• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <ctype.h>
61 #include <limits.h>
62 #include <stdio.h>
63 #include <string.h>
64 
65 #include <openssl/bio.h>
66 #include <openssl/bytestring.h>
67 #include <openssl/err.h>
68 #include <openssl/mem.h>
69 
70 #include "internal.h"
71 
BN_bin2bn(const uint8_t * in,size_t len,BIGNUM * ret)72 BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
73   size_t num_words;
74   unsigned m;
75   BN_ULONG word = 0;
76   BIGNUM *bn = NULL;
77 
78   if (ret == NULL) {
79     ret = bn = BN_new();
80   }
81 
82   if (ret == NULL) {
83     return NULL;
84   }
85 
86   if (len == 0) {
87     ret->top = 0;
88     return ret;
89   }
90 
91   num_words = ((len - 1) / BN_BYTES) + 1;
92   m = (len - 1) % BN_BYTES;
93   if (bn_wexpand(ret, num_words) == NULL) {
94     if (bn) {
95       BN_free(bn);
96     }
97     return NULL;
98   }
99 
100   /* |bn_wexpand| must check bounds on |num_words| to write it into
101    * |ret->dmax|. */
102   assert(num_words <= INT_MAX);
103   ret->top = (int)num_words;
104   ret->neg = 0;
105 
106   while (len--) {
107     word = (word << 8) | *(in++);
108     if (m-- == 0) {
109       ret->d[--num_words] = word;
110       word = 0;
111       m = BN_BYTES - 1;
112     }
113   }
114 
115   /* need to call this due to clear byte at top if avoiding having the top bit
116    * set (-ve number) */
117   bn_correct_top(ret);
118   return ret;
119 }
120 
BN_bn2bin(const BIGNUM * in,uint8_t * out)121 size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
122   size_t n, i;
123   BN_ULONG l;
124 
125   n = i = BN_num_bytes(in);
126   while (i--) {
127     l = in->d[i / BN_BYTES];
128     *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
129   }
130   return n;
131 }
132 
133 /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
134  * behavior is undefined if |v| takes any other value. */
constant_time_select_ulong(int v,BN_ULONG x,BN_ULONG y)135 static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
136   BN_ULONG mask = v;
137   mask--;
138 
139   return (~mask & x) | (mask & y);
140 }
141 
142 /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
143  * must not have their MSBs set. */
constant_time_le_size_t(size_t x,size_t y)144 static int constant_time_le_size_t(size_t x, size_t y) {
145   return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
146 }
147 
148 /* read_word_padded returns the |i|'th word of |in|, if it is not out of
149  * bounds. Otherwise, it returns 0. It does so without branches on the size of
150  * |in|, however it necessarily does not have the same memory access pattern. If
151  * the access would be out of bounds, it reads the last word of |in|. |in| must
152  * not be zero. */
read_word_padded(const BIGNUM * in,size_t i)153 static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
154   /* Read |in->d[i]| if valid. Otherwise, read the last word. */
155   BN_ULONG l = in->d[constant_time_select_ulong(
156       constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
157 
158   /* Clamp to zero if above |d->top|. */
159   return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
160 }
161 
BN_bn2bin_padded(uint8_t * out,size_t len,const BIGNUM * in)162 int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
163   size_t i;
164   BN_ULONG l;
165 
166   /* Special case for |in| = 0. Just branch as the probability is negligible. */
167   if (BN_is_zero(in)) {
168     memset(out, 0, len);
169     return 1;
170   }
171 
172   /* Check if the integer is too big. This case can exit early in non-constant
173    * time. */
174   if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
175     return 0;
176   }
177   if ((len % BN_BYTES) != 0) {
178     l = read_word_padded(in, len / BN_BYTES);
179     if (l >> (8 * (len % BN_BYTES)) != 0) {
180       return 0;
181     }
182   }
183 
184   /* Write the bytes out one by one. Serialization is done without branching on
185    * the bits of |in| or on |in->top|, but if the routine would otherwise read
186    * out of bounds, the memory access pattern can't be fixed. However, for an
187    * RSA key of size a multiple of the word size, the probability of BN_BYTES
188    * leading zero octets is low.
189    *
190    * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
191   i = len;
192   while (i--) {
193     l = read_word_padded(in, i / BN_BYTES);
194     *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
195   }
196   return 1;
197 }
198 
BN_bn2cbb_padded(CBB * out,size_t len,const BIGNUM * in)199 int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in) {
200   uint8_t *ptr;
201   return CBB_add_space(out, &ptr, len) && BN_bn2bin_padded(ptr, len, in);
202 }
203 
204 static const char hextable[] = "0123456789abcdef";
205 
BN_bn2hex(const BIGNUM * bn)206 char *BN_bn2hex(const BIGNUM *bn) {
207   int i, j, v, z = 0;
208   char *buf;
209   char *p;
210 
211   buf = (char *)OPENSSL_malloc(bn->top * BN_BYTES * 2 + 2);
212   if (buf == NULL) {
213     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
214     return NULL;
215   }
216 
217   p = buf;
218   if (bn->neg) {
219     *(p++) = '-';
220   }
221 
222   if (BN_is_zero(bn)) {
223     *(p++) = '0';
224   }
225 
226   for (i = bn->top - 1; i >= 0; i--) {
227     for (j = BN_BITS2 - 8; j >= 0; j -= 8) {
228       /* strip leading zeros */
229       v = ((int)(bn->d[i] >> (long)j)) & 0xff;
230       if (z || v != 0) {
231         *(p++) = hextable[v >> 4];
232         *(p++) = hextable[v & 0x0f];
233         z = 1;
234       }
235     }
236   }
237   *p = '\0';
238 
239   return buf;
240 }
241 
242 /* decode_hex decodes |in_len| bytes of hex data from |in| and updates |bn|. */
decode_hex(BIGNUM * bn,const char * in,int in_len)243 static int decode_hex(BIGNUM *bn, const char *in, int in_len) {
244   if (in_len > INT_MAX/4) {
245     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
246     return 0;
247   }
248   /* |in_len| is the number of hex digits. */
249   if (bn_expand(bn, in_len * 4) == NULL) {
250     return 0;
251   }
252 
253   int i = 0;
254   while (in_len > 0) {
255     /* Decode one |BN_ULONG| at a time. */
256     int todo = BN_BYTES * 2;
257     if (todo > in_len) {
258       todo = in_len;
259     }
260 
261     BN_ULONG word = 0;
262     int j;
263     for (j = todo; j > 0; j--) {
264       char c = in[in_len - j];
265 
266       BN_ULONG hex;
267       if (c >= '0' && c <= '9') {
268         hex = c - '0';
269       } else if (c >= 'a' && c <= 'f') {
270         hex = c - 'a' + 10;
271       } else if (c >= 'A' && c <= 'F') {
272         hex = c - 'A' + 10;
273       } else {
274         hex = 0;
275         /* This shouldn't happen. The caller checks |isxdigit|. */
276         assert(0);
277       }
278       word = (word << 4) | hex;
279     }
280 
281     bn->d[i++] = word;
282     in_len -= todo;
283   }
284   assert(i <= bn->dmax);
285   bn->top = i;
286   return 1;
287 }
288 
289 /* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
decode_dec(BIGNUM * bn,const char * in,int in_len)290 static int decode_dec(BIGNUM *bn, const char *in, int in_len) {
291   int i, j;
292   BN_ULONG l = 0;
293 
294   /* Decode |BN_DEC_NUM| digits at a time. */
295   j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
296   if (j == BN_DEC_NUM) {
297     j = 0;
298   }
299   l = 0;
300   for (i = 0; i < in_len; i++) {
301     l *= 10;
302     l += in[i] - '0';
303     if (++j == BN_DEC_NUM) {
304       if (!BN_mul_word(bn, BN_DEC_CONV) ||
305           !BN_add_word(bn, l)) {
306         return 0;
307       }
308       l = 0;
309       j = 0;
310     }
311   }
312   return 1;
313 }
314 
315 typedef int (*decode_func) (BIGNUM *bn, const char *in, int in_len);
316 typedef int (*char_test_func) (int c);
317 
bn_x2bn(BIGNUM ** outp,const char * in,decode_func decode,char_test_func want_char)318 static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
319   BIGNUM *ret = NULL;
320   int neg = 0, i;
321   int num;
322 
323   if (in == NULL || *in == 0) {
324     return 0;
325   }
326 
327   if (*in == '-') {
328     neg = 1;
329     in++;
330   }
331 
332   for (i = 0; want_char((unsigned char)in[i]) && i + neg < INT_MAX; i++) {}
333 
334   num = i + neg;
335   if (outp == NULL) {
336     return num;
337   }
338 
339   /* in is the start of the hex digits, and it is 'i' long */
340   if (*outp == NULL) {
341     ret = BN_new();
342     if (ret == NULL) {
343       return 0;
344     }
345   } else {
346     ret = *outp;
347     BN_zero(ret);
348   }
349 
350   if (!decode(ret, in, i)) {
351     goto err;
352   }
353 
354   bn_correct_top(ret);
355   if (!BN_is_zero(ret)) {
356     ret->neg = neg;
357   }
358 
359   *outp = ret;
360   return num;
361 
362 err:
363   if (*outp == NULL) {
364     BN_free(ret);
365   }
366 
367   return 0;
368 }
369 
BN_hex2bn(BIGNUM ** outp,const char * in)370 int BN_hex2bn(BIGNUM **outp, const char *in) {
371   return bn_x2bn(outp, in, decode_hex, isxdigit);
372 }
373 
BN_bn2dec(const BIGNUM * a)374 char *BN_bn2dec(const BIGNUM *a) {
375   /* It is easier to print strings little-endian, so we assemble it in reverse
376    * and fix at the end. */
377   BIGNUM *copy = NULL;
378   CBB cbb;
379   if (!CBB_init(&cbb, 16) ||
380       !CBB_add_u8(&cbb, 0 /* trailing NUL */)) {
381     goto cbb_err;
382   }
383 
384   if (BN_is_zero(a)) {
385     if (!CBB_add_u8(&cbb, '0')) {
386       goto cbb_err;
387     }
388   } else {
389     copy = BN_dup(a);
390     if (copy == NULL) {
391       goto err;
392     }
393 
394     while (!BN_is_zero(copy)) {
395       BN_ULONG word = BN_div_word(copy, BN_DEC_CONV);
396       if (word == (BN_ULONG)-1) {
397         goto err;
398       }
399 
400       const int add_leading_zeros = !BN_is_zero(copy);
401       int i;
402       for (i = 0; i < BN_DEC_NUM && (add_leading_zeros || word != 0); i++) {
403         if (!CBB_add_u8(&cbb, '0' + word % 10)) {
404           goto cbb_err;
405         }
406         word /= 10;
407       }
408       assert(word == 0);
409     }
410   }
411 
412   if (BN_is_negative(a) &&
413       !CBB_add_u8(&cbb, '-')) {
414     goto cbb_err;
415   }
416 
417   uint8_t *data;
418   size_t len;
419   if (!CBB_finish(&cbb, &data, &len)) {
420     goto cbb_err;
421   }
422 
423   /* Reverse the buffer. */
424   size_t i;
425   for (i = 0; i < len/2; i++) {
426     uint8_t tmp = data[i];
427     data[i] = data[len - 1 - i];
428     data[len - 1 - i] = tmp;
429   }
430 
431   BN_free(copy);
432   return (char *)data;
433 
434 cbb_err:
435   OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
436 err:
437   BN_free(copy);
438   CBB_cleanup(&cbb);
439   return NULL;
440 }
441 
BN_dec2bn(BIGNUM ** outp,const char * in)442 int BN_dec2bn(BIGNUM **outp, const char *in) {
443   return bn_x2bn(outp, in, decode_dec, isdigit);
444 }
445 
BN_asc2bn(BIGNUM ** outp,const char * in)446 int BN_asc2bn(BIGNUM **outp, const char *in) {
447   const char *const orig_in = in;
448   if (*in == '-') {
449     in++;
450   }
451 
452   if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
453     if (!BN_hex2bn(outp, in+2)) {
454       return 0;
455     }
456   } else {
457     if (!BN_dec2bn(outp, in)) {
458       return 0;
459     }
460   }
461 
462   if (*orig_in == '-' && !BN_is_zero(*outp)) {
463     (*outp)->neg = 1;
464   }
465 
466   return 1;
467 }
468 
BN_print(BIO * bp,const BIGNUM * a)469 int BN_print(BIO *bp, const BIGNUM *a) {
470   int i, j, v, z = 0;
471   int ret = 0;
472 
473   if (a->neg && BIO_write(bp, "-", 1) != 1) {
474     goto end;
475   }
476 
477   if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
478     goto end;
479   }
480 
481   for (i = a->top - 1; i >= 0; i--) {
482     for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
483       /* strip leading zeros */
484       v = ((int)(a->d[i] >> (long)j)) & 0x0f;
485       if (z || v != 0) {
486         if (BIO_write(bp, &hextable[v], 1) != 1) {
487           goto end;
488         }
489         z = 1;
490       }
491     }
492   }
493   ret = 1;
494 
495 end:
496   return ret;
497 }
498 
BN_print_fp(FILE * fp,const BIGNUM * a)499 int BN_print_fp(FILE *fp, const BIGNUM *a) {
500   BIO *b;
501   int ret;
502 
503   b = BIO_new(BIO_s_file());
504   if (b == NULL) {
505     return 0;
506   }
507   BIO_set_fp(b, fp, BIO_NOCLOSE);
508   ret = BN_print(b, a);
509   BIO_free(b);
510 
511   return ret;
512 }
513 
BN_get_word(const BIGNUM * bn)514 BN_ULONG BN_get_word(const BIGNUM *bn) {
515   switch (bn->top) {
516     case 0:
517       return 0;
518     case 1:
519       return bn->d[0];
520     default:
521       return BN_MASK2;
522   }
523 }
524 
BN_bn2mpi(const BIGNUM * in,uint8_t * out)525 size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out) {
526   const size_t bits = BN_num_bits(in);
527   const size_t bytes = (bits + 7) / 8;
528   /* If the number of bits is a multiple of 8, i.e. if the MSB is set,
529    * prefix with a zero byte. */
530   int extend = 0;
531   if (bytes != 0 && (bits & 0x07) == 0) {
532     extend = 1;
533   }
534 
535   const size_t len = bytes + extend;
536   if (len < bytes ||
537       4 + len < len ||
538       (len & 0xffffffff) != len) {
539     /* If we cannot represent the number then we emit zero as the interface
540      * doesn't allow an error to be signalled. */
541     if (out) {
542       memset(out, 0, 4);
543     }
544     return 4;
545   }
546 
547   if (out == NULL) {
548     return 4 + len;
549   }
550 
551   out[0] = len >> 24;
552   out[1] = len >> 16;
553   out[2] = len >> 8;
554   out[3] = len;
555   if (extend) {
556     out[4] = 0;
557   }
558   BN_bn2bin(in, out + 4 + extend);
559   if (in->neg && len > 0) {
560     out[4] |= 0x80;
561   }
562   return len + 4;
563 }
564 
BN_mpi2bn(const uint8_t * in,size_t len,BIGNUM * out)565 BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out) {
566   if (len < 4) {
567     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
568     return NULL;
569   }
570   const size_t in_len = ((size_t)in[0] << 24) |
571                         ((size_t)in[1] << 16) |
572                         ((size_t)in[2] << 8) |
573                         ((size_t)in[3]);
574   if (in_len != len - 4) {
575     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
576     return NULL;
577   }
578 
579   if (out == NULL) {
580     out = BN_new();
581   }
582   if (out == NULL) {
583     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
584     return NULL;
585   }
586 
587   if (in_len == 0) {
588     BN_zero(out);
589     return out;
590   }
591 
592   in += 4;
593   if (BN_bin2bn(in, in_len, out) == NULL) {
594     return NULL;
595   }
596   out->neg = ((*in) & 0x80) != 0;
597   if (out->neg) {
598     BN_clear_bit(out, BN_num_bits(out) - 1);
599   }
600   return out;
601 }
602