• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ access control semantics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclFriend.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DependentDiagnostic.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/Sema/DelayedDiagnostic.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 
26 using namespace clang;
27 using namespace sema;
28 
29 /// A copy of Sema's enum without AR_delayed.
30 enum AccessResult {
31   AR_accessible,
32   AR_inaccessible,
33   AR_dependent
34 };
35 
36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
37 /// Returns true on error (when the previous member decl access specifier
38 /// is different from the new member decl access specifier).
SetMemberAccessSpecifier(NamedDecl * MemberDecl,NamedDecl * PrevMemberDecl,AccessSpecifier LexicalAS)39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                     NamedDecl *PrevMemberDecl,
41                                     AccessSpecifier LexicalAS) {
42   if (!PrevMemberDecl) {
43     // Use the lexical access specifier.
44     MemberDecl->setAccess(LexicalAS);
45     return false;
46   }
47 
48   // C++ [class.access.spec]p3: When a member is redeclared its access
49   // specifier must be same as its initial declaration.
50   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51     Diag(MemberDecl->getLocation(),
52          diag::err_class_redeclared_with_different_access)
53       << MemberDecl << LexicalAS;
54     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55       << PrevMemberDecl << PrevMemberDecl->getAccess();
56 
57     MemberDecl->setAccess(LexicalAS);
58     return true;
59   }
60 
61   MemberDecl->setAccess(PrevMemberDecl->getAccess());
62   return false;
63 }
64 
FindDeclaringClass(NamedDecl * D)65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66   DeclContext *DC = D->getDeclContext();
67 
68   // This can only happen at top: enum decls only "publish" their
69   // immediate members.
70   if (isa<EnumDecl>(DC))
71     DC = cast<EnumDecl>(DC)->getDeclContext();
72 
73   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74   while (DeclaringClass->isAnonymousStructOrUnion())
75     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76   return DeclaringClass;
77 }
78 
79 namespace {
80 struct EffectiveContext {
EffectiveContext__anon09489d8a0111::EffectiveContext81   EffectiveContext() : Inner(nullptr), Dependent(false) {}
82 
EffectiveContext__anon09489d8a0111::EffectiveContext83   explicit EffectiveContext(DeclContext *DC)
84     : Inner(DC),
85       Dependent(DC->isDependentContext()) {
86 
87     // C++11 [class.access.nest]p1:
88     //   A nested class is a member and as such has the same access
89     //   rights as any other member.
90     // C++11 [class.access]p2:
91     //   A member of a class can also access all the names to which
92     //   the class has access.  A local class of a member function
93     //   may access the same names that the member function itself
94     //   may access.
95     // This almost implies that the privileges of nesting are transitive.
96     // Technically it says nothing about the local classes of non-member
97     // functions (which can gain privileges through friendship), but we
98     // take that as an oversight.
99     while (true) {
100       // We want to add canonical declarations to the EC lists for
101       // simplicity of checking, but we need to walk up through the
102       // actual current DC chain.  Otherwise, something like a local
103       // extern or friend which happens to be the canonical
104       // declaration will really mess us up.
105 
106       if (isa<CXXRecordDecl>(DC)) {
107         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108         Records.push_back(Record->getCanonicalDecl());
109         DC = Record->getDeclContext();
110       } else if (isa<FunctionDecl>(DC)) {
111         FunctionDecl *Function = cast<FunctionDecl>(DC);
112         Functions.push_back(Function->getCanonicalDecl());
113         if (Function->getFriendObjectKind())
114           DC = Function->getLexicalDeclContext();
115         else
116           DC = Function->getDeclContext();
117       } else if (DC->isFileContext()) {
118         break;
119       } else {
120         DC = DC->getParent();
121       }
122     }
123   }
124 
isDependent__anon09489d8a0111::EffectiveContext125   bool isDependent() const { return Dependent; }
126 
includesClass__anon09489d8a0111::EffectiveContext127   bool includesClass(const CXXRecordDecl *R) const {
128     R = R->getCanonicalDecl();
129     return std::find(Records.begin(), Records.end(), R)
130              != Records.end();
131   }
132 
133   /// Retrieves the innermost "useful" context.  Can be null if we're
134   /// doing access-control without privileges.
getInnerContext__anon09489d8a0111::EffectiveContext135   DeclContext *getInnerContext() const {
136     return Inner;
137   }
138 
139   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
140 
141   DeclContext *Inner;
142   SmallVector<FunctionDecl*, 4> Functions;
143   SmallVector<CXXRecordDecl*, 4> Records;
144   bool Dependent;
145 };
146 
147 /// Like sema::AccessedEntity, but kindly lets us scribble all over
148 /// it.
149 struct AccessTarget : public AccessedEntity {
AccessTarget__anon09489d8a0111::AccessTarget150   AccessTarget(const AccessedEntity &Entity)
151     : AccessedEntity(Entity) {
152     initialize();
153   }
154 
AccessTarget__anon09489d8a0111::AccessTarget155   AccessTarget(ASTContext &Context,
156                MemberNonce _,
157                CXXRecordDecl *NamingClass,
158                DeclAccessPair FoundDecl,
159                QualType BaseObjectType)
160     : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
161                      FoundDecl, BaseObjectType) {
162     initialize();
163   }
164 
AccessTarget__anon09489d8a0111::AccessTarget165   AccessTarget(ASTContext &Context,
166                BaseNonce _,
167                CXXRecordDecl *BaseClass,
168                CXXRecordDecl *DerivedClass,
169                AccessSpecifier Access)
170     : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
171                      Access) {
172     initialize();
173   }
174 
isInstanceMember__anon09489d8a0111::AccessTarget175   bool isInstanceMember() const {
176     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
177   }
178 
hasInstanceContext__anon09489d8a0111::AccessTarget179   bool hasInstanceContext() const {
180     return HasInstanceContext;
181   }
182 
183   class SavedInstanceContext {
184   public:
SavedInstanceContext(SavedInstanceContext && S)185     SavedInstanceContext(SavedInstanceContext &&S)
186         : Target(S.Target), Has(S.Has) {
187       S.Target = nullptr;
188     }
~SavedInstanceContext()189     ~SavedInstanceContext() {
190       if (Target)
191         Target->HasInstanceContext = Has;
192     }
193 
194   private:
195     friend struct AccessTarget;
SavedInstanceContext(AccessTarget & Target)196     explicit SavedInstanceContext(AccessTarget &Target)
197         : Target(&Target), Has(Target.HasInstanceContext) {}
198     AccessTarget *Target;
199     bool Has;
200   };
201 
saveInstanceContext__anon09489d8a0111::AccessTarget202   SavedInstanceContext saveInstanceContext() {
203     return SavedInstanceContext(*this);
204   }
205 
suppressInstanceContext__anon09489d8a0111::AccessTarget206   void suppressInstanceContext() {
207     HasInstanceContext = false;
208   }
209 
resolveInstanceContext__anon09489d8a0111::AccessTarget210   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
211     assert(HasInstanceContext);
212     if (CalculatedInstanceContext)
213       return InstanceContext;
214 
215     CalculatedInstanceContext = true;
216     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
217     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
218                           : nullptr);
219     return InstanceContext;
220   }
221 
getDeclaringClass__anon09489d8a0111::AccessTarget222   const CXXRecordDecl *getDeclaringClass() const {
223     return DeclaringClass;
224   }
225 
226   /// The "effective" naming class is the canonical non-anonymous
227   /// class containing the actual naming class.
getEffectiveNamingClass__anon09489d8a0111::AccessTarget228   const CXXRecordDecl *getEffectiveNamingClass() const {
229     const CXXRecordDecl *namingClass = getNamingClass();
230     while (namingClass->isAnonymousStructOrUnion())
231       namingClass = cast<CXXRecordDecl>(namingClass->getParent());
232     return namingClass->getCanonicalDecl();
233   }
234 
235 private:
initialize__anon09489d8a0111::AccessTarget236   void initialize() {
237     HasInstanceContext = (isMemberAccess() &&
238                           !getBaseObjectType().isNull() &&
239                           getTargetDecl()->isCXXInstanceMember());
240     CalculatedInstanceContext = false;
241     InstanceContext = nullptr;
242 
243     if (isMemberAccess())
244       DeclaringClass = FindDeclaringClass(getTargetDecl());
245     else
246       DeclaringClass = getBaseClass();
247     DeclaringClass = DeclaringClass->getCanonicalDecl();
248   }
249 
250   bool HasInstanceContext : 1;
251   mutable bool CalculatedInstanceContext : 1;
252   mutable const CXXRecordDecl *InstanceContext;
253   const CXXRecordDecl *DeclaringClass;
254 };
255 
256 }
257 
258 /// Checks whether one class might instantiate to the other.
MightInstantiateTo(const CXXRecordDecl * From,const CXXRecordDecl * To)259 static bool MightInstantiateTo(const CXXRecordDecl *From,
260                                const CXXRecordDecl *To) {
261   // Declaration names are always preserved by instantiation.
262   if (From->getDeclName() != To->getDeclName())
263     return false;
264 
265   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
266   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
267   if (FromDC == ToDC) return true;
268   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
269 
270   // Be conservative.
271   return true;
272 }
273 
274 /// Checks whether one class is derived from another, inclusively.
275 /// Properly indicates when it couldn't be determined due to
276 /// dependence.
277 ///
278 /// This should probably be donated to AST or at least Sema.
IsDerivedFromInclusive(const CXXRecordDecl * Derived,const CXXRecordDecl * Target)279 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
280                                            const CXXRecordDecl *Target) {
281   assert(Derived->getCanonicalDecl() == Derived);
282   assert(Target->getCanonicalDecl() == Target);
283 
284   if (Derived == Target) return AR_accessible;
285 
286   bool CheckDependent = Derived->isDependentContext();
287   if (CheckDependent && MightInstantiateTo(Derived, Target))
288     return AR_dependent;
289 
290   AccessResult OnFailure = AR_inaccessible;
291   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
292 
293   while (true) {
294     if (Derived->isDependentContext() && !Derived->hasDefinition())
295       return AR_dependent;
296 
297     for (const auto &I : Derived->bases()) {
298       const CXXRecordDecl *RD;
299 
300       QualType T = I.getType();
301       if (const RecordType *RT = T->getAs<RecordType>()) {
302         RD = cast<CXXRecordDecl>(RT->getDecl());
303       } else if (const InjectedClassNameType *IT
304                    = T->getAs<InjectedClassNameType>()) {
305         RD = IT->getDecl();
306       } else {
307         assert(T->isDependentType() && "non-dependent base wasn't a record?");
308         OnFailure = AR_dependent;
309         continue;
310       }
311 
312       RD = RD->getCanonicalDecl();
313       if (RD == Target) return AR_accessible;
314       if (CheckDependent && MightInstantiateTo(RD, Target))
315         OnFailure = AR_dependent;
316 
317       Queue.push_back(RD);
318     }
319 
320     if (Queue.empty()) break;
321 
322     Derived = Queue.pop_back_val();
323   }
324 
325   return OnFailure;
326 }
327 
328 
MightInstantiateTo(Sema & S,DeclContext * Context,DeclContext * Friend)329 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
330                                DeclContext *Friend) {
331   if (Friend == Context)
332     return true;
333 
334   assert(!Friend->isDependentContext() &&
335          "can't handle friends with dependent contexts here");
336 
337   if (!Context->isDependentContext())
338     return false;
339 
340   if (Friend->isFileContext())
341     return false;
342 
343   // TODO: this is very conservative
344   return true;
345 }
346 
347 // Asks whether the type in 'context' can ever instantiate to the type
348 // in 'friend'.
MightInstantiateTo(Sema & S,CanQualType Context,CanQualType Friend)349 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
350   if (Friend == Context)
351     return true;
352 
353   if (!Friend->isDependentType() && !Context->isDependentType())
354     return false;
355 
356   // TODO: this is very conservative.
357   return true;
358 }
359 
MightInstantiateTo(Sema & S,FunctionDecl * Context,FunctionDecl * Friend)360 static bool MightInstantiateTo(Sema &S,
361                                FunctionDecl *Context,
362                                FunctionDecl *Friend) {
363   if (Context->getDeclName() != Friend->getDeclName())
364     return false;
365 
366   if (!MightInstantiateTo(S,
367                           Context->getDeclContext(),
368                           Friend->getDeclContext()))
369     return false;
370 
371   CanQual<FunctionProtoType> FriendTy
372     = S.Context.getCanonicalType(Friend->getType())
373          ->getAs<FunctionProtoType>();
374   CanQual<FunctionProtoType> ContextTy
375     = S.Context.getCanonicalType(Context->getType())
376          ->getAs<FunctionProtoType>();
377 
378   // There isn't any way that I know of to add qualifiers
379   // during instantiation.
380   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
381     return false;
382 
383   if (FriendTy->getNumParams() != ContextTy->getNumParams())
384     return false;
385 
386   if (!MightInstantiateTo(S, ContextTy->getReturnType(),
387                           FriendTy->getReturnType()))
388     return false;
389 
390   for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
391     if (!MightInstantiateTo(S, ContextTy->getParamType(I),
392                             FriendTy->getParamType(I)))
393       return false;
394 
395   return true;
396 }
397 
MightInstantiateTo(Sema & S,FunctionTemplateDecl * Context,FunctionTemplateDecl * Friend)398 static bool MightInstantiateTo(Sema &S,
399                                FunctionTemplateDecl *Context,
400                                FunctionTemplateDecl *Friend) {
401   return MightInstantiateTo(S,
402                             Context->getTemplatedDecl(),
403                             Friend->getTemplatedDecl());
404 }
405 
MatchesFriend(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Friend)406 static AccessResult MatchesFriend(Sema &S,
407                                   const EffectiveContext &EC,
408                                   const CXXRecordDecl *Friend) {
409   if (EC.includesClass(Friend))
410     return AR_accessible;
411 
412   if (EC.isDependent()) {
413     CanQualType FriendTy
414       = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
415 
416     for (EffectiveContext::record_iterator
417            I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
418       CanQualType ContextTy
419         = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
420       if (MightInstantiateTo(S, ContextTy, FriendTy))
421         return AR_dependent;
422     }
423   }
424 
425   return AR_inaccessible;
426 }
427 
MatchesFriend(Sema & S,const EffectiveContext & EC,CanQualType Friend)428 static AccessResult MatchesFriend(Sema &S,
429                                   const EffectiveContext &EC,
430                                   CanQualType Friend) {
431   if (const RecordType *RT = Friend->getAs<RecordType>())
432     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
433 
434   // TODO: we can do better than this
435   if (Friend->isDependentType())
436     return AR_dependent;
437 
438   return AR_inaccessible;
439 }
440 
441 /// Determines whether the given friend class template matches
442 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,ClassTemplateDecl * Friend)443 static AccessResult MatchesFriend(Sema &S,
444                                   const EffectiveContext &EC,
445                                   ClassTemplateDecl *Friend) {
446   AccessResult OnFailure = AR_inaccessible;
447 
448   // Check whether the friend is the template of a class in the
449   // context chain.
450   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
451          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
452     CXXRecordDecl *Record = *I;
453 
454     // Figure out whether the current class has a template:
455     ClassTemplateDecl *CTD;
456 
457     // A specialization of the template...
458     if (isa<ClassTemplateSpecializationDecl>(Record)) {
459       CTD = cast<ClassTemplateSpecializationDecl>(Record)
460         ->getSpecializedTemplate();
461 
462     // ... or the template pattern itself.
463     } else {
464       CTD = Record->getDescribedClassTemplate();
465       if (!CTD) continue;
466     }
467 
468     // It's a match.
469     if (Friend == CTD->getCanonicalDecl())
470       return AR_accessible;
471 
472     // If the context isn't dependent, it can't be a dependent match.
473     if (!EC.isDependent())
474       continue;
475 
476     // If the template names don't match, it can't be a dependent
477     // match.
478     if (CTD->getDeclName() != Friend->getDeclName())
479       continue;
480 
481     // If the class's context can't instantiate to the friend's
482     // context, it can't be a dependent match.
483     if (!MightInstantiateTo(S, CTD->getDeclContext(),
484                             Friend->getDeclContext()))
485       continue;
486 
487     // Otherwise, it's a dependent match.
488     OnFailure = AR_dependent;
489   }
490 
491   return OnFailure;
492 }
493 
494 /// Determines whether the given friend function matches anything in
495 /// the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionDecl * Friend)496 static AccessResult MatchesFriend(Sema &S,
497                                   const EffectiveContext &EC,
498                                   FunctionDecl *Friend) {
499   AccessResult OnFailure = AR_inaccessible;
500 
501   for (SmallVectorImpl<FunctionDecl*>::const_iterator
502          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
503     if (Friend == *I)
504       return AR_accessible;
505 
506     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
507       OnFailure = AR_dependent;
508   }
509 
510   return OnFailure;
511 }
512 
513 /// Determines whether the given friend function template matches
514 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionTemplateDecl * Friend)515 static AccessResult MatchesFriend(Sema &S,
516                                   const EffectiveContext &EC,
517                                   FunctionTemplateDecl *Friend) {
518   if (EC.Functions.empty()) return AR_inaccessible;
519 
520   AccessResult OnFailure = AR_inaccessible;
521 
522   for (SmallVectorImpl<FunctionDecl*>::const_iterator
523          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
524 
525     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
526     if (!FTD)
527       FTD = (*I)->getDescribedFunctionTemplate();
528     if (!FTD)
529       continue;
530 
531     FTD = FTD->getCanonicalDecl();
532 
533     if (Friend == FTD)
534       return AR_accessible;
535 
536     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
537       OnFailure = AR_dependent;
538   }
539 
540   return OnFailure;
541 }
542 
543 /// Determines whether the given friend declaration matches anything
544 /// in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FriendDecl * FriendD)545 static AccessResult MatchesFriend(Sema &S,
546                                   const EffectiveContext &EC,
547                                   FriendDecl *FriendD) {
548   // Whitelist accesses if there's an invalid or unsupported friend
549   // declaration.
550   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
551     return AR_accessible;
552 
553   if (TypeSourceInfo *T = FriendD->getFriendType())
554     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
555 
556   NamedDecl *Friend
557     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
558 
559   // FIXME: declarations with dependent or templated scope.
560 
561   if (isa<ClassTemplateDecl>(Friend))
562     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
563 
564   if (isa<FunctionTemplateDecl>(Friend))
565     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
566 
567   if (isa<CXXRecordDecl>(Friend))
568     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
569 
570   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
571   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
572 }
573 
GetFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Class)574 static AccessResult GetFriendKind(Sema &S,
575                                   const EffectiveContext &EC,
576                                   const CXXRecordDecl *Class) {
577   AccessResult OnFailure = AR_inaccessible;
578 
579   // Okay, check friends.
580   for (auto *Friend : Class->friends()) {
581     switch (MatchesFriend(S, EC, Friend)) {
582     case AR_accessible:
583       return AR_accessible;
584 
585     case AR_inaccessible:
586       continue;
587 
588     case AR_dependent:
589       OnFailure = AR_dependent;
590       break;
591     }
592   }
593 
594   // That's it, give up.
595   return OnFailure;
596 }
597 
598 namespace {
599 
600 /// A helper class for checking for a friend which will grant access
601 /// to a protected instance member.
602 struct ProtectedFriendContext {
603   Sema &S;
604   const EffectiveContext &EC;
605   const CXXRecordDecl *NamingClass;
606   bool CheckDependent;
607   bool EverDependent;
608 
609   /// The path down to the current base class.
610   SmallVector<const CXXRecordDecl*, 20> CurPath;
611 
ProtectedFriendContext__anon09489d8a0211::ProtectedFriendContext612   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
613                          const CXXRecordDecl *InstanceContext,
614                          const CXXRecordDecl *NamingClass)
615     : S(S), EC(EC), NamingClass(NamingClass),
616       CheckDependent(InstanceContext->isDependentContext() ||
617                      NamingClass->isDependentContext()),
618       EverDependent(false) {}
619 
620   /// Check classes in the current path for friendship, starting at
621   /// the given index.
checkFriendshipAlongPath__anon09489d8a0211::ProtectedFriendContext622   bool checkFriendshipAlongPath(unsigned I) {
623     assert(I < CurPath.size());
624     for (unsigned E = CurPath.size(); I != E; ++I) {
625       switch (GetFriendKind(S, EC, CurPath[I])) {
626       case AR_accessible:   return true;
627       case AR_inaccessible: continue;
628       case AR_dependent:    EverDependent = true; continue;
629       }
630     }
631     return false;
632   }
633 
634   /// Perform a search starting at the given class.
635   ///
636   /// PrivateDepth is the index of the last (least derived) class
637   /// along the current path such that a notional public member of
638   /// the final class in the path would have access in that class.
findFriendship__anon09489d8a0211::ProtectedFriendContext639   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
640     // If we ever reach the naming class, check the current path for
641     // friendship.  We can also stop recursing because we obviously
642     // won't find the naming class there again.
643     if (Cur == NamingClass)
644       return checkFriendshipAlongPath(PrivateDepth);
645 
646     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
647       EverDependent = true;
648 
649     // Recurse into the base classes.
650     for (const auto &I : Cur->bases()) {
651       // If this is private inheritance, then a public member of the
652       // base will not have any access in classes derived from Cur.
653       unsigned BasePrivateDepth = PrivateDepth;
654       if (I.getAccessSpecifier() == AS_private)
655         BasePrivateDepth = CurPath.size() - 1;
656 
657       const CXXRecordDecl *RD;
658 
659       QualType T = I.getType();
660       if (const RecordType *RT = T->getAs<RecordType>()) {
661         RD = cast<CXXRecordDecl>(RT->getDecl());
662       } else if (const InjectedClassNameType *IT
663                    = T->getAs<InjectedClassNameType>()) {
664         RD = IT->getDecl();
665       } else {
666         assert(T->isDependentType() && "non-dependent base wasn't a record?");
667         EverDependent = true;
668         continue;
669       }
670 
671       // Recurse.  We don't need to clean up if this returns true.
672       CurPath.push_back(RD);
673       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
674         return true;
675       CurPath.pop_back();
676     }
677 
678     return false;
679   }
680 
findFriendship__anon09489d8a0211::ProtectedFriendContext681   bool findFriendship(const CXXRecordDecl *Cur) {
682     assert(CurPath.empty());
683     CurPath.push_back(Cur);
684     return findFriendship(Cur, 0);
685   }
686 };
687 }
688 
689 /// Search for a class P that EC is a friend of, under the constraint
690 ///   InstanceContext <= P
691 /// if InstanceContext exists, or else
692 ///   NamingClass <= P
693 /// and with the additional restriction that a protected member of
694 /// NamingClass would have some natural access in P, which implicitly
695 /// imposes the constraint that P <= NamingClass.
696 ///
697 /// This isn't quite the condition laid out in the standard.
698 /// Instead of saying that a notional protected member of NamingClass
699 /// would have to have some natural access in P, it says the actual
700 /// target has to have some natural access in P, which opens up the
701 /// possibility that the target (which is not necessarily a member
702 /// of NamingClass) might be more accessible along some path not
703 /// passing through it.  That's really a bad idea, though, because it
704 /// introduces two problems:
705 ///   - Most importantly, it breaks encapsulation because you can
706 ///     access a forbidden base class's members by directly subclassing
707 ///     it elsewhere.
708 ///   - It also makes access substantially harder to compute because it
709 ///     breaks the hill-climbing algorithm: knowing that the target is
710 ///     accessible in some base class would no longer let you change
711 ///     the question solely to whether the base class is accessible,
712 ///     because the original target might have been more accessible
713 ///     because of crazy subclassing.
714 /// So we don't implement that.
GetProtectedFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * InstanceContext,const CXXRecordDecl * NamingClass)715 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
716                                            const CXXRecordDecl *InstanceContext,
717                                            const CXXRecordDecl *NamingClass) {
718   assert(InstanceContext == nullptr ||
719          InstanceContext->getCanonicalDecl() == InstanceContext);
720   assert(NamingClass->getCanonicalDecl() == NamingClass);
721 
722   // If we don't have an instance context, our constraints give us
723   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
724   // This is just the usual friendship check.
725   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
726 
727   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
728   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
729   if (PRC.EverDependent) return AR_dependent;
730   return AR_inaccessible;
731 }
732 
HasAccess(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * NamingClass,AccessSpecifier Access,const AccessTarget & Target)733 static AccessResult HasAccess(Sema &S,
734                               const EffectiveContext &EC,
735                               const CXXRecordDecl *NamingClass,
736                               AccessSpecifier Access,
737                               const AccessTarget &Target) {
738   assert(NamingClass->getCanonicalDecl() == NamingClass &&
739          "declaration should be canonicalized before being passed here");
740 
741   if (Access == AS_public) return AR_accessible;
742   assert(Access == AS_private || Access == AS_protected);
743 
744   AccessResult OnFailure = AR_inaccessible;
745 
746   for (EffectiveContext::record_iterator
747          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
748     // All the declarations in EC have been canonicalized, so pointer
749     // equality from this point on will work fine.
750     const CXXRecordDecl *ECRecord = *I;
751 
752     // [B2] and [M2]
753     if (Access == AS_private) {
754       if (ECRecord == NamingClass)
755         return AR_accessible;
756 
757       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
758         OnFailure = AR_dependent;
759 
760     // [B3] and [M3]
761     } else {
762       assert(Access == AS_protected);
763       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
764       case AR_accessible: break;
765       case AR_inaccessible: continue;
766       case AR_dependent: OnFailure = AR_dependent; continue;
767       }
768 
769       // C++ [class.protected]p1:
770       //   An additional access check beyond those described earlier in
771       //   [class.access] is applied when a non-static data member or
772       //   non-static member function is a protected member of its naming
773       //   class.  As described earlier, access to a protected member is
774       //   granted because the reference occurs in a friend or member of
775       //   some class C.  If the access is to form a pointer to member,
776       //   the nested-name-specifier shall name C or a class derived from
777       //   C. All other accesses involve a (possibly implicit) object
778       //   expression. In this case, the class of the object expression
779       //   shall be C or a class derived from C.
780       //
781       // We interpret this as a restriction on [M3].
782 
783       // In this part of the code, 'C' is just our context class ECRecord.
784 
785       // These rules are different if we don't have an instance context.
786       if (!Target.hasInstanceContext()) {
787         // If it's not an instance member, these restrictions don't apply.
788         if (!Target.isInstanceMember()) return AR_accessible;
789 
790         // If it's an instance member, use the pointer-to-member rule
791         // that the naming class has to be derived from the effective
792         // context.
793 
794         // Emulate a MSVC bug where the creation of pointer-to-member
795         // to protected member of base class is allowed but only from
796         // static member functions.
797         if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
798           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
799             if (MD->isStatic()) return AR_accessible;
800 
801         // Despite the standard's confident wording, there is a case
802         // where you can have an instance member that's neither in a
803         // pointer-to-member expression nor in a member access:  when
804         // it names a field in an unevaluated context that can't be an
805         // implicit member.  Pending clarification, we just apply the
806         // same naming-class restriction here.
807         //   FIXME: we're probably not correctly adding the
808         //   protected-member restriction when we retroactively convert
809         //   an expression to being evaluated.
810 
811         // We know that ECRecord derives from NamingClass.  The
812         // restriction says to check whether NamingClass derives from
813         // ECRecord, but that's not really necessary: two distinct
814         // classes can't be recursively derived from each other.  So
815         // along this path, we just need to check whether the classes
816         // are equal.
817         if (NamingClass == ECRecord) return AR_accessible;
818 
819         // Otherwise, this context class tells us nothing;  on to the next.
820         continue;
821       }
822 
823       assert(Target.isInstanceMember());
824 
825       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
826       if (!InstanceContext) {
827         OnFailure = AR_dependent;
828         continue;
829       }
830 
831       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
832       case AR_accessible: return AR_accessible;
833       case AR_inaccessible: continue;
834       case AR_dependent: OnFailure = AR_dependent; continue;
835       }
836     }
837   }
838 
839   // [M3] and [B3] say that, if the target is protected in N, we grant
840   // access if the access occurs in a friend or member of some class P
841   // that's a subclass of N and where the target has some natural
842   // access in P.  The 'member' aspect is easy to handle because P
843   // would necessarily be one of the effective-context records, and we
844   // address that above.  The 'friend' aspect is completely ridiculous
845   // to implement because there are no restrictions at all on P
846   // *unless* the [class.protected] restriction applies.  If it does,
847   // however, we should ignore whether the naming class is a friend,
848   // and instead rely on whether any potential P is a friend.
849   if (Access == AS_protected && Target.isInstanceMember()) {
850     // Compute the instance context if possible.
851     const CXXRecordDecl *InstanceContext = nullptr;
852     if (Target.hasInstanceContext()) {
853       InstanceContext = Target.resolveInstanceContext(S);
854       if (!InstanceContext) return AR_dependent;
855     }
856 
857     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
858     case AR_accessible: return AR_accessible;
859     case AR_inaccessible: return OnFailure;
860     case AR_dependent: return AR_dependent;
861     }
862     llvm_unreachable("impossible friendship kind");
863   }
864 
865   switch (GetFriendKind(S, EC, NamingClass)) {
866   case AR_accessible: return AR_accessible;
867   case AR_inaccessible: return OnFailure;
868   case AR_dependent: return AR_dependent;
869   }
870 
871   // Silence bogus warnings
872   llvm_unreachable("impossible friendship kind");
873 }
874 
875 /// Finds the best path from the naming class to the declaring class,
876 /// taking friend declarations into account.
877 ///
878 /// C++0x [class.access.base]p5:
879 ///   A member m is accessible at the point R when named in class N if
880 ///   [M1] m as a member of N is public, or
881 ///   [M2] m as a member of N is private, and R occurs in a member or
882 ///        friend of class N, or
883 ///   [M3] m as a member of N is protected, and R occurs in a member or
884 ///        friend of class N, or in a member or friend of a class P
885 ///        derived from N, where m as a member of P is public, private,
886 ///        or protected, or
887 ///   [M4] there exists a base class B of N that is accessible at R, and
888 ///        m is accessible at R when named in class B.
889 ///
890 /// C++0x [class.access.base]p4:
891 ///   A base class B of N is accessible at R, if
892 ///   [B1] an invented public member of B would be a public member of N, or
893 ///   [B2] R occurs in a member or friend of class N, and an invented public
894 ///        member of B would be a private or protected member of N, or
895 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
896 ///        invented public member of B would be a private or protected member
897 ///        of P, or
898 ///   [B4] there exists a class S such that B is a base class of S accessible
899 ///        at R and S is a base class of N accessible at R.
900 ///
901 /// Along a single inheritance path we can restate both of these
902 /// iteratively:
903 ///
904 /// First, we note that M1-4 are equivalent to B1-4 if the member is
905 /// treated as a notional base of its declaring class with inheritance
906 /// access equivalent to the member's access.  Therefore we need only
907 /// ask whether a class B is accessible from a class N in context R.
908 ///
909 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
910 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
911 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
912 /// closest accessible base in the path:
913 ///   Access(a, b) = (* access on the base specifier from a to b *)
914 ///   Merge(a, forbidden) = forbidden
915 ///   Merge(a, private) = forbidden
916 ///   Merge(a, b) = min(a,b)
917 ///   Accessible(c, forbidden) = false
918 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
919 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
920 ///   Accessible(c, public) = true
921 ///   ACAB(n) = public
922 ///   ACAB(i) =
923 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
924 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
925 ///
926 /// B is an accessible base of N at R iff ACAB(1) = public.
927 ///
928 /// \param FinalAccess the access of the "final step", or AS_public if
929 ///   there is no final step.
930 /// \return null if friendship is dependent
FindBestPath(Sema & S,const EffectiveContext & EC,AccessTarget & Target,AccessSpecifier FinalAccess,CXXBasePaths & Paths)931 static CXXBasePath *FindBestPath(Sema &S,
932                                  const EffectiveContext &EC,
933                                  AccessTarget &Target,
934                                  AccessSpecifier FinalAccess,
935                                  CXXBasePaths &Paths) {
936   // Derive the paths to the desired base.
937   const CXXRecordDecl *Derived = Target.getNamingClass();
938   const CXXRecordDecl *Base = Target.getDeclaringClass();
939 
940   // FIXME: fail correctly when there are dependent paths.
941   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
942                                           Paths);
943   assert(isDerived && "derived class not actually derived from base");
944   (void) isDerived;
945 
946   CXXBasePath *BestPath = nullptr;
947 
948   assert(FinalAccess != AS_none && "forbidden access after declaring class");
949 
950   bool AnyDependent = false;
951 
952   // Derive the friend-modified access along each path.
953   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
954          PI != PE; ++PI) {
955     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
956 
957     // Walk through the path backwards.
958     AccessSpecifier PathAccess = FinalAccess;
959     CXXBasePath::iterator I = PI->end(), E = PI->begin();
960     while (I != E) {
961       --I;
962 
963       assert(PathAccess != AS_none);
964 
965       // If the declaration is a private member of a base class, there
966       // is no level of friendship in derived classes that can make it
967       // accessible.
968       if (PathAccess == AS_private) {
969         PathAccess = AS_none;
970         break;
971       }
972 
973       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
974 
975       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
976       PathAccess = std::max(PathAccess, BaseAccess);
977 
978       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
979       case AR_inaccessible: break;
980       case AR_accessible:
981         PathAccess = AS_public;
982 
983         // Future tests are not against members and so do not have
984         // instance context.
985         Target.suppressInstanceContext();
986         break;
987       case AR_dependent:
988         AnyDependent = true;
989         goto Next;
990       }
991     }
992 
993     // Note that we modify the path's Access field to the
994     // friend-modified access.
995     if (BestPath == nullptr || PathAccess < BestPath->Access) {
996       BestPath = &*PI;
997       BestPath->Access = PathAccess;
998 
999       // Short-circuit if we found a public path.
1000       if (BestPath->Access == AS_public)
1001         return BestPath;
1002     }
1003 
1004   Next: ;
1005   }
1006 
1007   assert((!BestPath || BestPath->Access != AS_public) &&
1008          "fell out of loop with public path");
1009 
1010   // We didn't find a public path, but at least one path was subject
1011   // to dependent friendship, so delay the check.
1012   if (AnyDependent)
1013     return nullptr;
1014 
1015   return BestPath;
1016 }
1017 
1018 /// Given that an entity has protected natural access, check whether
1019 /// access might be denied because of the protected member access
1020 /// restriction.
1021 ///
1022 /// \return true if a note was emitted
TryDiagnoseProtectedAccess(Sema & S,const EffectiveContext & EC,AccessTarget & Target)1023 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1024                                        AccessTarget &Target) {
1025   // Only applies to instance accesses.
1026   if (!Target.isInstanceMember())
1027     return false;
1028 
1029   assert(Target.isMemberAccess());
1030 
1031   const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1032 
1033   for (EffectiveContext::record_iterator
1034          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1035     const CXXRecordDecl *ECRecord = *I;
1036     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1037     case AR_accessible: break;
1038     case AR_inaccessible: continue;
1039     case AR_dependent: continue;
1040     }
1041 
1042     // The effective context is a subclass of the declaring class.
1043     // Check whether the [class.protected] restriction is limiting
1044     // access.
1045 
1046     // To get this exactly right, this might need to be checked more
1047     // holistically;  it's not necessarily the case that gaining
1048     // access here would grant us access overall.
1049 
1050     NamedDecl *D = Target.getTargetDecl();
1051 
1052     // If we don't have an instance context, [class.protected] says the
1053     // naming class has to equal the context class.
1054     if (!Target.hasInstanceContext()) {
1055       // If it does, the restriction doesn't apply.
1056       if (NamingClass == ECRecord) continue;
1057 
1058       // TODO: it would be great to have a fixit here, since this is
1059       // such an obvious error.
1060       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1061         << S.Context.getTypeDeclType(ECRecord);
1062       return true;
1063     }
1064 
1065     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1066     assert(InstanceContext && "diagnosing dependent access");
1067 
1068     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1069     case AR_accessible: continue;
1070     case AR_dependent: continue;
1071     case AR_inaccessible:
1072       break;
1073     }
1074 
1075     // Okay, the restriction seems to be what's limiting us.
1076 
1077     // Use a special diagnostic for constructors and destructors.
1078     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1079         (isa<FunctionTemplateDecl>(D) &&
1080          isa<CXXConstructorDecl>(
1081                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1082       return S.Diag(D->getLocation(),
1083                     diag::note_access_protected_restricted_ctordtor)
1084              << isa<CXXDestructorDecl>(D->getAsFunction());
1085     }
1086 
1087     // Otherwise, use the generic diagnostic.
1088     return S.Diag(D->getLocation(),
1089                   diag::note_access_protected_restricted_object)
1090            << S.Context.getTypeDeclType(ECRecord);
1091   }
1092 
1093   return false;
1094 }
1095 
1096 /// We are unable to access a given declaration due to its direct
1097 /// access control;  diagnose that.
diagnoseBadDirectAccess(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1098 static void diagnoseBadDirectAccess(Sema &S,
1099                                     const EffectiveContext &EC,
1100                                     AccessTarget &entity) {
1101   assert(entity.isMemberAccess());
1102   NamedDecl *D = entity.getTargetDecl();
1103 
1104   if (D->getAccess() == AS_protected &&
1105       TryDiagnoseProtectedAccess(S, EC, entity))
1106     return;
1107 
1108   // Find an original declaration.
1109   while (D->isOutOfLine()) {
1110     NamedDecl *PrevDecl = nullptr;
1111     if (VarDecl *VD = dyn_cast<VarDecl>(D))
1112       PrevDecl = VD->getPreviousDecl();
1113     else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1114       PrevDecl = FD->getPreviousDecl();
1115     else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1116       PrevDecl = TND->getPreviousDecl();
1117     else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1118       if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1119         break;
1120       PrevDecl = TD->getPreviousDecl();
1121     }
1122     if (!PrevDecl) break;
1123     D = PrevDecl;
1124   }
1125 
1126   CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1127   Decl *ImmediateChild;
1128   if (D->getDeclContext() == DeclaringClass)
1129     ImmediateChild = D;
1130   else {
1131     DeclContext *DC = D->getDeclContext();
1132     while (DC->getParent() != DeclaringClass)
1133       DC = DC->getParent();
1134     ImmediateChild = cast<Decl>(DC);
1135   }
1136 
1137   // Check whether there's an AccessSpecDecl preceding this in the
1138   // chain of the DeclContext.
1139   bool isImplicit = true;
1140   for (const auto *I : DeclaringClass->decls()) {
1141     if (I == ImmediateChild) break;
1142     if (isa<AccessSpecDecl>(I)) {
1143       isImplicit = false;
1144       break;
1145     }
1146   }
1147 
1148   S.Diag(D->getLocation(), diag::note_access_natural)
1149     << (unsigned) (D->getAccess() == AS_protected)
1150     << isImplicit;
1151 }
1152 
1153 /// Diagnose the path which caused the given declaration or base class
1154 /// to become inaccessible.
DiagnoseAccessPath(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1155 static void DiagnoseAccessPath(Sema &S,
1156                                const EffectiveContext &EC,
1157                                AccessTarget &entity) {
1158   // Save the instance context to preserve invariants.
1159   AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1160 
1161   // This basically repeats the main algorithm but keeps some more
1162   // information.
1163 
1164   // The natural access so far.
1165   AccessSpecifier accessSoFar = AS_public;
1166 
1167   // Check whether we have special rights to the declaring class.
1168   if (entity.isMemberAccess()) {
1169     NamedDecl *D = entity.getTargetDecl();
1170     accessSoFar = D->getAccess();
1171     const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1172 
1173     switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1174     // If the declaration is accessible when named in its declaring
1175     // class, then we must be constrained by the path.
1176     case AR_accessible:
1177       accessSoFar = AS_public;
1178       entity.suppressInstanceContext();
1179       break;
1180 
1181     case AR_inaccessible:
1182       if (accessSoFar == AS_private ||
1183           declaringClass == entity.getEffectiveNamingClass())
1184         return diagnoseBadDirectAccess(S, EC, entity);
1185       break;
1186 
1187     case AR_dependent:
1188       llvm_unreachable("cannot diagnose dependent access");
1189     }
1190   }
1191 
1192   CXXBasePaths paths;
1193   CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1194   assert(path.Access != AS_public);
1195 
1196   CXXBasePath::iterator i = path.end(), e = path.begin();
1197   CXXBasePath::iterator constrainingBase = i;
1198   while (i != e) {
1199     --i;
1200 
1201     assert(accessSoFar != AS_none && accessSoFar != AS_private);
1202 
1203     // Is the entity accessible when named in the deriving class, as
1204     // modified by the base specifier?
1205     const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1206     const CXXBaseSpecifier *base = i->Base;
1207 
1208     // If the access to this base is worse than the access we have to
1209     // the declaration, remember it.
1210     AccessSpecifier baseAccess = base->getAccessSpecifier();
1211     if (baseAccess > accessSoFar) {
1212       constrainingBase = i;
1213       accessSoFar = baseAccess;
1214     }
1215 
1216     switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1217     case AR_inaccessible: break;
1218     case AR_accessible:
1219       accessSoFar = AS_public;
1220       entity.suppressInstanceContext();
1221       constrainingBase = nullptr;
1222       break;
1223     case AR_dependent:
1224       llvm_unreachable("cannot diagnose dependent access");
1225     }
1226 
1227     // If this was private inheritance, but we don't have access to
1228     // the deriving class, we're done.
1229     if (accessSoFar == AS_private) {
1230       assert(baseAccess == AS_private);
1231       assert(constrainingBase == i);
1232       break;
1233     }
1234   }
1235 
1236   // If we don't have a constraining base, the access failure must be
1237   // due to the original declaration.
1238   if (constrainingBase == path.end())
1239     return diagnoseBadDirectAccess(S, EC, entity);
1240 
1241   // We're constrained by inheritance, but we want to say
1242   // "declared private here" if we're diagnosing a hierarchy
1243   // conversion and this is the final step.
1244   unsigned diagnostic;
1245   if (entity.isMemberAccess() ||
1246       constrainingBase + 1 != path.end()) {
1247     diagnostic = diag::note_access_constrained_by_path;
1248   } else {
1249     diagnostic = diag::note_access_natural;
1250   }
1251 
1252   const CXXBaseSpecifier *base = constrainingBase->Base;
1253 
1254   S.Diag(base->getSourceRange().getBegin(), diagnostic)
1255     << base->getSourceRange()
1256     << (base->getAccessSpecifier() == AS_protected)
1257     << (base->getAccessSpecifierAsWritten() == AS_none);
1258 
1259   if (entity.isMemberAccess())
1260     S.Diag(entity.getTargetDecl()->getLocation(),
1261            diag::note_member_declared_at);
1262 }
1263 
DiagnoseBadAccess(Sema & S,SourceLocation Loc,const EffectiveContext & EC,AccessTarget & Entity)1264 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1265                               const EffectiveContext &EC,
1266                               AccessTarget &Entity) {
1267   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1268   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1269   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
1270 
1271   S.Diag(Loc, Entity.getDiag())
1272     << (Entity.getAccess() == AS_protected)
1273     << (D ? D->getDeclName() : DeclarationName())
1274     << S.Context.getTypeDeclType(NamingClass)
1275     << S.Context.getTypeDeclType(DeclaringClass);
1276   DiagnoseAccessPath(S, EC, Entity);
1277 }
1278 
1279 /// MSVC has a bug where if during an using declaration name lookup,
1280 /// the declaration found is unaccessible (private) and that declaration
1281 /// was bring into scope via another using declaration whose target
1282 /// declaration is accessible (public) then no error is generated.
1283 /// Example:
1284 ///   class A {
1285 ///   public:
1286 ///     int f();
1287 ///   };
1288 ///   class B : public A {
1289 ///   private:
1290 ///     using A::f;
1291 ///   };
1292 ///   class C : public B {
1293 ///   private:
1294 ///     using B::f;
1295 ///   };
1296 ///
1297 /// Here, B::f is private so this should fail in Standard C++, but
1298 /// because B::f refers to A::f which is public MSVC accepts it.
IsMicrosoftUsingDeclarationAccessBug(Sema & S,SourceLocation AccessLoc,AccessTarget & Entity)1299 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1300                                                  SourceLocation AccessLoc,
1301                                                  AccessTarget &Entity) {
1302   if (UsingShadowDecl *Shadow =
1303                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1304     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1305     if (Entity.getTargetDecl()->getAccess() == AS_private &&
1306         (OrigDecl->getAccess() == AS_public ||
1307          OrigDecl->getAccess() == AS_protected)) {
1308       S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1309         << Shadow->getUsingDecl()->getQualifiedNameAsString()
1310         << OrigDecl->getQualifiedNameAsString();
1311       return true;
1312     }
1313   }
1314   return false;
1315 }
1316 
1317 /// Determines whether the accessed entity is accessible.  Public members
1318 /// have been weeded out by this point.
IsAccessible(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1319 static AccessResult IsAccessible(Sema &S,
1320                                  const EffectiveContext &EC,
1321                                  AccessTarget &Entity) {
1322   // Determine the actual naming class.
1323   const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1324 
1325   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1326   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1327 
1328   // Before we try to recalculate access paths, try to white-list
1329   // accesses which just trade in on the final step, i.e. accesses
1330   // which don't require [M4] or [B4]. These are by far the most
1331   // common forms of privileged access.
1332   if (UnprivilegedAccess != AS_none) {
1333     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1334     case AR_dependent:
1335       // This is actually an interesting policy decision.  We don't
1336       // *have* to delay immediately here: we can do the full access
1337       // calculation in the hope that friendship on some intermediate
1338       // class will make the declaration accessible non-dependently.
1339       // But that's not cheap, and odds are very good (note: assertion
1340       // made without data) that the friend declaration will determine
1341       // access.
1342       return AR_dependent;
1343 
1344     case AR_accessible: return AR_accessible;
1345     case AR_inaccessible: break;
1346     }
1347   }
1348 
1349   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1350 
1351   // We lower member accesses to base accesses by pretending that the
1352   // member is a base class of its declaring class.
1353   AccessSpecifier FinalAccess;
1354 
1355   if (Entity.isMemberAccess()) {
1356     // Determine if the declaration is accessible from EC when named
1357     // in its declaring class.
1358     NamedDecl *Target = Entity.getTargetDecl();
1359     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1360 
1361     FinalAccess = Target->getAccess();
1362     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1363     case AR_accessible:
1364       // Target is accessible at EC when named in its declaring class.
1365       // We can now hill-climb and simply check whether the declaring
1366       // class is accessible as a base of the naming class.  This is
1367       // equivalent to checking the access of a notional public
1368       // member with no instance context.
1369       FinalAccess = AS_public;
1370       Entity.suppressInstanceContext();
1371       break;
1372     case AR_inaccessible: break;
1373     case AR_dependent: return AR_dependent; // see above
1374     }
1375 
1376     if (DeclaringClass == NamingClass)
1377       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1378   } else {
1379     FinalAccess = AS_public;
1380   }
1381 
1382   assert(Entity.getDeclaringClass() != NamingClass);
1383 
1384   // Append the declaration's access if applicable.
1385   CXXBasePaths Paths;
1386   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1387   if (!Path)
1388     return AR_dependent;
1389 
1390   assert(Path->Access <= UnprivilegedAccess &&
1391          "access along best path worse than direct?");
1392   if (Path->Access == AS_public)
1393     return AR_accessible;
1394   return AR_inaccessible;
1395 }
1396 
DelayDependentAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,const AccessTarget & Entity)1397 static void DelayDependentAccess(Sema &S,
1398                                  const EffectiveContext &EC,
1399                                  SourceLocation Loc,
1400                                  const AccessTarget &Entity) {
1401   assert(EC.isDependent() && "delaying non-dependent access");
1402   DeclContext *DC = EC.getInnerContext();
1403   assert(DC->isDependentContext() && "delaying non-dependent access");
1404   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1405                               Loc,
1406                               Entity.isMemberAccess(),
1407                               Entity.getAccess(),
1408                               Entity.getTargetDecl(),
1409                               Entity.getNamingClass(),
1410                               Entity.getBaseObjectType(),
1411                               Entity.getDiag());
1412 }
1413 
1414 /// Checks access to an entity from the given effective context.
CheckEffectiveAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,AccessTarget & Entity)1415 static AccessResult CheckEffectiveAccess(Sema &S,
1416                                          const EffectiveContext &EC,
1417                                          SourceLocation Loc,
1418                                          AccessTarget &Entity) {
1419   assert(Entity.getAccess() != AS_public && "called for public access!");
1420 
1421   switch (IsAccessible(S, EC, Entity)) {
1422   case AR_dependent:
1423     DelayDependentAccess(S, EC, Loc, Entity);
1424     return AR_dependent;
1425 
1426   case AR_inaccessible:
1427     if (S.getLangOpts().MSVCCompat &&
1428         IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1429       return AR_accessible;
1430     if (!Entity.isQuiet())
1431       DiagnoseBadAccess(S, Loc, EC, Entity);
1432     return AR_inaccessible;
1433 
1434   case AR_accessible:
1435     return AR_accessible;
1436   }
1437 
1438   // silence unnecessary warning
1439   llvm_unreachable("invalid access result");
1440 }
1441 
CheckAccess(Sema & S,SourceLocation Loc,AccessTarget & Entity)1442 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1443                                       AccessTarget &Entity) {
1444   // If the access path is public, it's accessible everywhere.
1445   if (Entity.getAccess() == AS_public)
1446     return Sema::AR_accessible;
1447 
1448   // If we're currently parsing a declaration, we may need to delay
1449   // access control checking, because our effective context might be
1450   // different based on what the declaration comes out as.
1451   //
1452   // For example, we might be parsing a declaration with a scope
1453   // specifier, like this:
1454   //   A::private_type A::foo() { ... }
1455   //
1456   // Or we might be parsing something that will turn out to be a friend:
1457   //   void foo(A::private_type);
1458   //   void B::foo(A::private_type);
1459   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1460     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1461     return Sema::AR_delayed;
1462   }
1463 
1464   EffectiveContext EC(S.CurContext);
1465   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1466   case AR_accessible: return Sema::AR_accessible;
1467   case AR_inaccessible: return Sema::AR_inaccessible;
1468   case AR_dependent: return Sema::AR_dependent;
1469   }
1470   llvm_unreachable("invalid access result");
1471 }
1472 
HandleDelayedAccessCheck(DelayedDiagnostic & DD,Decl * D)1473 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1474   // Access control for names used in the declarations of functions
1475   // and function templates should normally be evaluated in the context
1476   // of the declaration, just in case it's a friend of something.
1477   // However, this does not apply to local extern declarations.
1478 
1479   DeclContext *DC = D->getDeclContext();
1480   if (D->isLocalExternDecl()) {
1481     DC = D->getLexicalDeclContext();
1482   } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
1483     DC = FN;
1484   } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
1485     DC = cast<DeclContext>(TD->getTemplatedDecl());
1486   }
1487 
1488   EffectiveContext EC(DC);
1489 
1490   AccessTarget Target(DD.getAccessData());
1491 
1492   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1493     DD.Triggered = true;
1494 }
1495 
HandleDependentAccessCheck(const DependentDiagnostic & DD,const MultiLevelTemplateArgumentList & TemplateArgs)1496 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1497                         const MultiLevelTemplateArgumentList &TemplateArgs) {
1498   SourceLocation Loc = DD.getAccessLoc();
1499   AccessSpecifier Access = DD.getAccess();
1500 
1501   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1502                                        TemplateArgs);
1503   if (!NamingD) return;
1504   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1505                                        TemplateArgs);
1506   if (!TargetD) return;
1507 
1508   if (DD.isAccessToMember()) {
1509     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1510     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1511     QualType BaseObjectType = DD.getAccessBaseObjectType();
1512     if (!BaseObjectType.isNull()) {
1513       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1514                                  DeclarationName());
1515       if (BaseObjectType.isNull()) return;
1516     }
1517 
1518     AccessTarget Entity(Context,
1519                         AccessTarget::Member,
1520                         NamingClass,
1521                         DeclAccessPair::make(TargetDecl, Access),
1522                         BaseObjectType);
1523     Entity.setDiag(DD.getDiagnostic());
1524     CheckAccess(*this, Loc, Entity);
1525   } else {
1526     AccessTarget Entity(Context,
1527                         AccessTarget::Base,
1528                         cast<CXXRecordDecl>(TargetD),
1529                         cast<CXXRecordDecl>(NamingD),
1530                         Access);
1531     Entity.setDiag(DD.getDiagnostic());
1532     CheckAccess(*this, Loc, Entity);
1533   }
1534 }
1535 
CheckUnresolvedLookupAccess(UnresolvedLookupExpr * E,DeclAccessPair Found)1536 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1537                                                      DeclAccessPair Found) {
1538   if (!getLangOpts().AccessControl ||
1539       !E->getNamingClass() ||
1540       Found.getAccess() == AS_public)
1541     return AR_accessible;
1542 
1543   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1544                       Found, QualType());
1545   Entity.setDiag(diag::err_access) << E->getSourceRange();
1546 
1547   return CheckAccess(*this, E->getNameLoc(), Entity);
1548 }
1549 
1550 /// Perform access-control checking on a previously-unresolved member
1551 /// access which has now been resolved to a member.
CheckUnresolvedMemberAccess(UnresolvedMemberExpr * E,DeclAccessPair Found)1552 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1553                                                      DeclAccessPair Found) {
1554   if (!getLangOpts().AccessControl ||
1555       Found.getAccess() == AS_public)
1556     return AR_accessible;
1557 
1558   QualType BaseType = E->getBaseType();
1559   if (E->isArrow())
1560     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1561 
1562   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1563                       Found, BaseType);
1564   Entity.setDiag(diag::err_access) << E->getSourceRange();
1565 
1566   return CheckAccess(*this, E->getMemberLoc(), Entity);
1567 }
1568 
1569 /// Is the given special member function accessible for the purposes of
1570 /// deciding whether to define a special member function as deleted?
isSpecialMemberAccessibleForDeletion(CXXMethodDecl * decl,AccessSpecifier access,QualType objectType)1571 bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1572                                                 AccessSpecifier access,
1573                                                 QualType objectType) {
1574   // Fast path.
1575   if (access == AS_public || !getLangOpts().AccessControl) return true;
1576 
1577   AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1578                       DeclAccessPair::make(decl, access), objectType);
1579 
1580   // Suppress diagnostics.
1581   entity.setDiag(PDiag());
1582 
1583   switch (CheckAccess(*this, SourceLocation(), entity)) {
1584   case AR_accessible: return true;
1585   case AR_inaccessible: return false;
1586   case AR_dependent: llvm_unreachable("dependent for =delete computation");
1587   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1588   }
1589   llvm_unreachable("bad access result");
1590 }
1591 
CheckDestructorAccess(SourceLocation Loc,CXXDestructorDecl * Dtor,const PartialDiagnostic & PDiag,QualType ObjectTy)1592 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1593                                                CXXDestructorDecl *Dtor,
1594                                                const PartialDiagnostic &PDiag,
1595                                                QualType ObjectTy) {
1596   if (!getLangOpts().AccessControl)
1597     return AR_accessible;
1598 
1599   // There's never a path involved when checking implicit destructor access.
1600   AccessSpecifier Access = Dtor->getAccess();
1601   if (Access == AS_public)
1602     return AR_accessible;
1603 
1604   CXXRecordDecl *NamingClass = Dtor->getParent();
1605   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1606 
1607   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1608                       DeclAccessPair::make(Dtor, Access),
1609                       ObjectTy);
1610   Entity.setDiag(PDiag); // TODO: avoid copy
1611 
1612   return CheckAccess(*this, Loc, Entity);
1613 }
1614 
1615 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,bool IsCopyBindingRefToTemp)1616 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1617                                                 CXXConstructorDecl *Constructor,
1618                                                 const InitializedEntity &Entity,
1619                                                 AccessSpecifier Access,
1620                                                 bool IsCopyBindingRefToTemp) {
1621   if (!getLangOpts().AccessControl || Access == AS_public)
1622     return AR_accessible;
1623 
1624   PartialDiagnostic PD(PDiag());
1625   switch (Entity.getKind()) {
1626   default:
1627     PD = PDiag(IsCopyBindingRefToTemp
1628                  ? diag::ext_rvalue_to_reference_access_ctor
1629                  : diag::err_access_ctor);
1630 
1631     break;
1632 
1633   case InitializedEntity::EK_Base:
1634     PD = PDiag(diag::err_access_base_ctor);
1635     PD << Entity.isInheritedVirtualBase()
1636        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1637     break;
1638 
1639   case InitializedEntity::EK_Member: {
1640     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1641     PD = PDiag(diag::err_access_field_ctor);
1642     PD << Field->getType() << getSpecialMember(Constructor);
1643     break;
1644   }
1645 
1646   case InitializedEntity::EK_LambdaCapture: {
1647     StringRef VarName = Entity.getCapturedVarName();
1648     PD = PDiag(diag::err_access_lambda_capture);
1649     PD << VarName << Entity.getType() << getSpecialMember(Constructor);
1650     break;
1651   }
1652 
1653   }
1654 
1655   return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1656 }
1657 
1658 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,const PartialDiagnostic & PD)1659 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1660                                                 CXXConstructorDecl *Constructor,
1661                                                 const InitializedEntity &Entity,
1662                                                 AccessSpecifier Access,
1663                                                 const PartialDiagnostic &PD) {
1664   if (!getLangOpts().AccessControl ||
1665       Access == AS_public)
1666     return AR_accessible;
1667 
1668   CXXRecordDecl *NamingClass = Constructor->getParent();
1669 
1670   // Initializing a base sub-object is an instance method call on an
1671   // object of the derived class.  Otherwise, we have an instance method
1672   // call on an object of the constructed type.
1673   CXXRecordDecl *ObjectClass;
1674   if (Entity.getKind() == InitializedEntity::EK_Base) {
1675     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1676   } else {
1677     ObjectClass = NamingClass;
1678   }
1679 
1680   AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1681                             DeclAccessPair::make(Constructor, Access),
1682                             Context.getTypeDeclType(ObjectClass));
1683   AccessEntity.setDiag(PD);
1684 
1685   return CheckAccess(*this, UseLoc, AccessEntity);
1686 }
1687 
1688 /// Checks access to an overloaded operator new or delete.
CheckAllocationAccess(SourceLocation OpLoc,SourceRange PlacementRange,CXXRecordDecl * NamingClass,DeclAccessPair Found,bool Diagnose)1689 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1690                                                SourceRange PlacementRange,
1691                                                CXXRecordDecl *NamingClass,
1692                                                DeclAccessPair Found,
1693                                                bool Diagnose) {
1694   if (!getLangOpts().AccessControl ||
1695       !NamingClass ||
1696       Found.getAccess() == AS_public)
1697     return AR_accessible;
1698 
1699   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1700                       QualType());
1701   if (Diagnose)
1702     Entity.setDiag(diag::err_access)
1703       << PlacementRange;
1704 
1705   return CheckAccess(*this, OpLoc, Entity);
1706 }
1707 
1708 /// \brief Checks access to a member.
CheckMemberAccess(SourceLocation UseLoc,CXXRecordDecl * NamingClass,DeclAccessPair Found)1709 Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1710                                            CXXRecordDecl *NamingClass,
1711                                            DeclAccessPair Found) {
1712   if (!getLangOpts().AccessControl ||
1713       !NamingClass ||
1714       Found.getAccess() == AS_public)
1715     return AR_accessible;
1716 
1717   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1718                       Found, QualType());
1719 
1720   return CheckAccess(*this, UseLoc, Entity);
1721 }
1722 
1723 /// Checks access to an overloaded member operator, including
1724 /// conversion operators.
CheckMemberOperatorAccess(SourceLocation OpLoc,Expr * ObjectExpr,Expr * ArgExpr,DeclAccessPair Found)1725 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1726                                                    Expr *ObjectExpr,
1727                                                    Expr *ArgExpr,
1728                                                    DeclAccessPair Found) {
1729   if (!getLangOpts().AccessControl ||
1730       Found.getAccess() == AS_public)
1731     return AR_accessible;
1732 
1733   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1734   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1735 
1736   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1737                       ObjectExpr->getType());
1738   Entity.setDiag(diag::err_access)
1739     << ObjectExpr->getSourceRange()
1740     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1741 
1742   return CheckAccess(*this, OpLoc, Entity);
1743 }
1744 
1745 /// Checks access to the target of a friend declaration.
CheckFriendAccess(NamedDecl * target)1746 Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1747   assert(isa<CXXMethodDecl>(target->getAsFunction()));
1748 
1749   // Friendship lookup is a redeclaration lookup, so there's never an
1750   // inheritance path modifying access.
1751   AccessSpecifier access = target->getAccess();
1752 
1753   if (!getLangOpts().AccessControl || access == AS_public)
1754     return AR_accessible;
1755 
1756   CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
1757 
1758   AccessTarget entity(Context, AccessTarget::Member,
1759                       cast<CXXRecordDecl>(target->getDeclContext()),
1760                       DeclAccessPair::make(target, access),
1761                       /*no instance context*/ QualType());
1762   entity.setDiag(diag::err_access_friend_function)
1763       << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
1764                                  : method->getNameInfo().getSourceRange());
1765 
1766   // We need to bypass delayed-diagnostics because we might be called
1767   // while the ParsingDeclarator is active.
1768   EffectiveContext EC(CurContext);
1769   switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1770   case AR_accessible: return Sema::AR_accessible;
1771   case AR_inaccessible: return Sema::AR_inaccessible;
1772   case AR_dependent: return Sema::AR_dependent;
1773   }
1774   llvm_unreachable("invalid access result");
1775 }
1776 
CheckAddressOfMemberAccess(Expr * OvlExpr,DeclAccessPair Found)1777 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1778                                                     DeclAccessPair Found) {
1779   if (!getLangOpts().AccessControl ||
1780       Found.getAccess() == AS_none ||
1781       Found.getAccess() == AS_public)
1782     return AR_accessible;
1783 
1784   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1785   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1786 
1787   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1788                       /*no instance context*/ QualType());
1789   Entity.setDiag(diag::err_access)
1790     << Ovl->getSourceRange();
1791 
1792   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1793 }
1794 
1795 /// Checks access for a hierarchy conversion.
1796 ///
1797 /// \param ForceCheck true if this check should be performed even if access
1798 ///     control is disabled;  some things rely on this for semantics
1799 /// \param ForceUnprivileged true if this check should proceed as if the
1800 ///     context had no special privileges
CheckBaseClassAccess(SourceLocation AccessLoc,QualType Base,QualType Derived,const CXXBasePath & Path,unsigned DiagID,bool ForceCheck,bool ForceUnprivileged)1801 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1802                                               QualType Base,
1803                                               QualType Derived,
1804                                               const CXXBasePath &Path,
1805                                               unsigned DiagID,
1806                                               bool ForceCheck,
1807                                               bool ForceUnprivileged) {
1808   if (!ForceCheck && !getLangOpts().AccessControl)
1809     return AR_accessible;
1810 
1811   if (Path.Access == AS_public)
1812     return AR_accessible;
1813 
1814   CXXRecordDecl *BaseD, *DerivedD;
1815   BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1816   DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1817 
1818   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1819                       Path.Access);
1820   if (DiagID)
1821     Entity.setDiag(DiagID) << Derived << Base;
1822 
1823   if (ForceUnprivileged) {
1824     switch (CheckEffectiveAccess(*this, EffectiveContext(),
1825                                  AccessLoc, Entity)) {
1826     case ::AR_accessible: return Sema::AR_accessible;
1827     case ::AR_inaccessible: return Sema::AR_inaccessible;
1828     case ::AR_dependent: return Sema::AR_dependent;
1829     }
1830     llvm_unreachable("unexpected result from CheckEffectiveAccess");
1831   }
1832   return CheckAccess(*this, AccessLoc, Entity);
1833 }
1834 
1835 /// Checks access to all the declarations in the given result set.
CheckLookupAccess(const LookupResult & R)1836 void Sema::CheckLookupAccess(const LookupResult &R) {
1837   assert(getLangOpts().AccessControl
1838          && "performing access check without access control");
1839   assert(R.getNamingClass() && "performing access check without naming class");
1840 
1841   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1842     if (I.getAccess() != AS_public) {
1843       AccessTarget Entity(Context, AccessedEntity::Member,
1844                           R.getNamingClass(), I.getPair(),
1845                           R.getBaseObjectType());
1846       Entity.setDiag(diag::err_access);
1847       CheckAccess(*this, R.getNameLoc(), Entity);
1848     }
1849   }
1850 }
1851 
1852 /// Checks access to Decl from the given class. The check will take access
1853 /// specifiers into account, but no member access expressions and such.
1854 ///
1855 /// \param Decl the declaration to check if it can be accessed
1856 /// \param Ctx the class/context from which to start the search
1857 /// \return true if the Decl is accessible from the Class, false otherwise.
IsSimplyAccessible(NamedDecl * Decl,DeclContext * Ctx)1858 bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1859   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1860     if (!Decl->isCXXClassMember())
1861       return true;
1862 
1863     QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1864     AccessTarget Entity(Context, AccessedEntity::Member, Class,
1865                         DeclAccessPair::make(Decl, Decl->getAccess()),
1866                         qType);
1867     if (Entity.getAccess() == AS_public)
1868       return true;
1869 
1870     EffectiveContext EC(CurContext);
1871     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1872   }
1873 
1874   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1875     // @public and @package ivars are always accessible.
1876     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1877         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1878       return true;
1879 
1880     // If we are inside a class or category implementation, determine the
1881     // interface we're in.
1882     ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1883     if (ObjCMethodDecl *MD = getCurMethodDecl())
1884       ClassOfMethodDecl =  MD->getClassInterface();
1885     else if (FunctionDecl *FD = getCurFunctionDecl()) {
1886       if (ObjCImplDecl *Impl
1887             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1888         if (ObjCImplementationDecl *IMPD
1889               = dyn_cast<ObjCImplementationDecl>(Impl))
1890           ClassOfMethodDecl = IMPD->getClassInterface();
1891         else if (ObjCCategoryImplDecl* CatImplClass
1892                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
1893           ClassOfMethodDecl = CatImplClass->getClassInterface();
1894       }
1895     }
1896 
1897     // If we're not in an interface, this ivar is inaccessible.
1898     if (!ClassOfMethodDecl)
1899       return false;
1900 
1901     // If we're inside the same interface that owns the ivar, we're fine.
1902     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1903       return true;
1904 
1905     // If the ivar is private, it's inaccessible.
1906     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1907       return false;
1908 
1909     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1910   }
1911 
1912   return true;
1913 }
1914