1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 using namespace llvm;
37
38 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo)39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
40 ValueToValueMapTy &VMap,
41 const Twine &NameSuffix, Function *F,
42 ClonedCodeInfo *CodeInfo) {
43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
45
46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
47
48 // Loop over all instructions, and copy them over.
49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
50 II != IE; ++II) {
51 Instruction *NewInst = II->clone();
52 if (II->hasName())
53 NewInst->setName(II->getName()+NameSuffix);
54 NewBB->getInstList().push_back(NewInst);
55 VMap[&*II] = NewInst; // Add instruction map to value.
56
57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
59 if (isa<ConstantInt>(AI->getArraySize()))
60 hasStaticAllocas = true;
61 else
62 hasDynamicAllocas = true;
63 }
64 }
65
66 if (CodeInfo) {
67 CodeInfo->ContainsCalls |= hasCalls;
68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
70 BB != &BB->getParent()->getEntryBlock();
71 }
72 return NewBB;
73 }
74
75 // Clone OldFunc into NewFunc, transforming the old arguments into references to
76 // VMap values.
77 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
79 ValueToValueMapTy &VMap,
80 bool ModuleLevelChanges,
81 SmallVectorImpl<ReturnInst*> &Returns,
82 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
83 ValueMapTypeRemapper *TypeMapper,
84 ValueMaterializer *Materializer) {
85 assert(NameSuffix && "NameSuffix cannot be null!");
86
87 #ifndef NDEBUG
88 for (const Argument &I : OldFunc->args())
89 assert(VMap.count(&I) && "No mapping from source argument specified!");
90 #endif
91
92 // Copy all attributes other than those stored in the AttributeSet. We need
93 // to remap the parameter indices of the AttributeSet.
94 AttributeSet NewAttrs = NewFunc->getAttributes();
95 NewFunc->copyAttributesFrom(OldFunc);
96 NewFunc->setAttributes(NewAttrs);
97
98 // Fix up the personality function that got copied over.
99 if (OldFunc->hasPersonalityFn())
100 NewFunc->setPersonalityFn(
101 MapValue(OldFunc->getPersonalityFn(), VMap,
102 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
103 TypeMapper, Materializer));
104
105 AttributeSet OldAttrs = OldFunc->getAttributes();
106 // Clone any argument attributes that are present in the VMap.
107 for (const Argument &OldArg : OldFunc->args())
108 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
109 AttributeSet attrs =
110 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
111 if (attrs.getNumSlots() > 0)
112 NewArg->addAttr(attrs);
113 }
114
115 NewFunc->setAttributes(
116 NewFunc->getAttributes()
117 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
118 OldAttrs.getRetAttributes())
119 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
120 OldAttrs.getFnAttributes()));
121
122 // Loop over all of the basic blocks in the function, cloning them as
123 // appropriate. Note that we save BE this way in order to handle cloning of
124 // recursive functions into themselves.
125 //
126 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
127 BI != BE; ++BI) {
128 const BasicBlock &BB = *BI;
129
130 // Create a new basic block and copy instructions into it!
131 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
132
133 // Add basic block mapping.
134 VMap[&BB] = CBB;
135
136 // It is only legal to clone a function if a block address within that
137 // function is never referenced outside of the function. Given that, we
138 // want to map block addresses from the old function to block addresses in
139 // the clone. (This is different from the generic ValueMapper
140 // implementation, which generates an invalid blockaddress when
141 // cloning a function.)
142 if (BB.hasAddressTaken()) {
143 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
144 const_cast<BasicBlock*>(&BB));
145 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
146 }
147
148 // Note return instructions for the caller.
149 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
150 Returns.push_back(RI);
151 }
152
153 // Loop over all of the instructions in the function, fixing up operand
154 // references as we go. This uses VMap to do all the hard work.
155 for (Function::iterator BB =
156 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
157 BE = NewFunc->end();
158 BB != BE; ++BB)
159 // Loop over all instructions, fixing each one as we find it...
160 for (Instruction &II : *BB)
161 RemapInstruction(&II, VMap,
162 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
163 TypeMapper, Materializer);
164 }
165
166 // Find the MDNode which corresponds to the subprogram data that described F.
FindSubprogram(const Function * F,DebugInfoFinder & Finder)167 static DISubprogram *FindSubprogram(const Function *F,
168 DebugInfoFinder &Finder) {
169 for (DISubprogram *Subprogram : Finder.subprograms()) {
170 if (Subprogram->describes(F))
171 return Subprogram;
172 }
173 return nullptr;
174 }
175
176 // Add an operand to an existing MDNode. The new operand will be added at the
177 // back of the operand list.
AddOperand(DICompileUnit * CU,DISubprogramArray SPs,Metadata * NewSP)178 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs,
179 Metadata *NewSP) {
180 SmallVector<Metadata *, 16> NewSPs;
181 NewSPs.reserve(SPs.size() + 1);
182 for (auto *SP : SPs)
183 NewSPs.push_back(SP);
184 NewSPs.push_back(NewSP);
185 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
186 }
187
188 // Clone the module-level debug info associated with OldFunc. The cloned data
189 // will point to NewFunc instead.
CloneDebugInfoMetadata(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap)190 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
191 ValueToValueMapTy &VMap) {
192 DebugInfoFinder Finder;
193 Finder.processModule(*OldFunc->getParent());
194
195 const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
196 if (!OldSubprogramMDNode) return;
197
198 auto *NewSubprogram =
199 cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
200 NewFunc->setSubprogram(NewSubprogram);
201
202 for (auto *CU : Finder.compile_units()) {
203 auto Subprograms = CU->getSubprograms();
204 // If the compile unit's function list contains the old function, it should
205 // also contain the new one.
206 for (auto *SP : Subprograms) {
207 if (SP == OldSubprogramMDNode) {
208 AddOperand(CU, Subprograms, NewSubprogram);
209 break;
210 }
211 }
212 }
213 }
214
215 /// Return a copy of the specified function, but without
216 /// embedding the function into another module. Also, any references specified
217 /// in the VMap are changed to refer to their mapped value instead of the
218 /// original one. If any of the arguments to the function are in the VMap,
219 /// the arguments are deleted from the resultant function. The VMap is
220 /// updated to include mappings from all of the instructions and basicblocks in
221 /// the function from their old to new values.
222 ///
CloneFunction(const Function * F,ValueToValueMapTy & VMap,bool ModuleLevelChanges,ClonedCodeInfo * CodeInfo)223 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
224 bool ModuleLevelChanges,
225 ClonedCodeInfo *CodeInfo) {
226 std::vector<Type*> ArgTypes;
227
228 // The user might be deleting arguments to the function by specifying them in
229 // the VMap. If so, we need to not add the arguments to the arg ty vector
230 //
231 for (const Argument &I : F->args())
232 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
233 ArgTypes.push_back(I.getType());
234
235 // Create a new function type...
236 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
237 ArgTypes, F->getFunctionType()->isVarArg());
238
239 // Create the new function...
240 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
241
242 // Loop over the arguments, copying the names of the mapped arguments over...
243 Function::arg_iterator DestI = NewF->arg_begin();
244 for (const Argument & I : F->args())
245 if (VMap.count(&I) == 0) { // Is this argument preserved?
246 DestI->setName(I.getName()); // Copy the name over...
247 VMap[&I] = &*DestI++; // Add mapping to VMap
248 }
249
250 if (ModuleLevelChanges)
251 CloneDebugInfoMetadata(NewF, F, VMap);
252
253 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
254 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
255 return NewF;
256 }
257
258
259
260 namespace {
261 /// This is a private class used to implement CloneAndPruneFunctionInto.
262 struct PruningFunctionCloner {
263 Function *NewFunc;
264 const Function *OldFunc;
265 ValueToValueMapTy &VMap;
266 bool ModuleLevelChanges;
267 const char *NameSuffix;
268 ClonedCodeInfo *CodeInfo;
269 CloningDirector *Director;
270 ValueMapTypeRemapper *TypeMapper;
271 ValueMaterializer *Materializer;
272
273 public:
PruningFunctionCloner__anoneca2a9c80111::PruningFunctionCloner274 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
275 ValueToValueMapTy &valueMap, bool moduleLevelChanges,
276 const char *nameSuffix, ClonedCodeInfo *codeInfo,
277 CloningDirector *Director)
278 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
279 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
280 CodeInfo(codeInfo), Director(Director) {
281 // These are optional components. The Director may return null.
282 if (Director) {
283 TypeMapper = Director->getTypeRemapper();
284 Materializer = Director->getValueMaterializer();
285 } else {
286 TypeMapper = nullptr;
287 Materializer = nullptr;
288 }
289 }
290
291 /// The specified block is found to be reachable, clone it and
292 /// anything that it can reach.
293 void CloneBlock(const BasicBlock *BB,
294 BasicBlock::const_iterator StartingInst,
295 std::vector<const BasicBlock*> &ToClone);
296 };
297 }
298
299 /// The specified block is found to be reachable, clone it and
300 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)301 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
302 BasicBlock::const_iterator StartingInst,
303 std::vector<const BasicBlock*> &ToClone){
304 WeakVH &BBEntry = VMap[BB];
305
306 // Have we already cloned this block?
307 if (BBEntry) return;
308
309 // Nope, clone it now.
310 BasicBlock *NewBB;
311 BBEntry = NewBB = BasicBlock::Create(BB->getContext());
312 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
313
314 // It is only legal to clone a function if a block address within that
315 // function is never referenced outside of the function. Given that, we
316 // want to map block addresses from the old function to block addresses in
317 // the clone. (This is different from the generic ValueMapper
318 // implementation, which generates an invalid blockaddress when
319 // cloning a function.)
320 //
321 // Note that we don't need to fix the mapping for unreachable blocks;
322 // the default mapping there is safe.
323 if (BB->hasAddressTaken()) {
324 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
325 const_cast<BasicBlock*>(BB));
326 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
327 }
328
329 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
330
331 // Loop over all instructions, and copy them over, DCE'ing as we go. This
332 // loop doesn't include the terminator.
333 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
334 II != IE; ++II) {
335 // If the "Director" remaps the instruction, don't clone it.
336 if (Director) {
337 CloningDirector::CloningAction Action =
338 Director->handleInstruction(VMap, &*II, NewBB);
339 // If the cloning director says stop, we want to stop everything, not
340 // just break out of the loop (which would cause the terminator to be
341 // cloned). The cloning director is responsible for inserting a proper
342 // terminator into the new basic block in this case.
343 if (Action == CloningDirector::StopCloningBB)
344 return;
345 // If the cloning director says skip, continue to the next instruction.
346 // In this case, the cloning director is responsible for mapping the
347 // skipped instruction to some value that is defined in the new
348 // basic block.
349 if (Action == CloningDirector::SkipInstruction)
350 continue;
351 }
352
353 Instruction *NewInst = II->clone();
354
355 // Eagerly remap operands to the newly cloned instruction, except for PHI
356 // nodes for which we defer processing until we update the CFG.
357 if (!isa<PHINode>(NewInst)) {
358 RemapInstruction(NewInst, VMap,
359 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
360 TypeMapper, Materializer);
361
362 // If we can simplify this instruction to some other value, simply add
363 // a mapping to that value rather than inserting a new instruction into
364 // the basic block.
365 if (Value *V =
366 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
367 // On the off-chance that this simplifies to an instruction in the old
368 // function, map it back into the new function.
369 if (Value *MappedV = VMap.lookup(V))
370 V = MappedV;
371
372 VMap[&*II] = V;
373 delete NewInst;
374 continue;
375 }
376 }
377
378 if (II->hasName())
379 NewInst->setName(II->getName()+NameSuffix);
380 VMap[&*II] = NewInst; // Add instruction map to value.
381 NewBB->getInstList().push_back(NewInst);
382 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
383
384 if (CodeInfo)
385 if (auto CS = ImmutableCallSite(&*II))
386 if (CS.hasOperandBundles())
387 CodeInfo->OperandBundleCallSites.push_back(NewInst);
388
389 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
390 if (isa<ConstantInt>(AI->getArraySize()))
391 hasStaticAllocas = true;
392 else
393 hasDynamicAllocas = true;
394 }
395 }
396
397 // Finally, clone over the terminator.
398 const TerminatorInst *OldTI = BB->getTerminator();
399 bool TerminatorDone = false;
400 if (Director) {
401 CloningDirector::CloningAction Action
402 = Director->handleInstruction(VMap, OldTI, NewBB);
403 // If the cloning director says stop, we want to stop everything, not
404 // just break out of the loop (which would cause the terminator to be
405 // cloned). The cloning director is responsible for inserting a proper
406 // terminator into the new basic block in this case.
407 if (Action == CloningDirector::StopCloningBB)
408 return;
409 if (Action == CloningDirector::CloneSuccessors) {
410 // If the director says to skip with a terminate instruction, we still
411 // need to clone this block's successors.
412 const TerminatorInst *TI = NewBB->getTerminator();
413 for (const BasicBlock *Succ : TI->successors())
414 ToClone.push_back(Succ);
415 return;
416 }
417 assert(Action != CloningDirector::SkipInstruction &&
418 "SkipInstruction is not valid for terminators.");
419 }
420 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
421 if (BI->isConditional()) {
422 // If the condition was a known constant in the callee...
423 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
424 // Or is a known constant in the caller...
425 if (!Cond) {
426 Value *V = VMap[BI->getCondition()];
427 Cond = dyn_cast_or_null<ConstantInt>(V);
428 }
429
430 // Constant fold to uncond branch!
431 if (Cond) {
432 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
433 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
434 ToClone.push_back(Dest);
435 TerminatorDone = true;
436 }
437 }
438 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
439 // If switching on a value known constant in the caller.
440 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
441 if (!Cond) { // Or known constant after constant prop in the callee...
442 Value *V = VMap[SI->getCondition()];
443 Cond = dyn_cast_or_null<ConstantInt>(V);
444 }
445 if (Cond) { // Constant fold to uncond branch!
446 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
447 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
448 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
449 ToClone.push_back(Dest);
450 TerminatorDone = true;
451 }
452 }
453
454 if (!TerminatorDone) {
455 Instruction *NewInst = OldTI->clone();
456 if (OldTI->hasName())
457 NewInst->setName(OldTI->getName()+NameSuffix);
458 NewBB->getInstList().push_back(NewInst);
459 VMap[OldTI] = NewInst; // Add instruction map to value.
460
461 if (CodeInfo)
462 if (auto CS = ImmutableCallSite(OldTI))
463 if (CS.hasOperandBundles())
464 CodeInfo->OperandBundleCallSites.push_back(NewInst);
465
466 // Recursively clone any reachable successor blocks.
467 const TerminatorInst *TI = BB->getTerminator();
468 for (const BasicBlock *Succ : TI->successors())
469 ToClone.push_back(Succ);
470 }
471
472 if (CodeInfo) {
473 CodeInfo->ContainsCalls |= hasCalls;
474 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
475 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
476 BB != &BB->getParent()->front();
477 }
478 }
479
480 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
481 /// entire function. Instead it starts at an instruction provided by the caller
482 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,CloningDirector * Director)483 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
484 const Instruction *StartingInst,
485 ValueToValueMapTy &VMap,
486 bool ModuleLevelChanges,
487 SmallVectorImpl<ReturnInst *> &Returns,
488 const char *NameSuffix,
489 ClonedCodeInfo *CodeInfo,
490 CloningDirector *Director) {
491 assert(NameSuffix && "NameSuffix cannot be null!");
492
493 ValueMapTypeRemapper *TypeMapper = nullptr;
494 ValueMaterializer *Materializer = nullptr;
495
496 if (Director) {
497 TypeMapper = Director->getTypeRemapper();
498 Materializer = Director->getValueMaterializer();
499 }
500
501 #ifndef NDEBUG
502 // If the cloning starts at the beginning of the function, verify that
503 // the function arguments are mapped.
504 if (!StartingInst)
505 for (const Argument &II : OldFunc->args())
506 assert(VMap.count(&II) && "No mapping from source argument specified!");
507 #endif
508
509 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
510 NameSuffix, CodeInfo, Director);
511 const BasicBlock *StartingBB;
512 if (StartingInst)
513 StartingBB = StartingInst->getParent();
514 else {
515 StartingBB = &OldFunc->getEntryBlock();
516 StartingInst = &StartingBB->front();
517 }
518
519 // Clone the entry block, and anything recursively reachable from it.
520 std::vector<const BasicBlock*> CloneWorklist;
521 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
522 while (!CloneWorklist.empty()) {
523 const BasicBlock *BB = CloneWorklist.back();
524 CloneWorklist.pop_back();
525 PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
526 }
527
528 // Loop over all of the basic blocks in the old function. If the block was
529 // reachable, we have cloned it and the old block is now in the value map:
530 // insert it into the new function in the right order. If not, ignore it.
531 //
532 // Defer PHI resolution until rest of function is resolved.
533 SmallVector<const PHINode*, 16> PHIToResolve;
534 for (const BasicBlock &BI : *OldFunc) {
535 Value *V = VMap[&BI];
536 BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
537 if (!NewBB) continue; // Dead block.
538
539 // Add the new block to the new function.
540 NewFunc->getBasicBlockList().push_back(NewBB);
541
542 // Handle PHI nodes specially, as we have to remove references to dead
543 // blocks.
544 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
545 // PHI nodes may have been remapped to non-PHI nodes by the caller or
546 // during the cloning process.
547 if (const PHINode *PN = dyn_cast<PHINode>(I)) {
548 if (isa<PHINode>(VMap[PN]))
549 PHIToResolve.push_back(PN);
550 else
551 break;
552 } else {
553 break;
554 }
555 }
556
557 // Finally, remap the terminator instructions, as those can't be remapped
558 // until all BBs are mapped.
559 RemapInstruction(NewBB->getTerminator(), VMap,
560 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
561 TypeMapper, Materializer);
562 }
563
564 // Defer PHI resolution until rest of function is resolved, PHI resolution
565 // requires the CFG to be up-to-date.
566 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
567 const PHINode *OPN = PHIToResolve[phino];
568 unsigned NumPreds = OPN->getNumIncomingValues();
569 const BasicBlock *OldBB = OPN->getParent();
570 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
571
572 // Map operands for blocks that are live and remove operands for blocks
573 // that are dead.
574 for (; phino != PHIToResolve.size() &&
575 PHIToResolve[phino]->getParent() == OldBB; ++phino) {
576 OPN = PHIToResolve[phino];
577 PHINode *PN = cast<PHINode>(VMap[OPN]);
578 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
579 Value *V = VMap[PN->getIncomingBlock(pred)];
580 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
581 Value *InVal = MapValue(PN->getIncomingValue(pred),
582 VMap,
583 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
584 assert(InVal && "Unknown input value?");
585 PN->setIncomingValue(pred, InVal);
586 PN->setIncomingBlock(pred, MappedBlock);
587 } else {
588 PN->removeIncomingValue(pred, false);
589 --pred, --e; // Revisit the next entry.
590 }
591 }
592 }
593
594 // The loop above has removed PHI entries for those blocks that are dead
595 // and has updated others. However, if a block is live (i.e. copied over)
596 // but its terminator has been changed to not go to this block, then our
597 // phi nodes will have invalid entries. Update the PHI nodes in this
598 // case.
599 PHINode *PN = cast<PHINode>(NewBB->begin());
600 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
601 if (NumPreds != PN->getNumIncomingValues()) {
602 assert(NumPreds < PN->getNumIncomingValues());
603 // Count how many times each predecessor comes to this block.
604 std::map<BasicBlock*, unsigned> PredCount;
605 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
606 PI != E; ++PI)
607 --PredCount[*PI];
608
609 // Figure out how many entries to remove from each PHI.
610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
611 ++PredCount[PN->getIncomingBlock(i)];
612
613 // At this point, the excess predecessor entries are positive in the
614 // map. Loop over all of the PHIs and remove excess predecessor
615 // entries.
616 BasicBlock::iterator I = NewBB->begin();
617 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
618 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
619 E = PredCount.end(); PCI != E; ++PCI) {
620 BasicBlock *Pred = PCI->first;
621 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
622 PN->removeIncomingValue(Pred, false);
623 }
624 }
625 }
626
627 // If the loops above have made these phi nodes have 0 or 1 operand,
628 // replace them with undef or the input value. We must do this for
629 // correctness, because 0-operand phis are not valid.
630 PN = cast<PHINode>(NewBB->begin());
631 if (PN->getNumIncomingValues() == 0) {
632 BasicBlock::iterator I = NewBB->begin();
633 BasicBlock::const_iterator OldI = OldBB->begin();
634 while ((PN = dyn_cast<PHINode>(I++))) {
635 Value *NV = UndefValue::get(PN->getType());
636 PN->replaceAllUsesWith(NV);
637 assert(VMap[&*OldI] == PN && "VMap mismatch");
638 VMap[&*OldI] = NV;
639 PN->eraseFromParent();
640 ++OldI;
641 }
642 }
643 }
644
645 // Make a second pass over the PHINodes now that all of them have been
646 // remapped into the new function, simplifying the PHINode and performing any
647 // recursive simplifications exposed. This will transparently update the
648 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
649 // two PHINodes, the iteration over the old PHIs remains valid, and the
650 // mapping will just map us to the new node (which may not even be a PHI
651 // node).
652 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
653 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
654 recursivelySimplifyInstruction(PN);
655
656 // Now that the inlined function body has been fully constructed, go through
657 // and zap unconditional fall-through branches. This happens all the time when
658 // specializing code: code specialization turns conditional branches into
659 // uncond branches, and this code folds them.
660 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
661 Function::iterator I = Begin;
662 while (I != NewFunc->end()) {
663 // Check if this block has become dead during inlining or other
664 // simplifications. Note that the first block will appear dead, as it has
665 // not yet been wired up properly.
666 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
667 I->getSinglePredecessor() == &*I)) {
668 BasicBlock *DeadBB = &*I++;
669 DeleteDeadBlock(DeadBB);
670 continue;
671 }
672
673 // We need to simplify conditional branches and switches with a constant
674 // operand. We try to prune these out when cloning, but if the
675 // simplification required looking through PHI nodes, those are only
676 // available after forming the full basic block. That may leave some here,
677 // and we still want to prune the dead code as early as possible.
678 ConstantFoldTerminator(&*I);
679
680 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
681 if (!BI || BI->isConditional()) { ++I; continue; }
682
683 BasicBlock *Dest = BI->getSuccessor(0);
684 if (!Dest->getSinglePredecessor()) {
685 ++I; continue;
686 }
687
688 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
689 // above should have zapped all of them..
690 assert(!isa<PHINode>(Dest->begin()));
691
692 // We know all single-entry PHI nodes in the inlined function have been
693 // removed, so we just need to splice the blocks.
694 BI->eraseFromParent();
695
696 // Make all PHI nodes that referred to Dest now refer to I as their source.
697 Dest->replaceAllUsesWith(&*I);
698
699 // Move all the instructions in the succ to the pred.
700 I->getInstList().splice(I->end(), Dest->getInstList());
701
702 // Remove the dest block.
703 Dest->eraseFromParent();
704
705 // Do not increment I, iteratively merge all things this block branches to.
706 }
707
708 // Make a final pass over the basic blocks from the old function to gather
709 // any return instructions which survived folding. We have to do this here
710 // because we can iteratively remove and merge returns above.
711 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
712 E = NewFunc->end();
713 I != E; ++I)
714 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
715 Returns.push_back(RI);
716 }
717
718
719 /// This works exactly like CloneFunctionInto,
720 /// except that it does some simple constant prop and DCE on the fly. The
721 /// effect of this is to copy significantly less code in cases where (for
722 /// example) a function call with constant arguments is inlined, and those
723 /// constant arguments cause a significant amount of code in the callee to be
724 /// dead. Since this doesn't produce an exact copy of the input, it can't be
725 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)726 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
727 ValueToValueMapTy &VMap,
728 bool ModuleLevelChanges,
729 SmallVectorImpl<ReturnInst*> &Returns,
730 const char *NameSuffix,
731 ClonedCodeInfo *CodeInfo,
732 Instruction *TheCall) {
733 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
734 ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
735 nullptr);
736 }
737
738 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)739 void llvm::remapInstructionsInBlocks(
740 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
741 // Rewrite the code to refer to itself.
742 for (auto *BB : Blocks)
743 for (auto &Inst : *BB)
744 RemapInstruction(&Inst, VMap,
745 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
746 }
747
748 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
749 /// Blocks.
750 ///
751 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
752 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)753 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
754 Loop *OrigLoop, ValueToValueMapTy &VMap,
755 const Twine &NameSuffix, LoopInfo *LI,
756 DominatorTree *DT,
757 SmallVectorImpl<BasicBlock *> &Blocks) {
758 Function *F = OrigLoop->getHeader()->getParent();
759 Loop *ParentLoop = OrigLoop->getParentLoop();
760
761 Loop *NewLoop = new Loop();
762 if (ParentLoop)
763 ParentLoop->addChildLoop(NewLoop);
764 else
765 LI->addTopLevelLoop(NewLoop);
766
767 BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
768 assert(OrigPH && "No preheader");
769 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
770 // To rename the loop PHIs.
771 VMap[OrigPH] = NewPH;
772 Blocks.push_back(NewPH);
773
774 // Update LoopInfo.
775 if (ParentLoop)
776 ParentLoop->addBasicBlockToLoop(NewPH, *LI);
777
778 // Update DominatorTree.
779 DT->addNewBlock(NewPH, LoopDomBB);
780
781 for (BasicBlock *BB : OrigLoop->getBlocks()) {
782 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
783 VMap[BB] = NewBB;
784
785 // Update LoopInfo.
786 NewLoop->addBasicBlockToLoop(NewBB, *LI);
787
788 // Update DominatorTree.
789 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
790 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
791
792 Blocks.push_back(NewBB);
793 }
794
795 // Move them physically from the end of the block list.
796 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
797 NewPH);
798 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
799 NewLoop->getHeader()->getIterator(), F->end());
800
801 return NewLoop;
802 }
803