1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "linker_phdr.h"
30
31 #include <errno.h>
32 #include <string.h>
33 #include <sys/mman.h>
34 #include <sys/types.h>
35 #include <sys/stat.h>
36 #include <unistd.h>
37
38 #include "linker.h"
39 #include "linker_debug.h"
40 #include "linker_utils.h"
41
42 #include "private/bionic_prctl.h"
43
GetTargetElfMachine()44 static int GetTargetElfMachine() {
45 #if defined(__arm__)
46 return EM_ARM;
47 #elif defined(__aarch64__)
48 return EM_AARCH64;
49 #elif defined(__i386__)
50 return EM_386;
51 #elif defined(__mips__)
52 return EM_MIPS;
53 #elif defined(__x86_64__)
54 return EM_X86_64;
55 #endif
56 }
57
58 /**
59 TECHNICAL NOTE ON ELF LOADING.
60
61 An ELF file's program header table contains one or more PT_LOAD
62 segments, which corresponds to portions of the file that need to
63 be mapped into the process' address space.
64
65 Each loadable segment has the following important properties:
66
67 p_offset -> segment file offset
68 p_filesz -> segment file size
69 p_memsz -> segment memory size (always >= p_filesz)
70 p_vaddr -> segment's virtual address
71 p_flags -> segment flags (e.g. readable, writable, executable)
72
73 We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now.
74
75 The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
76 ranges of virtual addresses. A few rules apply:
77
78 - the virtual address ranges should not overlap.
79
80 - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
81 between them should always be initialized to 0.
82
83 - ranges do not necessarily start or end at page boundaries. Two distinct
84 segments can have their start and end on the same page. In this case, the
85 page inherits the mapping flags of the latter segment.
86
87 Finally, the real load addrs of each segment is not p_vaddr. Instead the
88 loader decides where to load the first segment, then will load all others
89 relative to the first one to respect the initial range layout.
90
91 For example, consider the following list:
92
93 [ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
94 [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
95
96 This corresponds to two segments that cover these virtual address ranges:
97
98 0x30000...0x34000
99 0x40000...0x48000
100
101 If the loader decides to load the first segment at address 0xa0000000
102 then the segments' load address ranges will be:
103
104 0xa0030000...0xa0034000
105 0xa0040000...0xa0048000
106
107 In other words, all segments must be loaded at an address that has the same
108 constant offset from their p_vaddr value. This offset is computed as the
109 difference between the first segment's load address, and its p_vaddr value.
110
111 However, in practice, segments do _not_ start at page boundaries. Since we
112 can only memory-map at page boundaries, this means that the bias is
113 computed as:
114
115 load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
116
117 (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
118 possible wrap around UINT32_MAX for possible large p_vaddr values).
119
120 And that the phdr0_load_address must start at a page boundary, with
121 the segment's real content starting at:
122
123 phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
124
125 Note that ELF requires the following condition to make the mmap()-ing work:
126
127 PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
128
129 The load_bias must be added to any p_vaddr value read from the ELF file to
130 determine the corresponding memory address.
131
132 **/
133
134 #define MAYBE_MAP_FLAG(x, from, to) (((x) & (from)) ? (to) : 0)
135 #define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
136 MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
137 MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
138
ElfReader()139 ElfReader::ElfReader()
140 : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0),
141 phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr),
142 strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr),
143 mapped_by_caller_(false) {
144 }
145
Read(const char * name,int fd,off64_t file_offset,off64_t file_size)146 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
147 CHECK(!did_read_);
148 CHECK(!did_load_);
149 name_ = name;
150 fd_ = fd;
151 file_offset_ = file_offset;
152 file_size_ = file_size;
153
154 if (ReadElfHeader() &&
155 VerifyElfHeader() &&
156 ReadProgramHeaders() &&
157 ReadSectionHeaders() &&
158 ReadDynamicSection()) {
159 did_read_ = true;
160 }
161
162 return did_read_;
163 }
164
Load(const android_dlextinfo * extinfo)165 bool ElfReader::Load(const android_dlextinfo* extinfo) {
166 CHECK(did_read_);
167 CHECK(!did_load_);
168 if (ReserveAddressSpace(extinfo) &&
169 LoadSegments() &&
170 FindPhdr()) {
171 did_load_ = true;
172 }
173
174 return did_load_;
175 }
176
get_string(ElfW (Word)index) const177 const char* ElfReader::get_string(ElfW(Word) index) const {
178 CHECK(strtab_ != nullptr);
179 CHECK(index < strtab_size_);
180
181 return strtab_ + index;
182 }
183
ReadElfHeader()184 bool ElfReader::ReadElfHeader() {
185 ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
186 if (rc < 0) {
187 DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno));
188 return false;
189 }
190
191 if (rc != sizeof(header_)) {
192 DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(),
193 static_cast<size_t>(rc));
194 return false;
195 }
196 return true;
197 }
198
VerifyElfHeader()199 bool ElfReader::VerifyElfHeader() {
200 if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
201 DL_ERR("\"%s\" has bad ELF magic", name_.c_str());
202 return false;
203 }
204
205 // Try to give a clear diagnostic for ELF class mismatches, since they're
206 // an easy mistake to make during the 32-bit/64-bit transition period.
207 int elf_class = header_.e_ident[EI_CLASS];
208 #if defined(__LP64__)
209 if (elf_class != ELFCLASS64) {
210 if (elf_class == ELFCLASS32) {
211 DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str());
212 } else {
213 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
214 }
215 return false;
216 }
217 #else
218 if (elf_class != ELFCLASS32) {
219 if (elf_class == ELFCLASS64) {
220 DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str());
221 } else {
222 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
223 }
224 return false;
225 }
226 #endif
227
228 if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
229 DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]);
230 return false;
231 }
232
233 if (header_.e_type != ET_DYN) {
234 DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type);
235 return false;
236 }
237
238 if (header_.e_version != EV_CURRENT) {
239 DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version);
240 return false;
241 }
242
243 if (header_.e_machine != GetTargetElfMachine()) {
244 DL_ERR("\"%s\" has unexpected e_machine: %d", name_.c_str(), header_.e_machine);
245 return false;
246 }
247
248 return true;
249 }
250
CheckFileRange(ElfW (Addr)offset,size_t size,size_t alignment)251 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) {
252 off64_t range_start;
253 off64_t range_end;
254
255 return safe_add(&range_start, file_offset_, offset) &&
256 safe_add(&range_end, range_start, size) &&
257 (range_start < file_size_) &&
258 (range_end <= file_size_) &&
259 ((offset % alignment) == 0);
260 }
261
262 // Loads the program header table from an ELF file into a read-only private
263 // anonymous mmap-ed block.
ReadProgramHeaders()264 bool ElfReader::ReadProgramHeaders() {
265 phdr_num_ = header_.e_phnum;
266
267 // Like the kernel, we only accept program header tables that
268 // are smaller than 64KiB.
269 if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
270 DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_);
271 return false;
272 }
273
274 // Boundary checks
275 size_t size = phdr_num_ * sizeof(ElfW(Phdr));
276 if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) {
277 DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu",
278 name_.c_str(),
279 static_cast<size_t>(header_.e_phoff),
280 size);
281 return false;
282 }
283
284 if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) {
285 DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno));
286 return false;
287 }
288
289 phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data());
290 return true;
291 }
292
ReadSectionHeaders()293 bool ElfReader::ReadSectionHeaders() {
294 shdr_num_ = header_.e_shnum;
295
296 if (shdr_num_ == 0) {
297 DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str());
298 return false;
299 }
300
301 size_t size = shdr_num_ * sizeof(ElfW(Shdr));
302 if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) {
303 DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu",
304 name_.c_str(),
305 static_cast<size_t>(header_.e_shoff),
306 size);
307 return false;
308 }
309
310 if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) {
311 DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno));
312 return false;
313 }
314
315 shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data());
316 return true;
317 }
318
ReadDynamicSection()319 bool ElfReader::ReadDynamicSection() {
320 // 1. Find .dynamic section (in section headers)
321 const ElfW(Shdr)* dynamic_shdr = nullptr;
322 for (size_t i = 0; i < shdr_num_; ++i) {
323 if (shdr_table_[i].sh_type == SHT_DYNAMIC) {
324 dynamic_shdr = &shdr_table_ [i];
325 break;
326 }
327 }
328
329 if (dynamic_shdr == nullptr) {
330 DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str());
331 return false;
332 }
333
334 if (dynamic_shdr->sh_link >= shdr_num_) {
335 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d",
336 name_.c_str(),
337 dynamic_shdr->sh_link);
338 return false;
339 }
340
341 const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link];
342
343 if (strtab_shdr->sh_type != SHT_STRTAB) {
344 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)",
345 name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type);
346 return false;
347 }
348
349 if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) {
350 DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
351 return false;
352 }
353
354 if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
355 DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno));
356 return false;
357 }
358
359 dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data());
360
361 if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) {
362 DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section",
363 name_.c_str());
364 return false;
365 }
366
367 if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
368 DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno));
369 return false;
370 }
371
372 strtab_ = static_cast<const char*>(strtab_fragment_.data());
373 strtab_size_ = strtab_fragment_.size();
374 return true;
375 }
376
377 /* Returns the size of the extent of all the possibly non-contiguous
378 * loadable segments in an ELF program header table. This corresponds
379 * to the page-aligned size in bytes that needs to be reserved in the
380 * process' address space. If there are no loadable segments, 0 is
381 * returned.
382 *
383 * If out_min_vaddr or out_max_vaddr are not null, they will be
384 * set to the minimum and maximum addresses of pages to be reserved,
385 * or 0 if there is nothing to load.
386 */
phdr_table_get_load_size(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)* out_min_vaddr,ElfW (Addr)* out_max_vaddr)387 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
388 ElfW(Addr)* out_min_vaddr,
389 ElfW(Addr)* out_max_vaddr) {
390 ElfW(Addr) min_vaddr = UINTPTR_MAX;
391 ElfW(Addr) max_vaddr = 0;
392
393 bool found_pt_load = false;
394 for (size_t i = 0; i < phdr_count; ++i) {
395 const ElfW(Phdr)* phdr = &phdr_table[i];
396
397 if (phdr->p_type != PT_LOAD) {
398 continue;
399 }
400 found_pt_load = true;
401
402 if (phdr->p_vaddr < min_vaddr) {
403 min_vaddr = phdr->p_vaddr;
404 }
405
406 if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
407 max_vaddr = phdr->p_vaddr + phdr->p_memsz;
408 }
409 }
410 if (!found_pt_load) {
411 min_vaddr = 0;
412 }
413
414 min_vaddr = PAGE_START(min_vaddr);
415 max_vaddr = PAGE_END(max_vaddr);
416
417 if (out_min_vaddr != nullptr) {
418 *out_min_vaddr = min_vaddr;
419 }
420 if (out_max_vaddr != nullptr) {
421 *out_max_vaddr = max_vaddr;
422 }
423 return max_vaddr - min_vaddr;
424 }
425
426 // Reserve a virtual address range big enough to hold all loadable
427 // segments of a program header table. This is done by creating a
428 // private anonymous mmap() with PROT_NONE.
ReserveAddressSpace(const android_dlextinfo * extinfo)429 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) {
430 ElfW(Addr) min_vaddr;
431 load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
432 if (load_size_ == 0) {
433 DL_ERR("\"%s\" has no loadable segments", name_.c_str());
434 return false;
435 }
436
437 uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
438 void* start;
439 size_t reserved_size = 0;
440 bool reserved_hint = true;
441 bool strict_hint = false;
442 // Assume position independent executable by default.
443 void* mmap_hint = nullptr;
444
445 if (extinfo != nullptr) {
446 if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
447 reserved_size = extinfo->reserved_size;
448 reserved_hint = false;
449 } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
450 reserved_size = extinfo->reserved_size;
451 }
452
453 if (addr != nullptr && (extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) {
454 mmap_hint = addr;
455 } else if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0) {
456 mmap_hint = extinfo->reserved_addr;
457 strict_hint = true;
458 }
459 }
460
461 if (load_size_ > reserved_size) {
462 if (!reserved_hint) {
463 DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
464 reserved_size - load_size_, load_size_, name_.c_str());
465 return false;
466 }
467 int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
468 start = mmap(mmap_hint, load_size_, PROT_NONE, mmap_flags, -1, 0);
469 if (start == MAP_FAILED) {
470 DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str());
471 return false;
472 }
473 if (strict_hint && (start != mmap_hint)) {
474 munmap(start, load_size_);
475 DL_ERR("couldn't reserve %zd bytes of address space at %p for \"%s\"",
476 load_size_, mmap_hint, name_.c_str());
477 return false;
478 }
479 } else {
480 start = extinfo->reserved_addr;
481 mapped_by_caller_ = true;
482 }
483
484 load_start_ = start;
485 load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
486 return true;
487 }
488
LoadSegments()489 bool ElfReader::LoadSegments() {
490 for (size_t i = 0; i < phdr_num_; ++i) {
491 const ElfW(Phdr)* phdr = &phdr_table_[i];
492
493 if (phdr->p_type != PT_LOAD) {
494 continue;
495 }
496
497 // Segment addresses in memory.
498 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
499 ElfW(Addr) seg_end = seg_start + phdr->p_memsz;
500
501 ElfW(Addr) seg_page_start = PAGE_START(seg_start);
502 ElfW(Addr) seg_page_end = PAGE_END(seg_end);
503
504 ElfW(Addr) seg_file_end = seg_start + phdr->p_filesz;
505
506 // File offsets.
507 ElfW(Addr) file_start = phdr->p_offset;
508 ElfW(Addr) file_end = file_start + phdr->p_filesz;
509
510 ElfW(Addr) file_page_start = PAGE_START(file_start);
511 ElfW(Addr) file_length = file_end - file_page_start;
512
513 if (file_size_ <= 0) {
514 DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_);
515 return false;
516 }
517
518 if (file_end > static_cast<size_t>(file_size_)) {
519 DL_ERR("invalid ELF file \"%s\" load segment[%zd]:"
520 " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")",
521 name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset),
522 reinterpret_cast<void*>(phdr->p_filesz),
523 reinterpret_cast<void*>(file_end), file_size_);
524 return false;
525 }
526
527 if (file_length != 0) {
528 int prot = PFLAGS_TO_PROT(phdr->p_flags);
529 // W + E PT_LOAD segments are not allowed.
530 if ((prot & (PROT_EXEC | PROT_WRITE)) == (PROT_EXEC | PROT_WRITE)) {
531 DL_WARN("\"%s\": has W+E (writable and executable) load segments. "
532 "This is a security risk shared libraries with W+E load segments "
533 "will not be supported in a future Android release. "
534 "Please fix the library.", name_.c_str());
535 }
536
537 void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
538 file_length,
539 prot,
540 MAP_FIXED|MAP_PRIVATE,
541 fd_,
542 file_offset_ + file_page_start);
543 if (seg_addr == MAP_FAILED) {
544 DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno));
545 return false;
546 }
547 }
548
549 // if the segment is writable, and does not end on a page boundary,
550 // zero-fill it until the page limit.
551 if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
552 memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
553 }
554
555 seg_file_end = PAGE_END(seg_file_end);
556
557 // seg_file_end is now the first page address after the file
558 // content. If seg_end is larger, we need to zero anything
559 // between them. This is done by using a private anonymous
560 // map for all extra pages.
561 if (seg_page_end > seg_file_end) {
562 size_t zeromap_size = seg_page_end - seg_file_end;
563 void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
564 zeromap_size,
565 PFLAGS_TO_PROT(phdr->p_flags),
566 MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
567 -1,
568 0);
569 if (zeromap == MAP_FAILED) {
570 DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno));
571 return false;
572 }
573
574 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss");
575 }
576 }
577 return true;
578 }
579
580 /* Used internally. Used to set the protection bits of all loaded segments
581 * with optional extra flags (i.e. really PROT_WRITE). Used by
582 * phdr_table_protect_segments and phdr_table_unprotect_segments.
583 */
_phdr_table_set_load_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int extra_prot_flags)584 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
585 ElfW(Addr) load_bias, int extra_prot_flags) {
586 const ElfW(Phdr)* phdr = phdr_table;
587 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
588
589 for (; phdr < phdr_limit; phdr++) {
590 if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
591 continue;
592 }
593
594 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
595 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
596
597 int prot = PFLAGS_TO_PROT(phdr->p_flags);
598 if ((extra_prot_flags & PROT_WRITE) != 0) {
599 // make sure we're never simultaneously writable / executable
600 prot &= ~PROT_EXEC;
601 }
602
603 int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
604 seg_page_end - seg_page_start,
605 prot | extra_prot_flags);
606 if (ret < 0) {
607 return -1;
608 }
609 }
610 return 0;
611 }
612
613 /* Restore the original protection modes for all loadable segments.
614 * You should only call this after phdr_table_unprotect_segments and
615 * applying all relocations.
616 *
617 * Input:
618 * phdr_table -> program header table
619 * phdr_count -> number of entries in tables
620 * load_bias -> load bias
621 * Return:
622 * 0 on error, -1 on failure (error code in errno).
623 */
phdr_table_protect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)624 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table,
625 size_t phdr_count, ElfW(Addr) load_bias) {
626 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
627 }
628
629 /* Change the protection of all loaded segments in memory to writable.
630 * This is useful before performing relocations. Once completed, you
631 * will have to call phdr_table_protect_segments to restore the original
632 * protection flags on all segments.
633 *
634 * Note that some writable segments can also have their content turned
635 * to read-only by calling phdr_table_protect_gnu_relro. This is no
636 * performed here.
637 *
638 * Input:
639 * phdr_table -> program header table
640 * phdr_count -> number of entries in tables
641 * load_bias -> load bias
642 * Return:
643 * 0 on error, -1 on failure (error code in errno).
644 */
phdr_table_unprotect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)645 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table,
646 size_t phdr_count, ElfW(Addr) load_bias) {
647 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE);
648 }
649
650 /* Used internally by phdr_table_protect_gnu_relro and
651 * phdr_table_unprotect_gnu_relro.
652 */
_phdr_table_set_gnu_relro_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int prot_flags)653 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
654 ElfW(Addr) load_bias, int prot_flags) {
655 const ElfW(Phdr)* phdr = phdr_table;
656 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
657
658 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
659 if (phdr->p_type != PT_GNU_RELRO) {
660 continue;
661 }
662
663 // Tricky: what happens when the relro segment does not start
664 // or end at page boundaries? We're going to be over-protective
665 // here and put every page touched by the segment as read-only.
666
667 // This seems to match Ian Lance Taylor's description of the
668 // feature at http://www.airs.com/blog/archives/189.
669
670 // Extract:
671 // Note that the current dynamic linker code will only work
672 // correctly if the PT_GNU_RELRO segment starts on a page
673 // boundary. This is because the dynamic linker rounds the
674 // p_vaddr field down to the previous page boundary. If
675 // there is anything on the page which should not be read-only,
676 // the program is likely to fail at runtime. So in effect the
677 // linker must only emit a PT_GNU_RELRO segment if it ensures
678 // that it starts on a page boundary.
679 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
680 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
681
682 int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
683 seg_page_end - seg_page_start,
684 prot_flags);
685 if (ret < 0) {
686 return -1;
687 }
688 }
689 return 0;
690 }
691
692 /* Apply GNU relro protection if specified by the program header. This will
693 * turn some of the pages of a writable PT_LOAD segment to read-only, as
694 * specified by one or more PT_GNU_RELRO segments. This must be always
695 * performed after relocations.
696 *
697 * The areas typically covered are .got and .data.rel.ro, these are
698 * read-only from the program's POV, but contain absolute addresses
699 * that need to be relocated before use.
700 *
701 * Input:
702 * phdr_table -> program header table
703 * phdr_count -> number of entries in tables
704 * load_bias -> load bias
705 * Return:
706 * 0 on error, -1 on failure (error code in errno).
707 */
phdr_table_protect_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)708 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table,
709 size_t phdr_count, ElfW(Addr) load_bias) {
710 return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ);
711 }
712
713 /* Serialize the GNU relro segments to the given file descriptor. This can be
714 * performed after relocations to allow another process to later share the
715 * relocated segment, if it was loaded at the same address.
716 *
717 * Input:
718 * phdr_table -> program header table
719 * phdr_count -> number of entries in tables
720 * load_bias -> load bias
721 * fd -> writable file descriptor to use
722 * Return:
723 * 0 on error, -1 on failure (error code in errno).
724 */
phdr_table_serialize_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)725 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table,
726 size_t phdr_count,
727 ElfW(Addr) load_bias,
728 int fd) {
729 const ElfW(Phdr)* phdr = phdr_table;
730 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
731 ssize_t file_offset = 0;
732
733 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
734 if (phdr->p_type != PT_GNU_RELRO) {
735 continue;
736 }
737
738 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
739 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
740 ssize_t size = seg_page_end - seg_page_start;
741
742 ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
743 if (written != size) {
744 return -1;
745 }
746 void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
747 MAP_PRIVATE|MAP_FIXED, fd, file_offset);
748 if (map == MAP_FAILED) {
749 return -1;
750 }
751 file_offset += size;
752 }
753 return 0;
754 }
755
756 /* Where possible, replace the GNU relro segments with mappings of the given
757 * file descriptor. This can be performed after relocations to allow a file
758 * previously created by phdr_table_serialize_gnu_relro in another process to
759 * replace the dirty relocated pages, saving memory, if it was loaded at the
760 * same address. We have to compare the data before we map over it, since some
761 * parts of the relro segment may not be identical due to other libraries in
762 * the process being loaded at different addresses.
763 *
764 * Input:
765 * phdr_table -> program header table
766 * phdr_count -> number of entries in tables
767 * load_bias -> load bias
768 * fd -> readable file descriptor to use
769 * Return:
770 * 0 on error, -1 on failure (error code in errno).
771 */
phdr_table_map_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)772 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table,
773 size_t phdr_count,
774 ElfW(Addr) load_bias,
775 int fd) {
776 // Map the file at a temporary location so we can compare its contents.
777 struct stat file_stat;
778 if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
779 return -1;
780 }
781 off_t file_size = file_stat.st_size;
782 void* temp_mapping = nullptr;
783 if (file_size > 0) {
784 temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
785 if (temp_mapping == MAP_FAILED) {
786 return -1;
787 }
788 }
789 size_t file_offset = 0;
790
791 // Iterate over the relro segments and compare/remap the pages.
792 const ElfW(Phdr)* phdr = phdr_table;
793 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
794
795 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
796 if (phdr->p_type != PT_GNU_RELRO) {
797 continue;
798 }
799
800 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
801 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
802
803 char* file_base = static_cast<char*>(temp_mapping) + file_offset;
804 char* mem_base = reinterpret_cast<char*>(seg_page_start);
805 size_t match_offset = 0;
806 size_t size = seg_page_end - seg_page_start;
807
808 if (file_size - file_offset < size) {
809 // File is too short to compare to this segment. The contents are likely
810 // different as well (it's probably for a different library version) so
811 // just don't bother checking.
812 break;
813 }
814
815 while (match_offset < size) {
816 // Skip over dissimilar pages.
817 while (match_offset < size &&
818 memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) {
819 match_offset += PAGE_SIZE;
820 }
821
822 // Count similar pages.
823 size_t mismatch_offset = match_offset;
824 while (mismatch_offset < size &&
825 memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) {
826 mismatch_offset += PAGE_SIZE;
827 }
828
829 // Map over similar pages.
830 if (mismatch_offset > match_offset) {
831 void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
832 PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset);
833 if (map == MAP_FAILED) {
834 munmap(temp_mapping, file_size);
835 return -1;
836 }
837 }
838
839 match_offset = mismatch_offset;
840 }
841
842 // Add to the base file offset in case there are multiple relro segments.
843 file_offset += size;
844 }
845 munmap(temp_mapping, file_size);
846 return 0;
847 }
848
849
850 #if defined(__arm__)
851
852 # ifndef PT_ARM_EXIDX
853 # define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */
854 # endif
855
856 /* Return the address and size of the .ARM.exidx section in memory,
857 * if present.
858 *
859 * Input:
860 * phdr_table -> program header table
861 * phdr_count -> number of entries in tables
862 * load_bias -> load bias
863 * Output:
864 * arm_exidx -> address of table in memory (null on failure).
865 * arm_exidx_count -> number of items in table (0 on failure).
866 * Return:
867 * 0 on error, -1 on failure (_no_ error code in errno)
868 */
phdr_table_get_arm_exidx(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Addr)** arm_exidx,size_t * arm_exidx_count)869 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
870 ElfW(Addr) load_bias,
871 ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) {
872 const ElfW(Phdr)* phdr = phdr_table;
873 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
874
875 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
876 if (phdr->p_type != PT_ARM_EXIDX) {
877 continue;
878 }
879
880 *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
881 *arm_exidx_count = phdr->p_memsz / 8;
882 return 0;
883 }
884 *arm_exidx = nullptr;
885 *arm_exidx_count = 0;
886 return -1;
887 }
888 #endif
889
890 /* Return the address and size of the ELF file's .dynamic section in memory,
891 * or null if missing.
892 *
893 * Input:
894 * phdr_table -> program header table
895 * phdr_count -> number of entries in tables
896 * load_bias -> load bias
897 * Output:
898 * dynamic -> address of table in memory (null on failure).
899 * dynamic_flags -> protection flags for section (unset on failure)
900 * Return:
901 * void
902 */
phdr_table_get_dynamic_section(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Dyn)** dynamic,ElfW (Word)* dynamic_flags)903 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
904 ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
905 ElfW(Word)* dynamic_flags) {
906 *dynamic = nullptr;
907 for (size_t i = 0; i<phdr_count; ++i) {
908 const ElfW(Phdr)& phdr = phdr_table[i];
909 if (phdr.p_type == PT_DYNAMIC) {
910 *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr);
911 if (dynamic_flags) {
912 *dynamic_flags = phdr.p_flags;
913 }
914 return;
915 }
916 }
917 }
918
919 /* Return the program interpreter string, or nullptr if missing.
920 *
921 * Input:
922 * phdr_table -> program header table
923 * phdr_count -> number of entries in tables
924 * load_bias -> load bias
925 * Return:
926 * pointer to the program interpreter string.
927 */
phdr_table_get_interpreter_name(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)928 const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count,
929 ElfW(Addr) load_bias) {
930 for (size_t i = 0; i<phdr_count; ++i) {
931 const ElfW(Phdr)& phdr = phdr_table[i];
932 if (phdr.p_type == PT_INTERP) {
933 return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr);
934 }
935 }
936 return nullptr;
937 }
938
939 // Sets loaded_phdr_ to the address of the program header table as it appears
940 // in the loaded segments in memory. This is in contrast with phdr_table_,
941 // which is temporary and will be released before the library is relocated.
FindPhdr()942 bool ElfReader::FindPhdr() {
943 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
944
945 // If there is a PT_PHDR, use it directly.
946 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
947 if (phdr->p_type == PT_PHDR) {
948 return CheckPhdr(load_bias_ + phdr->p_vaddr);
949 }
950 }
951
952 // Otherwise, check the first loadable segment. If its file offset
953 // is 0, it starts with the ELF header, and we can trivially find the
954 // loaded program header from it.
955 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
956 if (phdr->p_type == PT_LOAD) {
957 if (phdr->p_offset == 0) {
958 ElfW(Addr) elf_addr = load_bias_ + phdr->p_vaddr;
959 const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
960 ElfW(Addr) offset = ehdr->e_phoff;
961 return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset);
962 }
963 break;
964 }
965 }
966
967 DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str());
968 return false;
969 }
970
971 // Ensures that our program header is actually within a loadable
972 // segment. This should help catch badly-formed ELF files that
973 // would cause the linker to crash later when trying to access it.
CheckPhdr(ElfW (Addr)loaded)974 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
975 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
976 ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
977 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
978 if (phdr->p_type != PT_LOAD) {
979 continue;
980 }
981 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
982 ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
983 if (seg_start <= loaded && loaded_end <= seg_end) {
984 loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
985 return true;
986 }
987 }
988 DL_ERR("\"%s\" loaded phdr %p not in loadable segment",
989 name_.c_str(), reinterpret_cast<void*>(loaded));
990 return false;
991 }
992