• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "linker_phdr.h"
30 
31 #include <errno.h>
32 #include <string.h>
33 #include <sys/mman.h>
34 #include <sys/types.h>
35 #include <sys/stat.h>
36 #include <unistd.h>
37 
38 #include "linker.h"
39 #include "linker_debug.h"
40 #include "linker_utils.h"
41 
42 #include "private/bionic_prctl.h"
43 
GetTargetElfMachine()44 static int GetTargetElfMachine() {
45 #if defined(__arm__)
46   return EM_ARM;
47 #elif defined(__aarch64__)
48   return EM_AARCH64;
49 #elif defined(__i386__)
50   return EM_386;
51 #elif defined(__mips__)
52   return EM_MIPS;
53 #elif defined(__x86_64__)
54   return EM_X86_64;
55 #endif
56 }
57 
58 /**
59   TECHNICAL NOTE ON ELF LOADING.
60 
61   An ELF file's program header table contains one or more PT_LOAD
62   segments, which corresponds to portions of the file that need to
63   be mapped into the process' address space.
64 
65   Each loadable segment has the following important properties:
66 
67     p_offset  -> segment file offset
68     p_filesz  -> segment file size
69     p_memsz   -> segment memory size (always >= p_filesz)
70     p_vaddr   -> segment's virtual address
71     p_flags   -> segment flags (e.g. readable, writable, executable)
72 
73   We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now.
74 
75   The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
76   ranges of virtual addresses. A few rules apply:
77 
78   - the virtual address ranges should not overlap.
79 
80   - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
81     between them should always be initialized to 0.
82 
83   - ranges do not necessarily start or end at page boundaries. Two distinct
84     segments can have their start and end on the same page. In this case, the
85     page inherits the mapping flags of the latter segment.
86 
87   Finally, the real load addrs of each segment is not p_vaddr. Instead the
88   loader decides where to load the first segment, then will load all others
89   relative to the first one to respect the initial range layout.
90 
91   For example, consider the following list:
92 
93     [ offset:0,      filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
94     [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
95 
96   This corresponds to two segments that cover these virtual address ranges:
97 
98        0x30000...0x34000
99        0x40000...0x48000
100 
101   If the loader decides to load the first segment at address 0xa0000000
102   then the segments' load address ranges will be:
103 
104        0xa0030000...0xa0034000
105        0xa0040000...0xa0048000
106 
107   In other words, all segments must be loaded at an address that has the same
108   constant offset from their p_vaddr value. This offset is computed as the
109   difference between the first segment's load address, and its p_vaddr value.
110 
111   However, in practice, segments do _not_ start at page boundaries. Since we
112   can only memory-map at page boundaries, this means that the bias is
113   computed as:
114 
115        load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
116 
117   (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
118           possible wrap around UINT32_MAX for possible large p_vaddr values).
119 
120   And that the phdr0_load_address must start at a page boundary, with
121   the segment's real content starting at:
122 
123        phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
124 
125   Note that ELF requires the following condition to make the mmap()-ing work:
126 
127       PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
128 
129   The load_bias must be added to any p_vaddr value read from the ELF file to
130   determine the corresponding memory address.
131 
132  **/
133 
134 #define MAYBE_MAP_FLAG(x, from, to)  (((x) & (from)) ? (to) : 0)
135 #define PFLAGS_TO_PROT(x)            (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
136                                       MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
137                                       MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
138 
ElfReader()139 ElfReader::ElfReader()
140     : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0),
141       phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr),
142       strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr),
143       mapped_by_caller_(false) {
144 }
145 
Read(const char * name,int fd,off64_t file_offset,off64_t file_size)146 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
147   CHECK(!did_read_);
148   CHECK(!did_load_);
149   name_ = name;
150   fd_ = fd;
151   file_offset_ = file_offset;
152   file_size_ = file_size;
153 
154   if (ReadElfHeader() &&
155       VerifyElfHeader() &&
156       ReadProgramHeaders() &&
157       ReadSectionHeaders() &&
158       ReadDynamicSection()) {
159     did_read_ = true;
160   }
161 
162   return did_read_;
163 }
164 
Load(const android_dlextinfo * extinfo)165 bool ElfReader::Load(const android_dlextinfo* extinfo) {
166   CHECK(did_read_);
167   CHECK(!did_load_);
168   if (ReserveAddressSpace(extinfo) &&
169       LoadSegments() &&
170       FindPhdr()) {
171     did_load_ = true;
172   }
173 
174   return did_load_;
175 }
176 
get_string(ElfW (Word)index) const177 const char* ElfReader::get_string(ElfW(Word) index) const {
178   CHECK(strtab_ != nullptr);
179   CHECK(index < strtab_size_);
180 
181   return strtab_ + index;
182 }
183 
ReadElfHeader()184 bool ElfReader::ReadElfHeader() {
185   ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
186   if (rc < 0) {
187     DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno));
188     return false;
189   }
190 
191   if (rc != sizeof(header_)) {
192     DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(),
193            static_cast<size_t>(rc));
194     return false;
195   }
196   return true;
197 }
198 
VerifyElfHeader()199 bool ElfReader::VerifyElfHeader() {
200   if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
201     DL_ERR("\"%s\" has bad ELF magic", name_.c_str());
202     return false;
203   }
204 
205   // Try to give a clear diagnostic for ELF class mismatches, since they're
206   // an easy mistake to make during the 32-bit/64-bit transition period.
207   int elf_class = header_.e_ident[EI_CLASS];
208 #if defined(__LP64__)
209   if (elf_class != ELFCLASS64) {
210     if (elf_class == ELFCLASS32) {
211       DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str());
212     } else {
213       DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
214     }
215     return false;
216   }
217 #else
218   if (elf_class != ELFCLASS32) {
219     if (elf_class == ELFCLASS64) {
220       DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str());
221     } else {
222       DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
223     }
224     return false;
225   }
226 #endif
227 
228   if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
229     DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]);
230     return false;
231   }
232 
233   if (header_.e_type != ET_DYN) {
234     DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type);
235     return false;
236   }
237 
238   if (header_.e_version != EV_CURRENT) {
239     DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version);
240     return false;
241   }
242 
243   if (header_.e_machine != GetTargetElfMachine()) {
244     DL_ERR("\"%s\" has unexpected e_machine: %d", name_.c_str(), header_.e_machine);
245     return false;
246   }
247 
248   return true;
249 }
250 
CheckFileRange(ElfW (Addr)offset,size_t size,size_t alignment)251 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) {
252   off64_t range_start;
253   off64_t range_end;
254 
255   return safe_add(&range_start, file_offset_, offset) &&
256          safe_add(&range_end, range_start, size) &&
257          (range_start < file_size_) &&
258          (range_end <= file_size_) &&
259          ((offset % alignment) == 0);
260 }
261 
262 // Loads the program header table from an ELF file into a read-only private
263 // anonymous mmap-ed block.
ReadProgramHeaders()264 bool ElfReader::ReadProgramHeaders() {
265   phdr_num_ = header_.e_phnum;
266 
267   // Like the kernel, we only accept program header tables that
268   // are smaller than 64KiB.
269   if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
270     DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_);
271     return false;
272   }
273 
274   // Boundary checks
275   size_t size = phdr_num_ * sizeof(ElfW(Phdr));
276   if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) {
277     DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu",
278                    name_.c_str(),
279                    static_cast<size_t>(header_.e_phoff),
280                    size);
281     return false;
282   }
283 
284   if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) {
285     DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno));
286     return false;
287   }
288 
289   phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data());
290   return true;
291 }
292 
ReadSectionHeaders()293 bool ElfReader::ReadSectionHeaders() {
294   shdr_num_ = header_.e_shnum;
295 
296   if (shdr_num_ == 0) {
297     DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str());
298     return false;
299   }
300 
301   size_t size = shdr_num_ * sizeof(ElfW(Shdr));
302   if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) {
303     DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu",
304                    name_.c_str(),
305                    static_cast<size_t>(header_.e_shoff),
306                    size);
307     return false;
308   }
309 
310   if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) {
311     DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno));
312     return false;
313   }
314 
315   shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data());
316   return true;
317 }
318 
ReadDynamicSection()319 bool ElfReader::ReadDynamicSection() {
320   // 1. Find .dynamic section (in section headers)
321   const ElfW(Shdr)* dynamic_shdr = nullptr;
322   for (size_t i = 0; i < shdr_num_; ++i) {
323     if (shdr_table_[i].sh_type == SHT_DYNAMIC) {
324       dynamic_shdr = &shdr_table_ [i];
325       break;
326     }
327   }
328 
329   if (dynamic_shdr == nullptr) {
330     DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str());
331     return false;
332   }
333 
334   if (dynamic_shdr->sh_link >= shdr_num_) {
335     DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d",
336                    name_.c_str(),
337                    dynamic_shdr->sh_link);
338     return false;
339   }
340 
341   const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link];
342 
343   if (strtab_shdr->sh_type != SHT_STRTAB) {
344     DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)",
345                    name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type);
346     return false;
347   }
348 
349   if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) {
350     DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
351     return false;
352   }
353 
354   if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
355     DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno));
356     return false;
357   }
358 
359   dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data());
360 
361   if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) {
362     DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section",
363                    name_.c_str());
364     return false;
365   }
366 
367   if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
368     DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno));
369     return false;
370   }
371 
372   strtab_ = static_cast<const char*>(strtab_fragment_.data());
373   strtab_size_ = strtab_fragment_.size();
374   return true;
375 }
376 
377 /* Returns the size of the extent of all the possibly non-contiguous
378  * loadable segments in an ELF program header table. This corresponds
379  * to the page-aligned size in bytes that needs to be reserved in the
380  * process' address space. If there are no loadable segments, 0 is
381  * returned.
382  *
383  * If out_min_vaddr or out_max_vaddr are not null, they will be
384  * set to the minimum and maximum addresses of pages to be reserved,
385  * or 0 if there is nothing to load.
386  */
phdr_table_get_load_size(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)* out_min_vaddr,ElfW (Addr)* out_max_vaddr)387 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
388                                 ElfW(Addr)* out_min_vaddr,
389                                 ElfW(Addr)* out_max_vaddr) {
390   ElfW(Addr) min_vaddr = UINTPTR_MAX;
391   ElfW(Addr) max_vaddr = 0;
392 
393   bool found_pt_load = false;
394   for (size_t i = 0; i < phdr_count; ++i) {
395     const ElfW(Phdr)* phdr = &phdr_table[i];
396 
397     if (phdr->p_type != PT_LOAD) {
398       continue;
399     }
400     found_pt_load = true;
401 
402     if (phdr->p_vaddr < min_vaddr) {
403       min_vaddr = phdr->p_vaddr;
404     }
405 
406     if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
407       max_vaddr = phdr->p_vaddr + phdr->p_memsz;
408     }
409   }
410   if (!found_pt_load) {
411     min_vaddr = 0;
412   }
413 
414   min_vaddr = PAGE_START(min_vaddr);
415   max_vaddr = PAGE_END(max_vaddr);
416 
417   if (out_min_vaddr != nullptr) {
418     *out_min_vaddr = min_vaddr;
419   }
420   if (out_max_vaddr != nullptr) {
421     *out_max_vaddr = max_vaddr;
422   }
423   return max_vaddr - min_vaddr;
424 }
425 
426 // Reserve a virtual address range big enough to hold all loadable
427 // segments of a program header table. This is done by creating a
428 // private anonymous mmap() with PROT_NONE.
ReserveAddressSpace(const android_dlextinfo * extinfo)429 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) {
430   ElfW(Addr) min_vaddr;
431   load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
432   if (load_size_ == 0) {
433     DL_ERR("\"%s\" has no loadable segments", name_.c_str());
434     return false;
435   }
436 
437   uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
438   void* start;
439   size_t reserved_size = 0;
440   bool reserved_hint = true;
441   bool strict_hint = false;
442   // Assume position independent executable by default.
443   void* mmap_hint = nullptr;
444 
445   if (extinfo != nullptr) {
446     if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
447       reserved_size = extinfo->reserved_size;
448       reserved_hint = false;
449     } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
450       reserved_size = extinfo->reserved_size;
451     }
452 
453     if (addr != nullptr && (extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) {
454       mmap_hint = addr;
455     } else if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0) {
456       mmap_hint = extinfo->reserved_addr;
457       strict_hint = true;
458     }
459   }
460 
461   if (load_size_ > reserved_size) {
462     if (!reserved_hint) {
463       DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
464              reserved_size - load_size_, load_size_, name_.c_str());
465       return false;
466     }
467     int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
468     start = mmap(mmap_hint, load_size_, PROT_NONE, mmap_flags, -1, 0);
469     if (start == MAP_FAILED) {
470       DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str());
471       return false;
472     }
473     if (strict_hint && (start != mmap_hint)) {
474       munmap(start, load_size_);
475       DL_ERR("couldn't reserve %zd bytes of address space at %p for \"%s\"",
476              load_size_, mmap_hint, name_.c_str());
477       return false;
478     }
479   } else {
480     start = extinfo->reserved_addr;
481     mapped_by_caller_ = true;
482   }
483 
484   load_start_ = start;
485   load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
486   return true;
487 }
488 
LoadSegments()489 bool ElfReader::LoadSegments() {
490   for (size_t i = 0; i < phdr_num_; ++i) {
491     const ElfW(Phdr)* phdr = &phdr_table_[i];
492 
493     if (phdr->p_type != PT_LOAD) {
494       continue;
495     }
496 
497     // Segment addresses in memory.
498     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
499     ElfW(Addr) seg_end   = seg_start + phdr->p_memsz;
500 
501     ElfW(Addr) seg_page_start = PAGE_START(seg_start);
502     ElfW(Addr) seg_page_end   = PAGE_END(seg_end);
503 
504     ElfW(Addr) seg_file_end   = seg_start + phdr->p_filesz;
505 
506     // File offsets.
507     ElfW(Addr) file_start = phdr->p_offset;
508     ElfW(Addr) file_end   = file_start + phdr->p_filesz;
509 
510     ElfW(Addr) file_page_start = PAGE_START(file_start);
511     ElfW(Addr) file_length = file_end - file_page_start;
512 
513     if (file_size_ <= 0) {
514       DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_);
515       return false;
516     }
517 
518     if (file_end > static_cast<size_t>(file_size_)) {
519       DL_ERR("invalid ELF file \"%s\" load segment[%zd]:"
520           " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")",
521           name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset),
522           reinterpret_cast<void*>(phdr->p_filesz),
523           reinterpret_cast<void*>(file_end), file_size_);
524       return false;
525     }
526 
527     if (file_length != 0) {
528       int prot = PFLAGS_TO_PROT(phdr->p_flags);
529       // W + E PT_LOAD segments are not allowed.
530       if ((prot & (PROT_EXEC | PROT_WRITE)) == (PROT_EXEC | PROT_WRITE)) {
531         DL_WARN("\"%s\": has W+E (writable and executable) load segments. "
532                 "This is a security risk shared libraries with W+E load segments "
533                 "will not be supported in a future Android release. "
534                 "Please fix the library.", name_.c_str());
535       }
536 
537       void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
538                             file_length,
539                             prot,
540                             MAP_FIXED|MAP_PRIVATE,
541                             fd_,
542                             file_offset_ + file_page_start);
543       if (seg_addr == MAP_FAILED) {
544         DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno));
545         return false;
546       }
547     }
548 
549     // if the segment is writable, and does not end on a page boundary,
550     // zero-fill it until the page limit.
551     if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
552       memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
553     }
554 
555     seg_file_end = PAGE_END(seg_file_end);
556 
557     // seg_file_end is now the first page address after the file
558     // content. If seg_end is larger, we need to zero anything
559     // between them. This is done by using a private anonymous
560     // map for all extra pages.
561     if (seg_page_end > seg_file_end) {
562       size_t zeromap_size = seg_page_end - seg_file_end;
563       void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
564                            zeromap_size,
565                            PFLAGS_TO_PROT(phdr->p_flags),
566                            MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
567                            -1,
568                            0);
569       if (zeromap == MAP_FAILED) {
570         DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno));
571         return false;
572       }
573 
574       prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss");
575     }
576   }
577   return true;
578 }
579 
580 /* Used internally. Used to set the protection bits of all loaded segments
581  * with optional extra flags (i.e. really PROT_WRITE). Used by
582  * phdr_table_protect_segments and phdr_table_unprotect_segments.
583  */
_phdr_table_set_load_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int extra_prot_flags)584 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
585                                      ElfW(Addr) load_bias, int extra_prot_flags) {
586   const ElfW(Phdr)* phdr = phdr_table;
587   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
588 
589   for (; phdr < phdr_limit; phdr++) {
590     if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
591       continue;
592     }
593 
594     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
595     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
596 
597     int prot = PFLAGS_TO_PROT(phdr->p_flags);
598     if ((extra_prot_flags & PROT_WRITE) != 0) {
599       // make sure we're never simultaneously writable / executable
600       prot &= ~PROT_EXEC;
601     }
602 
603     int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
604                        seg_page_end - seg_page_start,
605                        prot | extra_prot_flags);
606     if (ret < 0) {
607       return -1;
608     }
609   }
610   return 0;
611 }
612 
613 /* Restore the original protection modes for all loadable segments.
614  * You should only call this after phdr_table_unprotect_segments and
615  * applying all relocations.
616  *
617  * Input:
618  *   phdr_table  -> program header table
619  *   phdr_count  -> number of entries in tables
620  *   load_bias   -> load bias
621  * Return:
622  *   0 on error, -1 on failure (error code in errno).
623  */
phdr_table_protect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)624 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table,
625                                 size_t phdr_count, ElfW(Addr) load_bias) {
626   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
627 }
628 
629 /* Change the protection of all loaded segments in memory to writable.
630  * This is useful before performing relocations. Once completed, you
631  * will have to call phdr_table_protect_segments to restore the original
632  * protection flags on all segments.
633  *
634  * Note that some writable segments can also have their content turned
635  * to read-only by calling phdr_table_protect_gnu_relro. This is no
636  * performed here.
637  *
638  * Input:
639  *   phdr_table  -> program header table
640  *   phdr_count  -> number of entries in tables
641  *   load_bias   -> load bias
642  * Return:
643  *   0 on error, -1 on failure (error code in errno).
644  */
phdr_table_unprotect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)645 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table,
646                                   size_t phdr_count, ElfW(Addr) load_bias) {
647   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE);
648 }
649 
650 /* Used internally by phdr_table_protect_gnu_relro and
651  * phdr_table_unprotect_gnu_relro.
652  */
_phdr_table_set_gnu_relro_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int prot_flags)653 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
654                                           ElfW(Addr) load_bias, int prot_flags) {
655   const ElfW(Phdr)* phdr = phdr_table;
656   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
657 
658   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
659     if (phdr->p_type != PT_GNU_RELRO) {
660       continue;
661     }
662 
663     // Tricky: what happens when the relro segment does not start
664     // or end at page boundaries? We're going to be over-protective
665     // here and put every page touched by the segment as read-only.
666 
667     // This seems to match Ian Lance Taylor's description of the
668     // feature at http://www.airs.com/blog/archives/189.
669 
670     //    Extract:
671     //       Note that the current dynamic linker code will only work
672     //       correctly if the PT_GNU_RELRO segment starts on a page
673     //       boundary. This is because the dynamic linker rounds the
674     //       p_vaddr field down to the previous page boundary. If
675     //       there is anything on the page which should not be read-only,
676     //       the program is likely to fail at runtime. So in effect the
677     //       linker must only emit a PT_GNU_RELRO segment if it ensures
678     //       that it starts on a page boundary.
679     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
680     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
681 
682     int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
683                        seg_page_end - seg_page_start,
684                        prot_flags);
685     if (ret < 0) {
686       return -1;
687     }
688   }
689   return 0;
690 }
691 
692 /* Apply GNU relro protection if specified by the program header. This will
693  * turn some of the pages of a writable PT_LOAD segment to read-only, as
694  * specified by one or more PT_GNU_RELRO segments. This must be always
695  * performed after relocations.
696  *
697  * The areas typically covered are .got and .data.rel.ro, these are
698  * read-only from the program's POV, but contain absolute addresses
699  * that need to be relocated before use.
700  *
701  * Input:
702  *   phdr_table  -> program header table
703  *   phdr_count  -> number of entries in tables
704  *   load_bias   -> load bias
705  * Return:
706  *   0 on error, -1 on failure (error code in errno).
707  */
phdr_table_protect_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)708 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table,
709                                  size_t phdr_count, ElfW(Addr) load_bias) {
710   return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ);
711 }
712 
713 /* Serialize the GNU relro segments to the given file descriptor. This can be
714  * performed after relocations to allow another process to later share the
715  * relocated segment, if it was loaded at the same address.
716  *
717  * Input:
718  *   phdr_table  -> program header table
719  *   phdr_count  -> number of entries in tables
720  *   load_bias   -> load bias
721  *   fd          -> writable file descriptor to use
722  * Return:
723  *   0 on error, -1 on failure (error code in errno).
724  */
phdr_table_serialize_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)725 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table,
726                                    size_t phdr_count,
727                                    ElfW(Addr) load_bias,
728                                    int fd) {
729   const ElfW(Phdr)* phdr = phdr_table;
730   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
731   ssize_t file_offset = 0;
732 
733   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
734     if (phdr->p_type != PT_GNU_RELRO) {
735       continue;
736     }
737 
738     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
739     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
740     ssize_t size = seg_page_end - seg_page_start;
741 
742     ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
743     if (written != size) {
744       return -1;
745     }
746     void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
747                      MAP_PRIVATE|MAP_FIXED, fd, file_offset);
748     if (map == MAP_FAILED) {
749       return -1;
750     }
751     file_offset += size;
752   }
753   return 0;
754 }
755 
756 /* Where possible, replace the GNU relro segments with mappings of the given
757  * file descriptor. This can be performed after relocations to allow a file
758  * previously created by phdr_table_serialize_gnu_relro in another process to
759  * replace the dirty relocated pages, saving memory, if it was loaded at the
760  * same address. We have to compare the data before we map over it, since some
761  * parts of the relro segment may not be identical due to other libraries in
762  * the process being loaded at different addresses.
763  *
764  * Input:
765  *   phdr_table  -> program header table
766  *   phdr_count  -> number of entries in tables
767  *   load_bias   -> load bias
768  *   fd          -> readable file descriptor to use
769  * Return:
770  *   0 on error, -1 on failure (error code in errno).
771  */
phdr_table_map_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)772 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table,
773                              size_t phdr_count,
774                              ElfW(Addr) load_bias,
775                              int fd) {
776   // Map the file at a temporary location so we can compare its contents.
777   struct stat file_stat;
778   if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
779     return -1;
780   }
781   off_t file_size = file_stat.st_size;
782   void* temp_mapping = nullptr;
783   if (file_size > 0) {
784     temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
785     if (temp_mapping == MAP_FAILED) {
786       return -1;
787     }
788   }
789   size_t file_offset = 0;
790 
791   // Iterate over the relro segments and compare/remap the pages.
792   const ElfW(Phdr)* phdr = phdr_table;
793   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
794 
795   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
796     if (phdr->p_type != PT_GNU_RELRO) {
797       continue;
798     }
799 
800     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
801     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
802 
803     char* file_base = static_cast<char*>(temp_mapping) + file_offset;
804     char* mem_base = reinterpret_cast<char*>(seg_page_start);
805     size_t match_offset = 0;
806     size_t size = seg_page_end - seg_page_start;
807 
808     if (file_size - file_offset < size) {
809       // File is too short to compare to this segment. The contents are likely
810       // different as well (it's probably for a different library version) so
811       // just don't bother checking.
812       break;
813     }
814 
815     while (match_offset < size) {
816       // Skip over dissimilar pages.
817       while (match_offset < size &&
818              memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) {
819         match_offset += PAGE_SIZE;
820       }
821 
822       // Count similar pages.
823       size_t mismatch_offset = match_offset;
824       while (mismatch_offset < size &&
825              memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) {
826         mismatch_offset += PAGE_SIZE;
827       }
828 
829       // Map over similar pages.
830       if (mismatch_offset > match_offset) {
831         void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
832                          PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset);
833         if (map == MAP_FAILED) {
834           munmap(temp_mapping, file_size);
835           return -1;
836         }
837       }
838 
839       match_offset = mismatch_offset;
840     }
841 
842     // Add to the base file offset in case there are multiple relro segments.
843     file_offset += size;
844   }
845   munmap(temp_mapping, file_size);
846   return 0;
847 }
848 
849 
850 #if defined(__arm__)
851 
852 #  ifndef PT_ARM_EXIDX
853 #    define PT_ARM_EXIDX    0x70000001      /* .ARM.exidx segment */
854 #  endif
855 
856 /* Return the address and size of the .ARM.exidx section in memory,
857  * if present.
858  *
859  * Input:
860  *   phdr_table  -> program header table
861  *   phdr_count  -> number of entries in tables
862  *   load_bias   -> load bias
863  * Output:
864  *   arm_exidx       -> address of table in memory (null on failure).
865  *   arm_exidx_count -> number of items in table (0 on failure).
866  * Return:
867  *   0 on error, -1 on failure (_no_ error code in errno)
868  */
phdr_table_get_arm_exidx(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Addr)** arm_exidx,size_t * arm_exidx_count)869 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
870                              ElfW(Addr) load_bias,
871                              ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) {
872   const ElfW(Phdr)* phdr = phdr_table;
873   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
874 
875   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
876     if (phdr->p_type != PT_ARM_EXIDX) {
877       continue;
878     }
879 
880     *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
881     *arm_exidx_count = phdr->p_memsz / 8;
882     return 0;
883   }
884   *arm_exidx = nullptr;
885   *arm_exidx_count = 0;
886   return -1;
887 }
888 #endif
889 
890 /* Return the address and size of the ELF file's .dynamic section in memory,
891  * or null if missing.
892  *
893  * Input:
894  *   phdr_table  -> program header table
895  *   phdr_count  -> number of entries in tables
896  *   load_bias   -> load bias
897  * Output:
898  *   dynamic       -> address of table in memory (null on failure).
899  *   dynamic_flags -> protection flags for section (unset on failure)
900  * Return:
901  *   void
902  */
phdr_table_get_dynamic_section(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Dyn)** dynamic,ElfW (Word)* dynamic_flags)903 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
904                                     ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
905                                     ElfW(Word)* dynamic_flags) {
906   *dynamic = nullptr;
907   for (size_t i = 0; i<phdr_count; ++i) {
908     const ElfW(Phdr)& phdr = phdr_table[i];
909     if (phdr.p_type == PT_DYNAMIC) {
910       *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr);
911       if (dynamic_flags) {
912         *dynamic_flags = phdr.p_flags;
913       }
914       return;
915     }
916   }
917 }
918 
919 /* Return the program interpreter string, or nullptr if missing.
920  *
921  * Input:
922  *   phdr_table  -> program header table
923  *   phdr_count  -> number of entries in tables
924  *   load_bias   -> load bias
925  * Return:
926  *   pointer to the program interpreter string.
927  */
phdr_table_get_interpreter_name(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)928 const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count,
929                                             ElfW(Addr) load_bias) {
930   for (size_t i = 0; i<phdr_count; ++i) {
931     const ElfW(Phdr)& phdr = phdr_table[i];
932     if (phdr.p_type == PT_INTERP) {
933       return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr);
934     }
935   }
936   return nullptr;
937 }
938 
939 // Sets loaded_phdr_ to the address of the program header table as it appears
940 // in the loaded segments in memory. This is in contrast with phdr_table_,
941 // which is temporary and will be released before the library is relocated.
FindPhdr()942 bool ElfReader::FindPhdr() {
943   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
944 
945   // If there is a PT_PHDR, use it directly.
946   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
947     if (phdr->p_type == PT_PHDR) {
948       return CheckPhdr(load_bias_ + phdr->p_vaddr);
949     }
950   }
951 
952   // Otherwise, check the first loadable segment. If its file offset
953   // is 0, it starts with the ELF header, and we can trivially find the
954   // loaded program header from it.
955   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
956     if (phdr->p_type == PT_LOAD) {
957       if (phdr->p_offset == 0) {
958         ElfW(Addr)  elf_addr = load_bias_ + phdr->p_vaddr;
959         const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
960         ElfW(Addr)  offset = ehdr->e_phoff;
961         return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset);
962       }
963       break;
964     }
965   }
966 
967   DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str());
968   return false;
969 }
970 
971 // Ensures that our program header is actually within a loadable
972 // segment. This should help catch badly-formed ELF files that
973 // would cause the linker to crash later when trying to access it.
CheckPhdr(ElfW (Addr)loaded)974 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
975   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
976   ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
977   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
978     if (phdr->p_type != PT_LOAD) {
979       continue;
980     }
981     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
982     ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
983     if (seg_start <= loaded && loaded_end <= seg_end) {
984       loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
985       return true;
986     }
987   }
988   DL_ERR("\"%s\" loaded phdr %p not in loadable segment",
989          name_.c_str(), reinterpret_cast<void*>(loaded));
990   return false;
991 }
992