1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/ast/ast.h"
6
7 #include <cmath> // For isfinite.
8
9 #include "src/ast/prettyprinter.h"
10 #include "src/ast/scopes.h"
11 #include "src/base/hashmap.h"
12 #include "src/builtins.h"
13 #include "src/code-stubs.h"
14 #include "src/contexts.h"
15 #include "src/conversions.h"
16 #include "src/parsing/parser.h"
17 #include "src/property-details.h"
18 #include "src/property.h"
19 #include "src/string-stream.h"
20 #include "src/type-info.h"
21
22 namespace v8 {
23 namespace internal {
24
25 // ----------------------------------------------------------------------------
26 // All the Accept member functions for each syntax tree node type.
27
28 #define DECL_ACCEPT(type) \
29 void type::Accept(AstVisitor* v) { v->Visit##type(this); }
AST_NODE_LIST(DECL_ACCEPT)30 AST_NODE_LIST(DECL_ACCEPT)
31 #undef DECL_ACCEPT
32
33
34 // ----------------------------------------------------------------------------
35 // Implementation of other node functionality.
36
37 #ifdef DEBUG
38
39 void AstNode::Print(Isolate* isolate) {
40 AstPrinter::PrintOut(isolate, this);
41 }
42
43
PrettyPrint(Isolate * isolate)44 void AstNode::PrettyPrint(Isolate* isolate) {
45 PrettyPrinter::PrintOut(isolate, this);
46 }
47
48 #endif // DEBUG
49
50
IsSmiLiteral() const51 bool Expression::IsSmiLiteral() const {
52 return IsLiteral() && AsLiteral()->value()->IsSmi();
53 }
54
55
IsStringLiteral() const56 bool Expression::IsStringLiteral() const {
57 return IsLiteral() && AsLiteral()->value()->IsString();
58 }
59
60
IsNullLiteral() const61 bool Expression::IsNullLiteral() const {
62 if (!IsLiteral()) return false;
63 Handle<Object> value = AsLiteral()->value();
64 return !value->IsSmi() &&
65 value->IsNull(HeapObject::cast(*value)->GetIsolate());
66 }
67
IsUndefinedLiteral() const68 bool Expression::IsUndefinedLiteral() const {
69 if (IsLiteral()) {
70 Handle<Object> value = AsLiteral()->value();
71 if (!value->IsSmi() &&
72 value->IsUndefined(HeapObject::cast(*value)->GetIsolate())) {
73 return true;
74 }
75 }
76
77 const VariableProxy* var_proxy = AsVariableProxy();
78 if (var_proxy == NULL) return false;
79 Variable* var = var_proxy->var();
80 // The global identifier "undefined" is immutable. Everything
81 // else could be reassigned.
82 return var != NULL && var->IsUnallocatedOrGlobalSlot() &&
83 var_proxy->raw_name()->IsOneByteEqualTo("undefined");
84 }
85
86
IsValidReferenceExpressionOrThis() const87 bool Expression::IsValidReferenceExpressionOrThis() const {
88 return IsValidReferenceExpression() ||
89 (IsVariableProxy() && AsVariableProxy()->is_this());
90 }
91
92
VariableProxy(Zone * zone,Variable * var,int start_position,int end_position)93 VariableProxy::VariableProxy(Zone* zone, Variable* var, int start_position,
94 int end_position)
95 : Expression(zone, start_position),
96 bit_field_(IsThisField::encode(var->is_this()) |
97 IsAssignedField::encode(false) |
98 IsResolvedField::encode(false)),
99 raw_name_(var->raw_name()),
100 end_position_(end_position) {
101 BindTo(var);
102 }
103
104
VariableProxy(Zone * zone,const AstRawString * name,Variable::Kind variable_kind,int start_position,int end_position)105 VariableProxy::VariableProxy(Zone* zone, const AstRawString* name,
106 Variable::Kind variable_kind, int start_position,
107 int end_position)
108 : Expression(zone, start_position),
109 bit_field_(IsThisField::encode(variable_kind == Variable::THIS) |
110 IsAssignedField::encode(false) |
111 IsResolvedField::encode(false)),
112 raw_name_(name),
113 end_position_(end_position) {}
114
115
BindTo(Variable * var)116 void VariableProxy::BindTo(Variable* var) {
117 DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
118 set_var(var);
119 set_is_resolved();
120 var->set_is_used();
121 }
122
123
AssignFeedbackVectorSlots(Isolate * isolate,FeedbackVectorSpec * spec,FeedbackVectorSlotCache * cache)124 void VariableProxy::AssignFeedbackVectorSlots(Isolate* isolate,
125 FeedbackVectorSpec* spec,
126 FeedbackVectorSlotCache* cache) {
127 if (UsesVariableFeedbackSlot()) {
128 // VariableProxies that point to the same Variable within a function can
129 // make their loads from the same IC slot.
130 if (var()->IsUnallocated() || var()->mode() == DYNAMIC_GLOBAL) {
131 ZoneHashMap::Entry* entry = cache->Get(var());
132 if (entry != NULL) {
133 variable_feedback_slot_ = FeedbackVectorSlot(
134 static_cast<int>(reinterpret_cast<intptr_t>(entry->value)));
135 return;
136 }
137 variable_feedback_slot_ = spec->AddLoadGlobalICSlot(var()->name());
138 cache->Put(var(), variable_feedback_slot_);
139 } else {
140 variable_feedback_slot_ = spec->AddLoadICSlot();
141 }
142 }
143 }
144
145
AssignVectorSlots(Expression * expr,FeedbackVectorSpec * spec,FeedbackVectorSlot * out_slot)146 static void AssignVectorSlots(Expression* expr, FeedbackVectorSpec* spec,
147 FeedbackVectorSlot* out_slot) {
148 Property* property = expr->AsProperty();
149 LhsKind assign_type = Property::GetAssignType(property);
150 if ((assign_type == VARIABLE &&
151 expr->AsVariableProxy()->var()->IsUnallocated()) ||
152 assign_type == NAMED_PROPERTY || assign_type == KEYED_PROPERTY) {
153 // TODO(ishell): consider using ICSlotCache for variables here.
154 FeedbackVectorSlotKind kind = assign_type == KEYED_PROPERTY
155 ? FeedbackVectorSlotKind::KEYED_STORE_IC
156 : FeedbackVectorSlotKind::STORE_IC;
157 *out_slot = spec->AddSlot(kind);
158 }
159 }
160
AssignFeedbackVectorSlots(Isolate * isolate,FeedbackVectorSpec * spec,FeedbackVectorSlotCache * cache)161 void ForInStatement::AssignFeedbackVectorSlots(Isolate* isolate,
162 FeedbackVectorSpec* spec,
163 FeedbackVectorSlotCache* cache) {
164 AssignVectorSlots(each(), spec, &each_slot_);
165 for_in_feedback_slot_ = spec->AddGeneralSlot();
166 }
167
168
Assignment(Zone * zone,Token::Value op,Expression * target,Expression * value,int pos)169 Assignment::Assignment(Zone* zone, Token::Value op, Expression* target,
170 Expression* value, int pos)
171 : Expression(zone, pos),
172 bit_field_(
173 IsUninitializedField::encode(false) | KeyTypeField::encode(ELEMENT) |
174 StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op)),
175 target_(target),
176 value_(value),
177 binary_operation_(NULL) {}
178
179
AssignFeedbackVectorSlots(Isolate * isolate,FeedbackVectorSpec * spec,FeedbackVectorSlotCache * cache)180 void Assignment::AssignFeedbackVectorSlots(Isolate* isolate,
181 FeedbackVectorSpec* spec,
182 FeedbackVectorSlotCache* cache) {
183 AssignVectorSlots(target(), spec, &slot_);
184 }
185
186
AssignFeedbackVectorSlots(Isolate * isolate,FeedbackVectorSpec * spec,FeedbackVectorSlotCache * cache)187 void CountOperation::AssignFeedbackVectorSlots(Isolate* isolate,
188 FeedbackVectorSpec* spec,
189 FeedbackVectorSlotCache* cache) {
190 AssignVectorSlots(expression(), spec, &slot_);
191 }
192
193
binary_op() const194 Token::Value Assignment::binary_op() const {
195 switch (op()) {
196 case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
197 case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
198 case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
199 case Token::ASSIGN_SHL: return Token::SHL;
200 case Token::ASSIGN_SAR: return Token::SAR;
201 case Token::ASSIGN_SHR: return Token::SHR;
202 case Token::ASSIGN_ADD: return Token::ADD;
203 case Token::ASSIGN_SUB: return Token::SUB;
204 case Token::ASSIGN_MUL: return Token::MUL;
205 case Token::ASSIGN_DIV: return Token::DIV;
206 case Token::ASSIGN_MOD: return Token::MOD;
207 default: UNREACHABLE();
208 }
209 return Token::ILLEGAL;
210 }
211
212
AllowsLazyCompilation()213 bool FunctionLiteral::AllowsLazyCompilation() {
214 return scope()->AllowsLazyCompilation();
215 }
216
217
AllowsLazyCompilationWithoutContext()218 bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
219 return scope()->AllowsLazyCompilationWithoutContext();
220 }
221
222
start_position() const223 int FunctionLiteral::start_position() const {
224 return scope()->start_position();
225 }
226
227
end_position() const228 int FunctionLiteral::end_position() const {
229 return scope()->end_position();
230 }
231
232
language_mode() const233 LanguageMode FunctionLiteral::language_mode() const {
234 return scope()->language_mode();
235 }
236
237
NeedsHomeObject(Expression * expr)238 bool FunctionLiteral::NeedsHomeObject(Expression* expr) {
239 if (expr == nullptr || !expr->IsFunctionLiteral()) return false;
240 DCHECK_NOT_NULL(expr->AsFunctionLiteral()->scope());
241 return expr->AsFunctionLiteral()->scope()->NeedsHomeObject();
242 }
243
244
ObjectLiteralProperty(Expression * key,Expression * value,Kind kind,bool is_static,bool is_computed_name)245 ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
246 Kind kind, bool is_static,
247 bool is_computed_name)
248 : key_(key),
249 value_(value),
250 kind_(kind),
251 emit_store_(true),
252 is_static_(is_static),
253 is_computed_name_(is_computed_name) {}
254
255
ObjectLiteralProperty(AstValueFactory * ast_value_factory,Expression * key,Expression * value,bool is_static,bool is_computed_name)256 ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
257 Expression* key, Expression* value,
258 bool is_static,
259 bool is_computed_name)
260 : key_(key),
261 value_(value),
262 emit_store_(true),
263 is_static_(is_static),
264 is_computed_name_(is_computed_name) {
265 if (!is_computed_name &&
266 key->AsLiteral()->raw_value()->EqualsString(
267 ast_value_factory->proto_string())) {
268 kind_ = PROTOTYPE;
269 } else if (value_->AsMaterializedLiteral() != NULL) {
270 kind_ = MATERIALIZED_LITERAL;
271 } else if (value_->IsLiteral()) {
272 kind_ = CONSTANT;
273 } else {
274 kind_ = COMPUTED;
275 }
276 }
277
NeedsSetFunctionName() const278 bool ObjectLiteralProperty::NeedsSetFunctionName() const {
279 return is_computed_name_ &&
280 (value_->IsAnonymousFunctionDefinition() ||
281 (value_->IsFunctionLiteral() &&
282 IsConciseMethod(value_->AsFunctionLiteral()->kind())));
283 }
284
AssignFeedbackVectorSlots(Isolate * isolate,FeedbackVectorSpec * spec,FeedbackVectorSlotCache * cache)285 void ClassLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
286 FeedbackVectorSpec* spec,
287 FeedbackVectorSlotCache* cache) {
288 // This logic that computes the number of slots needed for vector store
289 // ICs must mirror FullCodeGenerator::VisitClassLiteral.
290 prototype_slot_ = spec->AddLoadICSlot();
291 if (NeedsProxySlot()) {
292 proxy_slot_ = spec->AddStoreICSlot();
293 }
294
295 for (int i = 0; i < properties()->length(); i++) {
296 ObjectLiteral::Property* property = properties()->at(i);
297 Expression* value = property->value();
298 if (FunctionLiteral::NeedsHomeObject(value)) {
299 property->SetSlot(spec->AddStoreICSlot());
300 }
301 }
302 }
303
304
IsCompileTimeValue()305 bool ObjectLiteral::Property::IsCompileTimeValue() {
306 return kind_ == CONSTANT ||
307 (kind_ == MATERIALIZED_LITERAL &&
308 CompileTimeValue::IsCompileTimeValue(value_));
309 }
310
311
set_emit_store(bool emit_store)312 void ObjectLiteral::Property::set_emit_store(bool emit_store) {
313 emit_store_ = emit_store;
314 }
315
316
emit_store()317 bool ObjectLiteral::Property::emit_store() {
318 return emit_store_;
319 }
320
321
AssignFeedbackVectorSlots(Isolate * isolate,FeedbackVectorSpec * spec,FeedbackVectorSlotCache * cache)322 void ObjectLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
323 FeedbackVectorSpec* spec,
324 FeedbackVectorSlotCache* cache) {
325 // This logic that computes the number of slots needed for vector store
326 // ics must mirror FullCodeGenerator::VisitObjectLiteral.
327 int property_index = 0;
328 for (; property_index < properties()->length(); property_index++) {
329 ObjectLiteral::Property* property = properties()->at(property_index);
330 if (property->is_computed_name()) break;
331 if (property->IsCompileTimeValue()) continue;
332
333 Literal* key = property->key()->AsLiteral();
334 Expression* value = property->value();
335 switch (property->kind()) {
336 case ObjectLiteral::Property::CONSTANT:
337 UNREACHABLE();
338 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
339 // Fall through.
340 case ObjectLiteral::Property::COMPUTED:
341 // It is safe to use [[Put]] here because the boilerplate already
342 // contains computed properties with an uninitialized value.
343 if (key->value()->IsInternalizedString()) {
344 if (property->emit_store()) {
345 property->SetSlot(spec->AddStoreICSlot());
346 if (FunctionLiteral::NeedsHomeObject(value)) {
347 property->SetSlot(spec->AddStoreICSlot(), 1);
348 }
349 }
350 break;
351 }
352 if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
353 property->SetSlot(spec->AddStoreICSlot());
354 }
355 break;
356 case ObjectLiteral::Property::PROTOTYPE:
357 break;
358 case ObjectLiteral::Property::GETTER:
359 if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
360 property->SetSlot(spec->AddStoreICSlot());
361 }
362 break;
363 case ObjectLiteral::Property::SETTER:
364 if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
365 property->SetSlot(spec->AddStoreICSlot());
366 }
367 break;
368 }
369 }
370
371 for (; property_index < properties()->length(); property_index++) {
372 ObjectLiteral::Property* property = properties()->at(property_index);
373
374 Expression* value = property->value();
375 if (property->kind() != ObjectLiteral::Property::PROTOTYPE) {
376 if (FunctionLiteral::NeedsHomeObject(value)) {
377 property->SetSlot(spec->AddStoreICSlot());
378 }
379 }
380 }
381 }
382
383
CalculateEmitStore(Zone * zone)384 void ObjectLiteral::CalculateEmitStore(Zone* zone) {
385 const auto GETTER = ObjectLiteral::Property::GETTER;
386 const auto SETTER = ObjectLiteral::Property::SETTER;
387
388 ZoneAllocationPolicy allocator(zone);
389
390 ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
391 allocator);
392 for (int i = properties()->length() - 1; i >= 0; i--) {
393 ObjectLiteral::Property* property = properties()->at(i);
394 if (property->is_computed_name()) continue;
395 if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
396 Literal* literal = property->key()->AsLiteral();
397 DCHECK(!literal->IsNullLiteral());
398
399 // If there is an existing entry do not emit a store unless the previous
400 // entry was also an accessor.
401 uint32_t hash = literal->Hash();
402 ZoneHashMap::Entry* entry = table.LookupOrInsert(literal, hash, allocator);
403 if (entry->value != NULL) {
404 auto previous_kind =
405 static_cast<ObjectLiteral::Property*>(entry->value)->kind();
406 if (!((property->kind() == GETTER && previous_kind == SETTER) ||
407 (property->kind() == SETTER && previous_kind == GETTER))) {
408 property->set_emit_store(false);
409 }
410 }
411 entry->value = property;
412 }
413 }
414
415
IsBoilerplateProperty(ObjectLiteral::Property * property)416 bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
417 return property != NULL &&
418 property->kind() != ObjectLiteral::Property::PROTOTYPE;
419 }
420
421
BuildConstantProperties(Isolate * isolate)422 void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
423 if (!constant_properties_.is_null()) return;
424
425 // Allocate a fixed array to hold all the constant properties.
426 Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
427 boilerplate_properties_ * 2, TENURED);
428
429 int position = 0;
430 // Accumulate the value in local variables and store it at the end.
431 bool is_simple = true;
432 int depth_acc = 1;
433 uint32_t max_element_index = 0;
434 uint32_t elements = 0;
435 for (int i = 0; i < properties()->length(); i++) {
436 ObjectLiteral::Property* property = properties()->at(i);
437 if (!IsBoilerplateProperty(property)) {
438 is_simple = false;
439 continue;
440 }
441
442 if (position == boilerplate_properties_ * 2) {
443 DCHECK(property->is_computed_name());
444 is_simple = false;
445 break;
446 }
447 DCHECK(!property->is_computed_name());
448
449 MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
450 if (m_literal != NULL) {
451 m_literal->BuildConstants(isolate);
452 if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
453 }
454
455 // Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
456 // value for COMPUTED properties, the real value is filled in at
457 // runtime. The enumeration order is maintained.
458 Handle<Object> key = property->key()->AsLiteral()->value();
459 Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
460
461 // Ensure objects that may, at any point in time, contain fields with double
462 // representation are always treated as nested objects. This is true for
463 // computed fields (value is undefined), and smi and double literals
464 // (value->IsNumber()).
465 // TODO(verwaest): Remove once we can store them inline.
466 if (FLAG_track_double_fields &&
467 (value->IsNumber() || value->IsUninitialized(isolate))) {
468 may_store_doubles_ = true;
469 }
470
471 is_simple = is_simple && !value->IsUninitialized(isolate);
472
473 // Keep track of the number of elements in the object literal and
474 // the largest element index. If the largest element index is
475 // much larger than the number of elements, creating an object
476 // literal with fast elements will be a waste of space.
477 uint32_t element_index = 0;
478 if (key->IsString() && String::cast(*key)->AsArrayIndex(&element_index)) {
479 max_element_index = Max(element_index, max_element_index);
480 elements++;
481 key = isolate->factory()->NewNumberFromUint(element_index);
482 } else if (key->ToArrayIndex(&element_index)) {
483 max_element_index = Max(element_index, max_element_index);
484 elements++;
485 } else if (key->IsNumber()) {
486 key = isolate->factory()->NumberToString(key);
487 }
488
489 // Add name, value pair to the fixed array.
490 constant_properties->set(position++, *key);
491 constant_properties->set(position++, *value);
492 }
493
494 constant_properties_ = constant_properties;
495 fast_elements_ =
496 (max_element_index <= 32) || ((2 * elements) >= max_element_index);
497 has_elements_ = elements > 0;
498 set_is_simple(is_simple);
499 set_depth(depth_acc);
500 }
501
502
BuildConstantElements(Isolate * isolate)503 void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
504 DCHECK_LT(first_spread_index_, 0);
505
506 if (!constant_elements_.is_null()) return;
507
508 int constants_length = values()->length();
509
510 // Allocate a fixed array to hold all the object literals.
511 Handle<JSArray> array = isolate->factory()->NewJSArray(
512 FAST_HOLEY_SMI_ELEMENTS, constants_length, constants_length,
513 INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
514
515 // Fill in the literals.
516 bool is_simple = true;
517 int depth_acc = 1;
518 bool is_holey = false;
519 int array_index = 0;
520 for (; array_index < constants_length; array_index++) {
521 Expression* element = values()->at(array_index);
522 DCHECK(!element->IsSpread());
523 MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
524 if (m_literal != NULL) {
525 m_literal->BuildConstants(isolate);
526 if (m_literal->depth() + 1 > depth_acc) {
527 depth_acc = m_literal->depth() + 1;
528 }
529 }
530
531 // New handle scope here, needs to be after BuildContants().
532 HandleScope scope(isolate);
533 Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
534 if (boilerplate_value->IsTheHole(isolate)) {
535 is_holey = true;
536 continue;
537 }
538
539 if (boilerplate_value->IsUninitialized(isolate)) {
540 boilerplate_value = handle(Smi::FromInt(0), isolate);
541 is_simple = false;
542 }
543
544 JSObject::AddDataElement(array, array_index, boilerplate_value, NONE)
545 .Assert();
546 }
547
548 JSObject::ValidateElements(array);
549 Handle<FixedArrayBase> element_values(array->elements());
550
551 // Simple and shallow arrays can be lazily copied, we transform the
552 // elements array to a copy-on-write array.
553 if (is_simple && depth_acc == 1 && array_index > 0 &&
554 array->HasFastSmiOrObjectElements()) {
555 element_values->set_map(isolate->heap()->fixed_cow_array_map());
556 }
557
558 // Remember both the literal's constant values as well as the ElementsKind
559 // in a 2-element FixedArray.
560 Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
561
562 ElementsKind kind = array->GetElementsKind();
563 kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
564
565 literals->set(0, Smi::FromInt(kind));
566 literals->set(1, *element_values);
567
568 constant_elements_ = literals;
569 set_is_simple(is_simple);
570 set_depth(depth_acc);
571 }
572
573
AssignFeedbackVectorSlots(Isolate * isolate,FeedbackVectorSpec * spec,FeedbackVectorSlotCache * cache)574 void ArrayLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
575 FeedbackVectorSpec* spec,
576 FeedbackVectorSlotCache* cache) {
577 // This logic that computes the number of slots needed for vector store
578 // ics must mirror FullCodeGenerator::VisitArrayLiteral.
579 int array_index = 0;
580 for (; array_index < values()->length(); array_index++) {
581 Expression* subexpr = values()->at(array_index);
582 DCHECK(!subexpr->IsSpread());
583 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
584
585 // We'll reuse the same literal slot for all of the non-constant
586 // subexpressions that use a keyed store IC.
587 literal_slot_ = spec->AddKeyedStoreICSlot();
588 return;
589 }
590 }
591
592
GetBoilerplateValue(Expression * expression,Isolate * isolate)593 Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
594 Isolate* isolate) {
595 if (expression->IsLiteral()) {
596 return expression->AsLiteral()->value();
597 }
598 if (CompileTimeValue::IsCompileTimeValue(expression)) {
599 return CompileTimeValue::GetValue(isolate, expression);
600 }
601 return isolate->factory()->uninitialized_value();
602 }
603
604
BuildConstants(Isolate * isolate)605 void MaterializedLiteral::BuildConstants(Isolate* isolate) {
606 if (IsArrayLiteral()) {
607 return AsArrayLiteral()->BuildConstantElements(isolate);
608 }
609 if (IsObjectLiteral()) {
610 return AsObjectLiteral()->BuildConstantProperties(isolate);
611 }
612 DCHECK(IsRegExpLiteral());
613 DCHECK(depth() >= 1); // Depth should be initialized.
614 }
615
616
RecordToBooleanTypeFeedback(TypeFeedbackOracle * oracle)617 void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
618 // TODO(olivf) If this Operation is used in a test context, then the
619 // expression has a ToBoolean stub and we want to collect the type
620 // information. However the GraphBuilder expects it to be on the instruction
621 // corresponding to the TestContext, therefore we have to store it here and
622 // not on the operand.
623 set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
624 }
625
626
RecordToBooleanTypeFeedback(TypeFeedbackOracle * oracle)627 void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
628 // TODO(olivf) If this Operation is used in a test context, then the right
629 // hand side has a ToBoolean stub and we want to collect the type information.
630 // However the GraphBuilder expects it to be on the instruction corresponding
631 // to the TestContext, therefore we have to store it here and not on the
632 // right hand operand.
633 set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
634 }
635
636
IsTypeof(Expression * expr)637 static bool IsTypeof(Expression* expr) {
638 UnaryOperation* maybe_unary = expr->AsUnaryOperation();
639 return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
640 }
641
642
643 // Check for the pattern: typeof <expression> equals <string literal>.
MatchLiteralCompareTypeof(Expression * left,Token::Value op,Expression * right,Expression ** expr,Handle<String> * check)644 static bool MatchLiteralCompareTypeof(Expression* left,
645 Token::Value op,
646 Expression* right,
647 Expression** expr,
648 Handle<String>* check) {
649 if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
650 *expr = left->AsUnaryOperation()->expression();
651 *check = Handle<String>::cast(right->AsLiteral()->value());
652 return true;
653 }
654 return false;
655 }
656
657
IsLiteralCompareTypeof(Expression ** expr,Handle<String> * check)658 bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
659 Handle<String>* check) {
660 return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
661 MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
662 }
663
664
IsVoidOfLiteral(Expression * expr)665 static bool IsVoidOfLiteral(Expression* expr) {
666 UnaryOperation* maybe_unary = expr->AsUnaryOperation();
667 return maybe_unary != NULL &&
668 maybe_unary->op() == Token::VOID &&
669 maybe_unary->expression()->IsLiteral();
670 }
671
672
673 // Check for the pattern: void <literal> equals <expression> or
674 // undefined equals <expression>
MatchLiteralCompareUndefined(Expression * left,Token::Value op,Expression * right,Expression ** expr)675 static bool MatchLiteralCompareUndefined(Expression* left,
676 Token::Value op,
677 Expression* right,
678 Expression** expr) {
679 if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
680 *expr = right;
681 return true;
682 }
683 if (left->IsUndefinedLiteral() && Token::IsEqualityOp(op)) {
684 *expr = right;
685 return true;
686 }
687 return false;
688 }
689
IsLiteralCompareUndefined(Expression ** expr)690 bool CompareOperation::IsLiteralCompareUndefined(Expression** expr) {
691 return MatchLiteralCompareUndefined(left_, op_, right_, expr) ||
692 MatchLiteralCompareUndefined(right_, op_, left_, expr);
693 }
694
695
696 // Check for the pattern: null equals <expression>
MatchLiteralCompareNull(Expression * left,Token::Value op,Expression * right,Expression ** expr)697 static bool MatchLiteralCompareNull(Expression* left,
698 Token::Value op,
699 Expression* right,
700 Expression** expr) {
701 if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
702 *expr = right;
703 return true;
704 }
705 return false;
706 }
707
708
IsLiteralCompareNull(Expression ** expr)709 bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
710 return MatchLiteralCompareNull(left_, op_, right_, expr) ||
711 MatchLiteralCompareNull(right_, op_, left_, expr);
712 }
713
714
715 // ----------------------------------------------------------------------------
716 // Inlining support
717
IsInlineable() const718 bool Declaration::IsInlineable() const {
719 return proxy()->var()->IsStackAllocated();
720 }
721
IsInlineable() const722 bool FunctionDeclaration::IsInlineable() const {
723 return false;
724 }
725
726
727 // ----------------------------------------------------------------------------
728 // Recording of type feedback
729
730 // TODO(rossberg): all RecordTypeFeedback functions should disappear
731 // once we use the common type field in the AST consistently.
732
RecordToBooleanTypeFeedback(TypeFeedbackOracle * oracle)733 void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
734 set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
735 }
736
737
IsUsingCallFeedbackICSlot(Isolate * isolate) const738 bool Call::IsUsingCallFeedbackICSlot(Isolate* isolate) const {
739 CallType call_type = GetCallType(isolate);
740 if (call_type == POSSIBLY_EVAL_CALL) {
741 return false;
742 }
743 return true;
744 }
745
746
IsUsingCallFeedbackSlot(Isolate * isolate) const747 bool Call::IsUsingCallFeedbackSlot(Isolate* isolate) const {
748 // SuperConstructorCall uses a CallConstructStub, which wants
749 // a Slot, in addition to any IC slots requested elsewhere.
750 return GetCallType(isolate) == SUPER_CALL;
751 }
752
753
AssignFeedbackVectorSlots(Isolate * isolate,FeedbackVectorSpec * spec,FeedbackVectorSlotCache * cache)754 void Call::AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
755 FeedbackVectorSlotCache* cache) {
756 if (IsUsingCallFeedbackICSlot(isolate)) {
757 ic_slot_ = spec->AddCallICSlot();
758 }
759 if (IsUsingCallFeedbackSlot(isolate)) {
760 stub_slot_ = spec->AddGeneralSlot();
761 }
762 }
763
764
GetCallType(Isolate * isolate) const765 Call::CallType Call::GetCallType(Isolate* isolate) const {
766 VariableProxy* proxy = expression()->AsVariableProxy();
767 if (proxy != NULL) {
768 if (proxy->var()->is_possibly_eval(isolate)) {
769 return POSSIBLY_EVAL_CALL;
770 } else if (proxy->var()->IsUnallocatedOrGlobalSlot()) {
771 return GLOBAL_CALL;
772 } else if (proxy->var()->IsLookupSlot()) {
773 return LOOKUP_SLOT_CALL;
774 }
775 }
776
777 if (expression()->IsSuperCallReference()) return SUPER_CALL;
778
779 Property* property = expression()->AsProperty();
780 if (property != nullptr) {
781 bool is_super = property->IsSuperAccess();
782 if (property->key()->IsPropertyName()) {
783 return is_super ? NAMED_SUPER_PROPERTY_CALL : NAMED_PROPERTY_CALL;
784 } else {
785 return is_super ? KEYED_SUPER_PROPERTY_CALL : KEYED_PROPERTY_CALL;
786 }
787 }
788
789 return OTHER_CALL;
790 }
791
792
793 // ----------------------------------------------------------------------------
794 // Implementation of AstVisitor
795
VisitDeclarations(ZoneList<Declaration * > * declarations)796 void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
797 for (int i = 0; i < declarations->length(); i++) {
798 Visit(declarations->at(i));
799 }
800 }
801
802
VisitStatements(ZoneList<Statement * > * statements)803 void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
804 for (int i = 0; i < statements->length(); i++) {
805 Statement* stmt = statements->at(i);
806 Visit(stmt);
807 if (stmt->IsJump()) break;
808 }
809 }
810
811
VisitExpressions(ZoneList<Expression * > * expressions)812 void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
813 for (int i = 0; i < expressions->length(); i++) {
814 // The variable statement visiting code may pass NULL expressions
815 // to this code. Maybe this should be handled by introducing an
816 // undefined expression or literal? Revisit this code if this
817 // changes
818 Expression* expression = expressions->at(i);
819 if (expression != NULL) Visit(expression);
820 }
821 }
822
823 // ----------------------------------------------------------------------------
824 // Implementation of AstTraversalVisitor
825
826 #define RECURSE(call) \
827 do { \
828 DCHECK(!HasStackOverflow()); \
829 call; \
830 if (HasStackOverflow()) return; \
831 } while (false)
832
833 #define RECURSE_EXPRESSION(call) \
834 do { \
835 DCHECK(!HasStackOverflow()); \
836 ++depth_; \
837 call; \
838 --depth_; \
839 if (HasStackOverflow()) return; \
840 } while (false)
841
AstTraversalVisitor(Isolate * isolate)842 AstTraversalVisitor::AstTraversalVisitor(Isolate* isolate) : depth_(0) {
843 InitializeAstVisitor(isolate);
844 }
845
AstTraversalVisitor(uintptr_t stack_limit)846 AstTraversalVisitor::AstTraversalVisitor(uintptr_t stack_limit) : depth_(0) {
847 InitializeAstVisitor(stack_limit);
848 }
849
VisitDeclarations(ZoneList<Declaration * > * decls)850 void AstTraversalVisitor::VisitDeclarations(ZoneList<Declaration*>* decls) {
851 for (int i = 0; i < decls->length(); ++i) {
852 Declaration* decl = decls->at(i);
853 RECURSE(Visit(decl));
854 }
855 }
856
VisitStatements(ZoneList<Statement * > * stmts)857 void AstTraversalVisitor::VisitStatements(ZoneList<Statement*>* stmts) {
858 for (int i = 0; i < stmts->length(); ++i) {
859 Statement* stmt = stmts->at(i);
860 RECURSE(Visit(stmt));
861 if (stmt->IsJump()) break;
862 }
863 }
864
VisitVariableDeclaration(VariableDeclaration * decl)865 void AstTraversalVisitor::VisitVariableDeclaration(VariableDeclaration* decl) {}
866
VisitFunctionDeclaration(FunctionDeclaration * decl)867 void AstTraversalVisitor::VisitFunctionDeclaration(FunctionDeclaration* decl) {
868 RECURSE(Visit(decl->fun()));
869 }
870
VisitImportDeclaration(ImportDeclaration * decl)871 void AstTraversalVisitor::VisitImportDeclaration(ImportDeclaration* decl) {}
872
VisitExportDeclaration(ExportDeclaration * decl)873 void AstTraversalVisitor::VisitExportDeclaration(ExportDeclaration* decl) {}
874
VisitBlock(Block * stmt)875 void AstTraversalVisitor::VisitBlock(Block* stmt) {
876 RECURSE(VisitStatements(stmt->statements()));
877 }
878
VisitExpressionStatement(ExpressionStatement * stmt)879 void AstTraversalVisitor::VisitExpressionStatement(ExpressionStatement* stmt) {
880 RECURSE(Visit(stmt->expression()));
881 }
882
VisitEmptyStatement(EmptyStatement * stmt)883 void AstTraversalVisitor::VisitEmptyStatement(EmptyStatement* stmt) {}
884
VisitSloppyBlockFunctionStatement(SloppyBlockFunctionStatement * stmt)885 void AstTraversalVisitor::VisitSloppyBlockFunctionStatement(
886 SloppyBlockFunctionStatement* stmt) {
887 RECURSE(Visit(stmt->statement()));
888 }
889
VisitIfStatement(IfStatement * stmt)890 void AstTraversalVisitor::VisitIfStatement(IfStatement* stmt) {
891 RECURSE(Visit(stmt->condition()));
892 RECURSE(Visit(stmt->then_statement()));
893 RECURSE(Visit(stmt->else_statement()));
894 }
895
VisitContinueStatement(ContinueStatement * stmt)896 void AstTraversalVisitor::VisitContinueStatement(ContinueStatement* stmt) {}
897
VisitBreakStatement(BreakStatement * stmt)898 void AstTraversalVisitor::VisitBreakStatement(BreakStatement* stmt) {}
899
VisitReturnStatement(ReturnStatement * stmt)900 void AstTraversalVisitor::VisitReturnStatement(ReturnStatement* stmt) {
901 RECURSE(Visit(stmt->expression()));
902 }
903
VisitWithStatement(WithStatement * stmt)904 void AstTraversalVisitor::VisitWithStatement(WithStatement* stmt) {
905 RECURSE(stmt->expression());
906 RECURSE(stmt->statement());
907 }
908
VisitSwitchStatement(SwitchStatement * stmt)909 void AstTraversalVisitor::VisitSwitchStatement(SwitchStatement* stmt) {
910 RECURSE(Visit(stmt->tag()));
911
912 ZoneList<CaseClause*>* clauses = stmt->cases();
913
914 for (int i = 0; i < clauses->length(); ++i) {
915 CaseClause* clause = clauses->at(i);
916 if (!clause->is_default()) {
917 Expression* label = clause->label();
918 RECURSE(Visit(label));
919 }
920 ZoneList<Statement*>* stmts = clause->statements();
921 RECURSE(VisitStatements(stmts));
922 }
923 }
924
VisitCaseClause(CaseClause * clause)925 void AstTraversalVisitor::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); }
926
VisitDoWhileStatement(DoWhileStatement * stmt)927 void AstTraversalVisitor::VisitDoWhileStatement(DoWhileStatement* stmt) {
928 RECURSE(Visit(stmt->body()));
929 RECURSE(Visit(stmt->cond()));
930 }
931
VisitWhileStatement(WhileStatement * stmt)932 void AstTraversalVisitor::VisitWhileStatement(WhileStatement* stmt) {
933 RECURSE(Visit(stmt->cond()));
934 RECURSE(Visit(stmt->body()));
935 }
936
VisitForStatement(ForStatement * stmt)937 void AstTraversalVisitor::VisitForStatement(ForStatement* stmt) {
938 if (stmt->init() != NULL) {
939 RECURSE(Visit(stmt->init()));
940 }
941 if (stmt->cond() != NULL) {
942 RECURSE(Visit(stmt->cond()));
943 }
944 if (stmt->next() != NULL) {
945 RECURSE(Visit(stmt->next()));
946 }
947 RECURSE(Visit(stmt->body()));
948 }
949
VisitForInStatement(ForInStatement * stmt)950 void AstTraversalVisitor::VisitForInStatement(ForInStatement* stmt) {
951 RECURSE(Visit(stmt->enumerable()));
952 RECURSE(Visit(stmt->body()));
953 }
954
VisitForOfStatement(ForOfStatement * stmt)955 void AstTraversalVisitor::VisitForOfStatement(ForOfStatement* stmt) {
956 RECURSE(Visit(stmt->assign_iterator()));
957 RECURSE(Visit(stmt->next_result()));
958 RECURSE(Visit(stmt->result_done()));
959 RECURSE(Visit(stmt->assign_each()));
960 RECURSE(Visit(stmt->body()));
961 }
962
VisitTryCatchStatement(TryCatchStatement * stmt)963 void AstTraversalVisitor::VisitTryCatchStatement(TryCatchStatement* stmt) {
964 RECURSE(Visit(stmt->try_block()));
965 RECURSE(Visit(stmt->catch_block()));
966 }
967
VisitTryFinallyStatement(TryFinallyStatement * stmt)968 void AstTraversalVisitor::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
969 RECURSE(Visit(stmt->try_block()));
970 RECURSE(Visit(stmt->finally_block()));
971 }
972
VisitDebuggerStatement(DebuggerStatement * stmt)973 void AstTraversalVisitor::VisitDebuggerStatement(DebuggerStatement* stmt) {}
974
VisitFunctionLiteral(FunctionLiteral * expr)975 void AstTraversalVisitor::VisitFunctionLiteral(FunctionLiteral* expr) {
976 Scope* scope = expr->scope();
977 RECURSE_EXPRESSION(VisitDeclarations(scope->declarations()));
978 RECURSE_EXPRESSION(VisitStatements(expr->body()));
979 }
980
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)981 void AstTraversalVisitor::VisitNativeFunctionLiteral(
982 NativeFunctionLiteral* expr) {}
983
VisitDoExpression(DoExpression * expr)984 void AstTraversalVisitor::VisitDoExpression(DoExpression* expr) {
985 RECURSE(VisitBlock(expr->block()));
986 RECURSE(VisitVariableProxy(expr->result()));
987 }
988
VisitConditional(Conditional * expr)989 void AstTraversalVisitor::VisitConditional(Conditional* expr) {
990 RECURSE_EXPRESSION(Visit(expr->condition()));
991 RECURSE_EXPRESSION(Visit(expr->then_expression()));
992 RECURSE_EXPRESSION(Visit(expr->else_expression()));
993 }
994
VisitVariableProxy(VariableProxy * expr)995 void AstTraversalVisitor::VisitVariableProxy(VariableProxy* expr) {}
996
VisitLiteral(Literal * expr)997 void AstTraversalVisitor::VisitLiteral(Literal* expr) {}
998
VisitRegExpLiteral(RegExpLiteral * expr)999 void AstTraversalVisitor::VisitRegExpLiteral(RegExpLiteral* expr) {}
1000
VisitObjectLiteral(ObjectLiteral * expr)1001 void AstTraversalVisitor::VisitObjectLiteral(ObjectLiteral* expr) {
1002 ZoneList<ObjectLiteralProperty*>* props = expr->properties();
1003 for (int i = 0; i < props->length(); ++i) {
1004 ObjectLiteralProperty* prop = props->at(i);
1005 if (!prop->key()->IsLiteral()) {
1006 RECURSE_EXPRESSION(Visit(prop->key()));
1007 }
1008 RECURSE_EXPRESSION(Visit(prop->value()));
1009 }
1010 }
1011
VisitArrayLiteral(ArrayLiteral * expr)1012 void AstTraversalVisitor::VisitArrayLiteral(ArrayLiteral* expr) {
1013 ZoneList<Expression*>* values = expr->values();
1014 for (int i = 0; i < values->length(); ++i) {
1015 Expression* value = values->at(i);
1016 RECURSE_EXPRESSION(Visit(value));
1017 }
1018 }
1019
VisitAssignment(Assignment * expr)1020 void AstTraversalVisitor::VisitAssignment(Assignment* expr) {
1021 RECURSE_EXPRESSION(Visit(expr->target()));
1022 RECURSE_EXPRESSION(Visit(expr->value()));
1023 }
1024
VisitYield(Yield * expr)1025 void AstTraversalVisitor::VisitYield(Yield* expr) {
1026 RECURSE_EXPRESSION(Visit(expr->generator_object()));
1027 RECURSE_EXPRESSION(Visit(expr->expression()));
1028 }
1029
VisitThrow(Throw * expr)1030 void AstTraversalVisitor::VisitThrow(Throw* expr) {
1031 RECURSE_EXPRESSION(Visit(expr->exception()));
1032 }
1033
VisitProperty(Property * expr)1034 void AstTraversalVisitor::VisitProperty(Property* expr) {
1035 RECURSE_EXPRESSION(Visit(expr->obj()));
1036 RECURSE_EXPRESSION(Visit(expr->key()));
1037 }
1038
VisitCall(Call * expr)1039 void AstTraversalVisitor::VisitCall(Call* expr) {
1040 RECURSE_EXPRESSION(Visit(expr->expression()));
1041 ZoneList<Expression*>* args = expr->arguments();
1042 for (int i = 0; i < args->length(); ++i) {
1043 Expression* arg = args->at(i);
1044 RECURSE_EXPRESSION(Visit(arg));
1045 }
1046 }
1047
VisitCallNew(CallNew * expr)1048 void AstTraversalVisitor::VisitCallNew(CallNew* expr) {
1049 RECURSE_EXPRESSION(Visit(expr->expression()));
1050 ZoneList<Expression*>* args = expr->arguments();
1051 for (int i = 0; i < args->length(); ++i) {
1052 Expression* arg = args->at(i);
1053 RECURSE_EXPRESSION(Visit(arg));
1054 }
1055 }
1056
VisitCallRuntime(CallRuntime * expr)1057 void AstTraversalVisitor::VisitCallRuntime(CallRuntime* expr) {
1058 ZoneList<Expression*>* args = expr->arguments();
1059 for (int i = 0; i < args->length(); ++i) {
1060 Expression* arg = args->at(i);
1061 RECURSE_EXPRESSION(Visit(arg));
1062 }
1063 }
1064
VisitUnaryOperation(UnaryOperation * expr)1065 void AstTraversalVisitor::VisitUnaryOperation(UnaryOperation* expr) {
1066 RECURSE_EXPRESSION(Visit(expr->expression()));
1067 }
1068
VisitCountOperation(CountOperation * expr)1069 void AstTraversalVisitor::VisitCountOperation(CountOperation* expr) {
1070 RECURSE_EXPRESSION(Visit(expr->expression()));
1071 }
1072
VisitBinaryOperation(BinaryOperation * expr)1073 void AstTraversalVisitor::VisitBinaryOperation(BinaryOperation* expr) {
1074 RECURSE_EXPRESSION(Visit(expr->left()));
1075 RECURSE_EXPRESSION(Visit(expr->right()));
1076 }
1077
VisitCompareOperation(CompareOperation * expr)1078 void AstTraversalVisitor::VisitCompareOperation(CompareOperation* expr) {
1079 RECURSE_EXPRESSION(Visit(expr->left()));
1080 RECURSE_EXPRESSION(Visit(expr->right()));
1081 }
1082
VisitThisFunction(ThisFunction * expr)1083 void AstTraversalVisitor::VisitThisFunction(ThisFunction* expr) {}
1084
VisitClassLiteral(ClassLiteral * expr)1085 void AstTraversalVisitor::VisitClassLiteral(ClassLiteral* expr) {
1086 if (expr->extends() != nullptr) {
1087 RECURSE_EXPRESSION(Visit(expr->extends()));
1088 }
1089 RECURSE_EXPRESSION(Visit(expr->constructor()));
1090 ZoneList<ObjectLiteralProperty*>* props = expr->properties();
1091 for (int i = 0; i < props->length(); ++i) {
1092 ObjectLiteralProperty* prop = props->at(i);
1093 if (!prop->key()->IsLiteral()) {
1094 RECURSE_EXPRESSION(Visit(prop->key()));
1095 }
1096 RECURSE_EXPRESSION(Visit(prop->value()));
1097 }
1098 }
1099
VisitSpread(Spread * expr)1100 void AstTraversalVisitor::VisitSpread(Spread* expr) {
1101 RECURSE_EXPRESSION(Visit(expr->expression()));
1102 }
1103
VisitEmptyParentheses(EmptyParentheses * expr)1104 void AstTraversalVisitor::VisitEmptyParentheses(EmptyParentheses* expr) {}
1105
VisitSuperPropertyReference(SuperPropertyReference * expr)1106 void AstTraversalVisitor::VisitSuperPropertyReference(
1107 SuperPropertyReference* expr) {
1108 RECURSE_EXPRESSION(VisitVariableProxy(expr->this_var()));
1109 RECURSE_EXPRESSION(Visit(expr->home_object()));
1110 }
1111
VisitSuperCallReference(SuperCallReference * expr)1112 void AstTraversalVisitor::VisitSuperCallReference(SuperCallReference* expr) {
1113 RECURSE_EXPRESSION(VisitVariableProxy(expr->this_var()));
1114 RECURSE_EXPRESSION(VisitVariableProxy(expr->new_target_var()));
1115 RECURSE_EXPRESSION(VisitVariableProxy(expr->this_function_var()));
1116 }
1117
VisitRewritableExpression(RewritableExpression * expr)1118 void AstTraversalVisitor::VisitRewritableExpression(
1119 RewritableExpression* expr) {
1120 RECURSE(Visit(expr->expression()));
1121 }
1122
1123 #undef RECURSE_EXPRESSION
1124 #undef RECURSE
1125
CaseClause(Zone * zone,Expression * label,ZoneList<Statement * > * statements,int pos)1126 CaseClause::CaseClause(Zone* zone, Expression* label,
1127 ZoneList<Statement*>* statements, int pos)
1128 : Expression(zone, pos),
1129 label_(label),
1130 statements_(statements),
1131 compare_type_(Type::None()) {}
1132
Hash()1133 uint32_t Literal::Hash() {
1134 return raw_value()->IsString()
1135 ? raw_value()->AsString()->hash()
1136 : ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
1137 }
1138
1139
1140 // static
Match(void * literal1,void * literal2)1141 bool Literal::Match(void* literal1, void* literal2) {
1142 const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
1143 const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
1144 return (x->IsString() && y->IsString() && x->AsString() == y->AsString()) ||
1145 (x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
1146 }
1147
1148
1149 } // namespace internal
1150 } // namespace v8
1151