76 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
77 WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
78 #undef SYMBOL_ACCESSOR
79 
80 #define ROOT_ACCESSOR(type, name, camel_name)                                 \
81   void Heap::set_##name(type* value) {                                        \
82     /* The deserializer makes use of the fact that these common roots are */  \
83     /* never in new space and never on a page that is being compacted.    */  \
84     DCHECK(!deserialization_complete() ||                                     \
85            RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex));    \
86     DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
87     roots_[k##camel_name##RootIndex] = value;                                 \
88   }
89 ROOT_LIST(ROOT_ACCESSOR)
90 #undef ROOT_ACCESSOR
91 
92 
93 template <>
94 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
95   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
96   return chars == str.length();
97 }
98 
99 
100 template <>
IsOneByte(String * str,int chars)101 bool inline Heap::IsOneByte(String* str, int chars) {
102   return str->IsOneByteRepresentation();
103 }
104 
105 
AllocateInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)106 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
107     Vector<const char> str, int chars, uint32_t hash_field) {
108   if (IsOneByte(str, chars)) {
109     return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
110                                              hash_field);
111   }
112   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
113 }
114 
115 
116 template <typename T>
AllocateInternalizedStringImpl(T t,int chars,uint32_t hash_field)117 AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
118                                                       uint32_t hash_field) {
119   if (IsOneByte(t, chars)) {
120     return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
121   }
122   return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
123 }
124 
125 
AllocateOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)126 AllocationResult Heap::AllocateOneByteInternalizedString(
127     Vector<const uint8_t> str, uint32_t hash_field) {
128   CHECK_GE(String::kMaxLength, str.length());
129   // Compute map and object size.
130   Map* map = one_byte_internalized_string_map();
131   int size = SeqOneByteString::SizeFor(str.length());
132 
133   // Allocate string.
134   HeapObject* result = nullptr;
135   {
136     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
137     if (!allocation.To(&result)) return allocation;
138   }
139 
140   // String maps are all immortal immovable objects.
141   result->set_map_no_write_barrier(map);
142   // Set length and hash fields of the allocated string.
143   String* answer = String::cast(result);
144   answer->set_length(str.length());
145   answer->set_hash_field(hash_field);
146 
147   DCHECK_EQ(size, answer->Size());
148 
149   // Fill in the characters.
150   MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
151           str.length());
152 
153   return answer;
154 }
155 
156 
AllocateTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)157 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
158                                                          uint32_t hash_field) {
159   CHECK_GE(String::kMaxLength, str.length());
160   // Compute map and object size.
161   Map* map = internalized_string_map();
162   int size = SeqTwoByteString::SizeFor(str.length());
163 
164   // Allocate string.
165   HeapObject* result = nullptr;
166   {
167     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
168     if (!allocation.To(&result)) return allocation;
169   }
170 
171   result->set_map(map);
172   // Set length and hash fields of the allocated string.
173   String* answer = String::cast(result);
174   answer->set_length(str.length());
175   answer->set_hash_field(hash_field);
176 
177   DCHECK_EQ(size, answer->Size());
178 
179   // Fill in the characters.
180   MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
181           str.length() * kUC16Size);
182 
183   return answer;
184 }
185 
CopyFixedArray(FixedArray * src)186 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
187   if (src->length() == 0) return src;
188   return CopyFixedArrayWithMap(src, src->map());
189 }
190 
191 
CopyFixedDoubleArray(FixedDoubleArray * src)192 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
193   if (src->length() == 0) return src;
194   return CopyFixedDoubleArrayWithMap(src, src->map());
195 }
196 
197 
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationAlignment alignment)198 AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
199                                    AllocationAlignment alignment) {
200   DCHECK(AllowHandleAllocation::IsAllowed());
201   DCHECK(AllowHeapAllocation::IsAllowed());
202   DCHECK(gc_state_ == NOT_IN_GC);
203 #ifdef DEBUG
204   if (FLAG_gc_interval >= 0 && !always_allocate() &&
205       Heap::allocation_timeout_-- <= 0) {
206     return AllocationResult::Retry(space);
207   }
208   isolate_->counters()->objs_since_last_full()->Increment();
209   isolate_->counters()->objs_since_last_young()->Increment();
210 #endif
211 
212   bool large_object = size_in_bytes > Page::kMaxRegularHeapObjectSize;
213   HeapObject* object = nullptr;
214   AllocationResult allocation;
215   if (NEW_SPACE == space) {
216     if (large_object) {
217       space = LO_SPACE;
218     } else {
219       allocation = new_space_.AllocateRaw(size_in_bytes, alignment);
220       if (allocation.To(&object)) {
221         OnAllocationEvent(object, size_in_bytes);
222       }
223       return allocation;
224     }
225   }
226 
227   // Here we only allocate in the old generation.
228   if (OLD_SPACE == space) {
229     if (large_object) {
230       allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
231     } else {
232       allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
233     }
234   } else if (CODE_SPACE == space) {
235     if (size_in_bytes <= code_space()->AreaSize()) {
236       allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
237     } else {
238       allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
239     }
240   } else if (LO_SPACE == space) {
241     DCHECK(large_object);
242     allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
243   } else if (MAP_SPACE == space) {
244     allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
245   } else {
246     // NEW_SPACE is not allowed here.
247     UNREACHABLE();
248   }
249   if (allocation.To(&object)) {
250     OnAllocationEvent(object, size_in_bytes);
251   } else {
252     old_gen_exhausted_ = true;
253   }
254 
255   if (!old_gen_exhausted_ && incremental_marking()->black_allocation() &&
256       space != OLD_SPACE) {
257     Marking::MarkBlack(Marking::MarkBitFrom(object));
258     MemoryChunk::IncrementLiveBytesFromGC(object, size_in_bytes);
259   }
260   return allocation;
261 }
262 
263 
OnAllocationEvent(HeapObject * object,int size_in_bytes)264 void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
265   HeapProfiler* profiler = isolate_->heap_profiler();
266   if (profiler->is_tracking_allocations()) {
267     profiler->AllocationEvent(object->address(), size_in_bytes);
268   }
269 
270   if (FLAG_verify_predictable) {
271     ++allocations_count_;
272     // Advance synthetic time by making a time request.
273     MonotonicallyIncreasingTimeInMs();
274 
275     UpdateAllocationsHash(object);
276     UpdateAllocationsHash(size_in_bytes);
277 
278     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
279       PrintAlloctionsHash();
280     }
281   }
282 
283   if (FLAG_trace_allocation_stack_interval > 0) {
284     if (!FLAG_verify_predictable) ++allocations_count_;
285     if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
286       isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
287     }
288   }
289 }
290 
291 
OnMoveEvent(HeapObject * target,HeapObject * source,int size_in_bytes)292 void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
293                        int size_in_bytes) {
294   HeapProfiler* heap_profiler = isolate_->heap_profiler();
295   if (heap_profiler->is_tracking_object_moves()) {
296     heap_profiler->ObjectMoveEvent(source->address(), target->address(),
297                                    size_in_bytes);
298   }
299   if (target->IsSharedFunctionInfo()) {
300     LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(),
301                                                          target->address()));
302   }
303 
304   if (FLAG_verify_predictable) {
305     ++allocations_count_;
306     // Advance synthetic time by making a time request.
307     MonotonicallyIncreasingTimeInMs();
308 
309     UpdateAllocationsHash(source);
310     UpdateAllocationsHash(target);
311     UpdateAllocationsHash(size_in_bytes);
312 
313     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
314       PrintAlloctionsHash();
315     }
316   }
317 }
318 
319 
UpdateAllocationsHash(HeapObject * object)320 void Heap::UpdateAllocationsHash(HeapObject* object) {
321   Address object_address = object->address();
322   MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
323   AllocationSpace allocation_space = memory_chunk->owner()->identity();
324 
325   STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
326   uint32_t value =
327       static_cast<uint32_t>(object_address - memory_chunk->address()) |
328       (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
329 
330   UpdateAllocationsHash(value);
331 }
332 
333 
UpdateAllocationsHash(uint32_t value)334 void Heap::UpdateAllocationsHash(uint32_t value) {
335   uint16_t c1 = static_cast<uint16_t>(value);
336   uint16_t c2 = static_cast<uint16_t>(value >> 16);
337   raw_allocations_hash_ =
338       StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
339   raw_allocations_hash_ =
340       StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
341 }
342 
343 
RegisterExternalString(String * string)344 void Heap::RegisterExternalString(String* string) {
345   external_string_table_.AddString(string);
346 }
347 
348 
FinalizeExternalString(String * string)349 void Heap::FinalizeExternalString(String* string) {
350   DCHECK(string->IsExternalString());
351   v8::String::ExternalStringResourceBase** resource_addr =
352       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
353           reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
354           kHeapObjectTag);
355 
356   // Dispose of the C++ object if it has not already been disposed.
357   if (*resource_addr != NULL) {
358     (*resource_addr)->Dispose();
359     *resource_addr = NULL;
360   }
361 }
362 
363 
InNewSpace(Object * object)364 bool Heap::InNewSpace(Object* object) {
365   bool result = new_space_.Contains(object);
366   DCHECK(!result ||                 // Either not in new space
367          gc_state_ != NOT_IN_GC ||  // ... or in the middle of GC
368          InToSpace(object));        // ... or in to-space (where we allocate).
369   return result;
370 }
371 
InFromSpace(Object * object)372 bool Heap::InFromSpace(Object* object) {
373   return new_space_.FromSpaceContains(object);
374 }
375 
376 
InToSpace(Object * object)377 bool Heap::InToSpace(Object* object) {
378   return new_space_.ToSpaceContains(object);
379 }
380 
InOldSpace(Object * object)381 bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); }
382 
InNewSpaceSlow(Address address)383 bool Heap::InNewSpaceSlow(Address address) {
384   return new_space_.ContainsSlow(address);
385 }
386 
InOldSpaceSlow(Address address)387 bool Heap::InOldSpaceSlow(Address address) {
388   return old_space_->ContainsSlow(address);
389 }
390 
OldGenerationAllocationLimitReached()391 bool Heap::OldGenerationAllocationLimitReached() {
392   if (!incremental_marking()->IsStopped()) return false;
393   return OldGenerationSpaceAvailable() < 0;
394 }
395 
396 template <PromotionMode promotion_mode>
ShouldBePromoted(Address old_address,int object_size)397 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
398   Page* page = Page::FromAddress(old_address);
399   Address age_mark = new_space_.age_mark();
400 
401   if (promotion_mode == PROMOTE_MARKED) {
402     MarkBit mark_bit = Marking::MarkBitFrom(old_address);
403     if (!Marking::IsWhite(mark_bit)) {
404       return true;
405     }
406   }
407 
408   return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
409          (!page->ContainsLimit(age_mark) || old_address < age_mark);
410 }
411 
CurrentPromotionMode()412 PromotionMode Heap::CurrentPromotionMode() {
413   if (incremental_marking()->IsMarking()) {
414     return PROMOTE_MARKED;
415   } else {
416     return DEFAULT_PROMOTION;
417   }
418 }
419 
RecordWrite(Object * object,int offset,Object * o)420 void Heap::RecordWrite(Object* object, int offset, Object* o) {
421   if (!InNewSpace(o) || !object->IsHeapObject() || InNewSpace(object)) {
422     return;
423   }
424   RememberedSet<OLD_TO_NEW>::Insert(
425       Page::FromAddress(reinterpret_cast<Address>(object)),
426       HeapObject::cast(object)->address() + offset);
427 }
428 
RecordFixedArrayElements(FixedArray * array,int offset,int length)429 void Heap::RecordFixedArrayElements(FixedArray* array, int offset, int length) {
430   if (InNewSpace(array)) return;
431   Page* page = Page::FromAddress(reinterpret_cast<Address>(array));
432   for (int i = 0; i < length; i++) {
433     if (!InNewSpace(array->get(offset + i))) continue;
434     RememberedSet<OLD_TO_NEW>::Insert(
435         page,
436         reinterpret_cast<Address>(array->RawFieldOfElementAt(offset + i)));
437   }
438 }
439 
440 
AllowedToBeMigrated(HeapObject * obj,AllocationSpace dst)441 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
442   // Object migration is governed by the following rules:
443   //
444   // 1) Objects in new-space can be migrated to the old space
445   //    that matches their target space or they stay in new-space.
446   // 2) Objects in old-space stay in the same space when migrating.
447   // 3) Fillers (two or more words) can migrate due to left-trimming of
448   //    fixed arrays in new-space or old space.
449   // 4) Fillers (one word) can never migrate, they are skipped by
450   //    incremental marking explicitly to prevent invalid pattern.
451   //
452   // Since this function is used for debugging only, we do not place
453   // asserts here, but check everything explicitly.
454   if (obj->map() == one_pointer_filler_map()) return false;
455   InstanceType type = obj->map()->instance_type();
456   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
457   AllocationSpace src = chunk->owner()->identity();
458   switch (src) {
459     case NEW_SPACE:
460       return dst == src || dst == OLD_SPACE;
461     case OLD_SPACE:
462       return dst == src &&
463              (dst == OLD_SPACE || obj->IsFiller() || obj->IsExternalString());
464     case CODE_SPACE:
465       return dst == src && type == CODE_TYPE;
466     case MAP_SPACE:
467     case LO_SPACE:
468       return false;
469   }
470   UNREACHABLE();
471   return false;
472 }
473 
CopyBlock(Address dst,Address src,int byte_size)474 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
475   CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
476             static_cast<size_t>(byte_size / kPointerSize));
477 }
478 
PurgeLeftTrimmedObject(Object ** object)479 bool Heap::PurgeLeftTrimmedObject(Object** object) {
480   HeapObject* current = reinterpret_cast<HeapObject*>(*object);
481   const MapWord map_word = current->map_word();
482   if (current->IsFiller() && !map_word.IsForwardingAddress()) {
483 #ifdef DEBUG
484     // We need to find a FixedArrayBase map after walking the fillers.
485     while (current->IsFiller()) {
486       Address next = reinterpret_cast<Address>(current);
487       if (current->map() == one_pointer_filler_map()) {
488         next += kPointerSize;
489       } else if (current->map() == two_pointer_filler_map()) {
490         next += 2 * kPointerSize;
491       } else {
492         next += current->Size();
493       }
494       current = reinterpret_cast<HeapObject*>(next);
495     }
496     DCHECK(current->IsFixedArrayBase());
497 #endif  // DEBUG
498     *object = nullptr;
499     return true;
500   }
501   return false;
502 }
503 
504 template <Heap::FindMementoMode mode>
FindAllocationMemento(HeapObject * object)505 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
506   // Check if there is potentially a memento behind the object. If
507   // the last word of the memento is on another page we return
508   // immediately.
509   Address object_address = object->address();
510   Address memento_address = object_address + object->Size();
511   Address last_memento_word_address = memento_address + kPointerSize;
512   if (!Page::OnSamePage(object_address, last_memento_word_address)) {
513     return nullptr;
514   }
515   HeapObject* candidate = HeapObject::FromAddress(memento_address);
516   Map* candidate_map = candidate->map();
517   // This fast check may peek at an uninitialized word. However, the slow check
518   // below (memento_address == top) ensures that this is safe. Mark the word as
519   // initialized to silence MemorySanitizer warnings.
520   MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
521   if (candidate_map != allocation_memento_map()) {
522     return nullptr;
523   }
524   AllocationMemento* memento_candidate = AllocationMemento::cast(candidate);
525 
526   // Depending on what the memento is used for, we might need to perform
527   // additional checks.
528   Address top;
529   switch (mode) {
530     case Heap::kForGC:
531       return memento_candidate;
532     case Heap::kForRuntime:
533       if (memento_candidate == nullptr) return nullptr;
534       // Either the object is the last object in the new space, or there is
535       // another object of at least word size (the header map word) following
536       // it, so suffices to compare ptr and top here.
537       top = NewSpaceTop();
538       DCHECK(memento_address == top ||
539              memento_address + HeapObject::kHeaderSize <= top ||
540              !Page::OnSamePage(memento_address, top - 1));
541       if ((memento_address != top) && memento_candidate->IsValid()) {
542         return memento_candidate;
543       }
544       return nullptr;
545     default:
546       UNREACHABLE();
547   }
548   UNREACHABLE();
549   return nullptr;
550 }
551 
552 template <Heap::UpdateAllocationSiteMode mode>
UpdateAllocationSite(HeapObject * object,base::HashMap * pretenuring_feedback)553 void Heap::UpdateAllocationSite(HeapObject* object,
554                                 base::HashMap* pretenuring_feedback) {
555   DCHECK(InFromSpace(object));
556   if (!FLAG_allocation_site_pretenuring ||
557       !AllocationSite::CanTrack(object->map()->instance_type()))
558     return;
559   AllocationMemento* memento_candidate = FindAllocationMemento<kForGC>(object);
560   if (memento_candidate == nullptr) return;
561 
562   if (mode == kGlobal) {
563     DCHECK_EQ(pretenuring_feedback, global_pretenuring_feedback_);
564     // Entering global pretenuring feedback is only used in the scavenger, where
565     // we are allowed to actually touch the allocation site.
566     if (!memento_candidate->IsValid()) return;
567     AllocationSite* site = memento_candidate->GetAllocationSite();
568     DCHECK(!site->IsZombie());
569     // For inserting in the global pretenuring storage we need to first
570     // increment the memento found count on the allocation site.
571     if (site->IncrementMementoFoundCount()) {
572       global_pretenuring_feedback_->LookupOrInsert(site,
573                                                    ObjectHash(site->address()));
574     }
575   } else {
576     DCHECK_EQ(mode, kCached);
577     DCHECK_NE(pretenuring_feedback, global_pretenuring_feedback_);
578     // Entering cached feedback is used in the parallel case. We are not allowed
579     // to dereference the allocation site and rather have to postpone all checks
580     // till actually merging the data.
581     Address key = memento_candidate->GetAllocationSiteUnchecked();
582     base::HashMap::Entry* e =
583         pretenuring_feedback->LookupOrInsert(key, ObjectHash(key));
584     DCHECK(e != nullptr);
585     (*bit_cast<intptr_t*>(&e->value))++;
586   }
587 }
588 
589 
RemoveAllocationSitePretenuringFeedback(AllocationSite * site)590 void Heap::RemoveAllocationSitePretenuringFeedback(AllocationSite* site) {
591   global_pretenuring_feedback_->Remove(
592       site, static_cast<uint32_t>(bit_cast<uintptr_t>(site)));
593 }
594 
595 
CollectGarbage(AllocationSpace space,const char * gc_reason,const v8::GCCallbackFlags callbackFlags)596 bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason,
597                           const v8::GCCallbackFlags callbackFlags) {
598   const char* collector_reason = NULL;
599   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
600   return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
601 }
602 
603 
isolate()604 Isolate* Heap::isolate() {
605   return reinterpret_cast<Isolate*>(
606       reinterpret_cast<intptr_t>(this) -
607       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
608 }
609 
610 
AddString(String * string)611 void Heap::ExternalStringTable::AddString(String* string) {
612   DCHECK(string->IsExternalString());
613   if (heap_->InNewSpace(string)) {
614     new_space_strings_.Add(string);
615   } else {
616     old_space_strings_.Add(string);
617   }
618 }
619 
620 
Iterate(ObjectVisitor * v)621 void Heap::ExternalStringTable::Iterate(ObjectVisitor* v) {
622   if (!new_space_strings_.is_empty()) {
623     Object** start = &new_space_strings_[0];
624     v->VisitPointers(start, start + new_space_strings_.length());
625   }
626   if (!old_space_strings_.is_empty()) {
627     Object** start = &old_space_strings_[0];
628     v->VisitPointers(start, start + old_space_strings_.length());
629   }
630 }
631 
632 
633 // Verify() is inline to avoid ifdef-s around its calls in release
634 // mode.
Verify()635 void Heap::ExternalStringTable::Verify() {
636 #ifdef DEBUG
637   for (int i = 0; i < new_space_strings_.length(); ++i) {
638     Object* obj = Object::cast(new_space_strings_[i]);
639     DCHECK(heap_->InNewSpace(obj));
640     DCHECK(!obj->IsTheHole(heap_->isolate()));
641   }
642   for (int i = 0; i < old_space_strings_.length(); ++i) {
643     Object* obj = Object::cast(old_space_strings_[i]);
644     DCHECK(!heap_->InNewSpace(obj));
645     DCHECK(!obj->IsTheHole(heap_->isolate()));
646   }
647 #endif
648 }
649 
650 
AddOldString(String * string)651 void Heap::ExternalStringTable::AddOldString(String* string) {
652   DCHECK(string->IsExternalString());
653   DCHECK(!heap_->InNewSpace(string));
654   old_space_strings_.Add(string);
655 }
656 
657 
ShrinkNewStrings(int position)658 void Heap::ExternalStringTable::ShrinkNewStrings(int position) {
659   new_space_strings_.Rewind(position);
660 #ifdef VERIFY_HEAP
661   if (FLAG_verify_heap) {
662     Verify();
663   }
664 #endif
665 }
666 
667 // static
Hash(Object * source,Name * name)668 int DescriptorLookupCache::Hash(Object* source, Name* name) {
669   DCHECK(name->IsUniqueName());
670   // Uses only lower 32 bits if pointers are larger.
671   uint32_t source_hash =
672       static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >>
673       kPointerSizeLog2;
674   uint32_t name_hash = name->hash_field();
675   return (source_hash ^ name_hash) % kLength;
676 }
677 
Lookup(Map * source,Name * name)678 int DescriptorLookupCache::Lookup(Map* source, Name* name) {
679   int index = Hash(source, name);
680   Key& key = keys_[index];
681   if ((key.source == source) && (key.name == name)) return results_[index];
682   return kAbsent;
683 }
684 
685 
Update(Map * source,Name * name,int result)686 void DescriptorLookupCache::Update(Map* source, Name* name, int result) {
687   DCHECK(result != kAbsent);
688   int index = Hash(source, name);
689   Key& key = keys_[index];
690   key.source = source;
691   key.name = name;
692   results_[index] = result;
693 }
694 
695 
ClearInstanceofCache()696 void Heap::ClearInstanceofCache() {
697   set_instanceof_cache_function(Smi::FromInt(0));
698 }
699 
ToBoolean(bool condition)700 Oddball* Heap::ToBoolean(bool condition) {
701   return condition ? true_value() : false_value();
702 }
703 
704 
CompletelyClearInstanceofCache()705 void Heap::CompletelyClearInstanceofCache() {
706   set_instanceof_cache_map(Smi::FromInt(0));
707   set_instanceof_cache_function(Smi::FromInt(0));
708 }
709 
710 
HashSeed()711 uint32_t Heap::HashSeed() {
712   uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
713   DCHECK(FLAG_randomize_hashes || seed == 0);
714   return seed;
715 }
716 
717 
NextScriptId()718 int Heap::NextScriptId() {
719   int last_id = last_script_id()->value();
720   if (last_id == Smi::kMaxValue) {
721     last_id = 1;
722   } else {
723     last_id++;
724   }
725   set_last_script_id(Smi::FromInt(last_id));
726   return last_id;
727 }
728 
SetArgumentsAdaptorDeoptPCOffset(int pc_offset)729 void Heap::SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
730   DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
731   set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
732 }
733 
SetConstructStubDeoptPCOffset(int pc_offset)734 void Heap::SetConstructStubDeoptPCOffset(int pc_offset) {
735   DCHECK(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
736   set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
737 }
738 
SetGetterStubDeoptPCOffset(int pc_offset)739 void Heap::SetGetterStubDeoptPCOffset(int pc_offset) {
740   DCHECK(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
741   set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
742 }
743 
SetSetterStubDeoptPCOffset(int pc_offset)744 void Heap::SetSetterStubDeoptPCOffset(int pc_offset) {
745   DCHECK(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
746   set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
747 }
748 
SetInterpreterEntryReturnPCOffset(int pc_offset)749 void Heap::SetInterpreterEntryReturnPCOffset(int pc_offset) {
750   DCHECK(interpreter_entry_return_pc_offset() == Smi::FromInt(0));
751   set_interpreter_entry_return_pc_offset(Smi::FromInt(pc_offset));
752 }
753 
GetNextTemplateSerialNumber()754 int Heap::GetNextTemplateSerialNumber() {
755   int next_serial_number = next_template_serial_number()->value() + 1;
756   set_next_template_serial_number(Smi::FromInt(next_serial_number));
757   return next_serial_number;
758 }
759 
SetSerializedTemplates(FixedArray * templates)760 void Heap::SetSerializedTemplates(FixedArray* templates) {
761   DCHECK_EQ(empty_fixed_array(), serialized_templates());
762   set_serialized_templates(templates);
763 }
764 
AlwaysAllocateScope(Isolate * isolate)765 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
766     : heap_(isolate->heap()) {
767   heap_->always_allocate_scope_count_.Increment(1);
768 }
769 
770 
~AlwaysAllocateScope()771 AlwaysAllocateScope::~AlwaysAllocateScope() {
772   heap_->always_allocate_scope_count_.Increment(-1);
773 }
774 
775 
VisitPointers(Object ** start,Object ** end)776 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
777   for (Object** current = start; current < end; current++) {
778     if ((*current)->IsHeapObject()) {
779       HeapObject* object = HeapObject::cast(*current);
780       CHECK(object->GetIsolate()->heap()->Contains(object));
781       CHECK(object->map()->IsMap());
782     }
783   }
784 }
785 
786 
VisitPointers(Object ** start,Object ** end)787 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
788   for (Object** current = start; current < end; current++) {
789     CHECK((*current)->IsSmi());
790   }
791 }
792 }  // namespace internal
793 }  // namespace v8
794 
795 #endif  // V8_HEAP_HEAP_INL_H_
796