• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/snapshot/deserializer.h"
6 
7 #include "src/bootstrapper.h"
8 #include "src/external-reference-table.h"
9 #include "src/heap/heap.h"
10 #include "src/isolate.h"
11 #include "src/macro-assembler.h"
12 #include "src/snapshot/natives.h"
13 #include "src/v8.h"
14 
15 namespace v8 {
16 namespace internal {
17 
DecodeReservation(Vector<const SerializedData::Reservation> res)18 void Deserializer::DecodeReservation(
19     Vector<const SerializedData::Reservation> res) {
20   DCHECK_EQ(0, reservations_[NEW_SPACE].length());
21   STATIC_ASSERT(NEW_SPACE == 0);
22   int current_space = NEW_SPACE;
23   for (auto& r : res) {
24     reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
25     if (r.is_last()) current_space++;
26   }
27   DCHECK_EQ(kNumberOfSpaces, current_space);
28   for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
29 }
30 
FlushICacheForNewIsolate()31 void Deserializer::FlushICacheForNewIsolate() {
32   DCHECK(!deserializing_user_code_);
33   // The entire isolate is newly deserialized. Simply flush all code pages.
34   for (Page* p : *isolate_->heap()->code_space()) {
35     Assembler::FlushICache(isolate_, p->area_start(),
36                            p->area_end() - p->area_start());
37   }
38 }
39 
FlushICacheForNewCodeObjects()40 void Deserializer::FlushICacheForNewCodeObjects() {
41   DCHECK(deserializing_user_code_);
42   for (Code* code : new_code_objects_) {
43     if (FLAG_serialize_age_code) code->PreAge(isolate_);
44     Assembler::FlushICache(isolate_, code->instruction_start(),
45                            code->instruction_size());
46   }
47 }
48 
ReserveSpace()49 bool Deserializer::ReserveSpace() {
50 #ifdef DEBUG
51   for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
52     CHECK(reservations_[i].length() > 0);
53   }
54 #endif  // DEBUG
55   if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
56   for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
57     high_water_[i] = reservations_[i][0].start;
58   }
59   return true;
60 }
61 
Initialize(Isolate * isolate)62 void Deserializer::Initialize(Isolate* isolate) {
63   DCHECK_NULL(isolate_);
64   DCHECK_NOT_NULL(isolate);
65   isolate_ = isolate;
66   DCHECK_NULL(external_reference_table_);
67   external_reference_table_ = ExternalReferenceTable::instance(isolate);
68   CHECK_EQ(magic_number_,
69            SerializedData::ComputeMagicNumber(external_reference_table_));
70 }
71 
Deserialize(Isolate * isolate)72 void Deserializer::Deserialize(Isolate* isolate) {
73   Initialize(isolate);
74   if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
75   // No active threads.
76   DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
77   // No active handles.
78   DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
79   // Partial snapshot cache is not yet populated.
80   DCHECK(isolate_->partial_snapshot_cache()->is_empty());
81 
82   {
83     DisallowHeapAllocation no_gc;
84     isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG_ROOT_LIST);
85     isolate_->heap()->IterateSmiRoots(this);
86     isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
87     isolate_->heap()->RepairFreeListsAfterDeserialization();
88     isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
89     DeserializeDeferredObjects();
90     FlushICacheForNewIsolate();
91   }
92 
93   isolate_->heap()->set_native_contexts_list(
94       isolate_->heap()->undefined_value());
95   // The allocation site list is build during root iteration, but if no sites
96   // were encountered then it needs to be initialized to undefined.
97   if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
98     isolate_->heap()->set_allocation_sites_list(
99         isolate_->heap()->undefined_value());
100   }
101 
102   // Issue code events for newly deserialized code objects.
103   LOG_CODE_EVENT(isolate_, LogCodeObjects());
104   LOG_CODE_EVENT(isolate_, LogBytecodeHandlers());
105   LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
106 }
107 
DeserializePartial(Isolate * isolate,Handle<JSGlobalProxy> global_proxy)108 MaybeHandle<Object> Deserializer::DeserializePartial(
109     Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
110   Initialize(isolate);
111   if (!ReserveSpace()) {
112     V8::FatalProcessOutOfMemory("deserialize context");
113     return MaybeHandle<Object>();
114   }
115 
116   AddAttachedObject(global_proxy);
117 
118   DisallowHeapAllocation no_gc;
119   // Keep track of the code space start and end pointers in case new
120   // code objects were unserialized
121   OldSpace* code_space = isolate_->heap()->code_space();
122   Address start_address = code_space->top();
123   Object* root;
124   VisitPointer(&root);
125   DeserializeDeferredObjects();
126 
127   isolate->heap()->RegisterReservationsForBlackAllocation(reservations_);
128 
129   // There's no code deserialized here. If this assert fires then that's
130   // changed and logging should be added to notify the profiler et al of the
131   // new code, which also has to be flushed from instruction cache.
132   CHECK_EQ(start_address, code_space->top());
133   return Handle<Object>(root, isolate);
134 }
135 
DeserializeCode(Isolate * isolate)136 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
137     Isolate* isolate) {
138   Initialize(isolate);
139   if (!ReserveSpace()) {
140     return Handle<SharedFunctionInfo>();
141   } else {
142     deserializing_user_code_ = true;
143     HandleScope scope(isolate);
144     Handle<SharedFunctionInfo> result;
145     {
146       DisallowHeapAllocation no_gc;
147       Object* root;
148       VisitPointer(&root);
149       DeserializeDeferredObjects();
150       FlushICacheForNewCodeObjects();
151       result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
152       isolate->heap()->RegisterReservationsForBlackAllocation(reservations_);
153     }
154     CommitPostProcessedObjects(isolate);
155     return scope.CloseAndEscape(result);
156   }
157 }
158 
~Deserializer()159 Deserializer::~Deserializer() {
160   // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
161   // DCHECK(source_.AtEOF());
162 }
163 
164 // This is called on the roots.  It is the driver of the deserialization
165 // process.  It is also called on the body of each function.
VisitPointers(Object ** start,Object ** end)166 void Deserializer::VisitPointers(Object** start, Object** end) {
167   // The space must be new space.  Any other space would cause ReadChunk to try
168   // to update the remembered using NULL as the address.
169   ReadData(start, end, NEW_SPACE, NULL);
170 }
171 
Synchronize(VisitorSynchronization::SyncTag tag)172 void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) {
173   static const byte expected = kSynchronize;
174   CHECK_EQ(expected, source_.Get());
175 }
176 
DeserializeDeferredObjects()177 void Deserializer::DeserializeDeferredObjects() {
178   for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
179     switch (code) {
180       case kAlignmentPrefix:
181       case kAlignmentPrefix + 1:
182       case kAlignmentPrefix + 2:
183         SetAlignment(code);
184         break;
185       default: {
186         int space = code & kSpaceMask;
187         DCHECK(space <= kNumberOfSpaces);
188         DCHECK(code - space == kNewObject);
189         HeapObject* object = GetBackReferencedObject(space);
190         int size = source_.GetInt() << kPointerSizeLog2;
191         Address obj_address = object->address();
192         Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
193         Object** end = reinterpret_cast<Object**>(obj_address + size);
194         bool filled = ReadData(start, end, space, obj_address);
195         CHECK(filled);
196         DCHECK(CanBeDeferred(object));
197         PostProcessNewObject(object, space);
198       }
199     }
200   }
201 }
202 
203 // Used to insert a deserialized internalized string into the string table.
204 class StringTableInsertionKey : public HashTableKey {
205  public:
StringTableInsertionKey(String * string)206   explicit StringTableInsertionKey(String* string)
207       : string_(string), hash_(HashForObject(string)) {
208     DCHECK(string->IsInternalizedString());
209   }
210 
IsMatch(Object * string)211   bool IsMatch(Object* string) override {
212     // We know that all entries in a hash table had their hash keys created.
213     // Use that knowledge to have fast failure.
214     if (hash_ != HashForObject(string)) return false;
215     // We want to compare the content of two internalized strings here.
216     return string_->SlowEquals(String::cast(string));
217   }
218 
Hash()219   uint32_t Hash() override { return hash_; }
220 
HashForObject(Object * key)221   uint32_t HashForObject(Object* key) override {
222     return String::cast(key)->Hash();
223   }
224 
AsHandle(Isolate * isolate)225   MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
226     return handle(string_, isolate);
227   }
228 
229  private:
230   String* string_;
231   uint32_t hash_;
232   DisallowHeapAllocation no_gc;
233 };
234 
PostProcessNewObject(HeapObject * obj,int space)235 HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
236   if (deserializing_user_code()) {
237     if (obj->IsString()) {
238       String* string = String::cast(obj);
239       // Uninitialize hash field as the hash seed may have changed.
240       string->set_hash_field(String::kEmptyHashField);
241       if (string->IsInternalizedString()) {
242         // Canonicalize the internalized string. If it already exists in the
243         // string table, set it to forward to the existing one.
244         StringTableInsertionKey key(string);
245         String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
246         if (canonical == NULL) {
247           new_internalized_strings_.Add(handle(string));
248           return string;
249         } else {
250           string->SetForwardedInternalizedString(canonical);
251           return canonical;
252         }
253       }
254     } else if (obj->IsScript()) {
255       new_scripts_.Add(handle(Script::cast(obj)));
256     } else {
257       DCHECK(CanBeDeferred(obj));
258     }
259   }
260   if (obj->IsAllocationSite()) {
261     DCHECK(obj->IsAllocationSite());
262     // Allocation sites are present in the snapshot, and must be linked into
263     // a list at deserialization time.
264     AllocationSite* site = AllocationSite::cast(obj);
265     // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
266     // as a (weak) root. If this root is relocated correctly, this becomes
267     // unnecessary.
268     if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
269       site->set_weak_next(isolate_->heap()->undefined_value());
270     } else {
271       site->set_weak_next(isolate_->heap()->allocation_sites_list());
272     }
273     isolate_->heap()->set_allocation_sites_list(site);
274   } else if (obj->IsCode()) {
275     // We flush all code pages after deserializing the startup snapshot. In that
276     // case, we only need to remember code objects in the large object space.
277     // When deserializing user code, remember each individual code object.
278     if (deserializing_user_code() || space == LO_SPACE) {
279       new_code_objects_.Add(Code::cast(obj));
280     }
281   }
282   // Check alignment.
283   DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
284   return obj;
285 }
286 
CommitPostProcessedObjects(Isolate * isolate)287 void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
288   StringTable::EnsureCapacityForDeserialization(
289       isolate, new_internalized_strings_.length());
290   for (Handle<String> string : new_internalized_strings_) {
291     StringTableInsertionKey key(*string);
292     DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
293     StringTable::LookupKey(isolate, &key);
294   }
295 
296   Heap* heap = isolate->heap();
297   Factory* factory = isolate->factory();
298   for (Handle<Script> script : new_scripts_) {
299     // Assign a new script id to avoid collision.
300     script->set_id(isolate_->heap()->NextScriptId());
301     // Add script to list.
302     Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
303     heap->SetRootScriptList(*list);
304   }
305 }
306 
GetBackReferencedObject(int space)307 HeapObject* Deserializer::GetBackReferencedObject(int space) {
308   HeapObject* obj;
309   SerializerReference back_reference =
310       SerializerReference::FromBitfield(source_.GetInt());
311   if (space == LO_SPACE) {
312     CHECK(back_reference.chunk_index() == 0);
313     uint32_t index = back_reference.large_object_index();
314     obj = deserialized_large_objects_[index];
315   } else {
316     DCHECK(space < kNumberOfPreallocatedSpaces);
317     uint32_t chunk_index = back_reference.chunk_index();
318     DCHECK_LE(chunk_index, current_chunk_[space]);
319     uint32_t chunk_offset = back_reference.chunk_offset();
320     Address address = reservations_[space][chunk_index].start + chunk_offset;
321     if (next_alignment_ != kWordAligned) {
322       int padding = Heap::GetFillToAlign(address, next_alignment_);
323       next_alignment_ = kWordAligned;
324       DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
325       address += padding;
326     }
327     obj = HeapObject::FromAddress(address);
328   }
329   if (deserializing_user_code() && obj->IsInternalizedString()) {
330     obj = String::cast(obj)->GetForwardedInternalizedString();
331   }
332   hot_objects_.Add(obj);
333   return obj;
334 }
335 
336 // This routine writes the new object into the pointer provided and then
337 // returns true if the new object was in young space and false otherwise.
338 // The reason for this strange interface is that otherwise the object is
339 // written very late, which means the FreeSpace map is not set up by the
340 // time we need to use it to mark the space at the end of a page free.
ReadObject(int space_number,Object ** write_back)341 void Deserializer::ReadObject(int space_number, Object** write_back) {
342   Address address;
343   HeapObject* obj;
344   int size = source_.GetInt() << kObjectAlignmentBits;
345 
346   if (next_alignment_ != kWordAligned) {
347     int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
348     address = Allocate(space_number, reserved);
349     obj = HeapObject::FromAddress(address);
350     // If one of the following assertions fails, then we are deserializing an
351     // aligned object when the filler maps have not been deserialized yet.
352     // We require filler maps as padding to align the object.
353     Heap* heap = isolate_->heap();
354     DCHECK(heap->free_space_map()->IsMap());
355     DCHECK(heap->one_pointer_filler_map()->IsMap());
356     DCHECK(heap->two_pointer_filler_map()->IsMap());
357     obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
358     address = obj->address();
359     next_alignment_ = kWordAligned;
360   } else {
361     address = Allocate(space_number, size);
362     obj = HeapObject::FromAddress(address);
363   }
364 
365   isolate_->heap()->OnAllocationEvent(obj, size);
366   Object** current = reinterpret_cast<Object**>(address);
367   Object** limit = current + (size >> kPointerSizeLog2);
368 
369   if (ReadData(current, limit, space_number, address)) {
370     // Only post process if object content has not been deferred.
371     obj = PostProcessNewObject(obj, space_number);
372   }
373 
374   Object* write_back_obj = obj;
375   UnalignedCopy(write_back, &write_back_obj);
376 #ifdef DEBUG
377   if (obj->IsCode()) {
378     DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
379   } else {
380     DCHECK(space_number != CODE_SPACE);
381   }
382 #endif  // DEBUG
383 }
384 
385 // We know the space requirements before deserialization and can
386 // pre-allocate that reserved space. During deserialization, all we need
387 // to do is to bump up the pointer for each space in the reserved
388 // space. This is also used for fixing back references.
389 // We may have to split up the pre-allocation into several chunks
390 // because it would not fit onto a single page. We do not have to keep
391 // track of when to move to the next chunk. An opcode will signal this.
392 // Since multiple large objects cannot be folded into one large object
393 // space allocation, we have to do an actual allocation when deserializing
394 // each large object. Instead of tracking offset for back references, we
395 // reference large objects by index.
Allocate(int space_index,int size)396 Address Deserializer::Allocate(int space_index, int size) {
397   if (space_index == LO_SPACE) {
398     AlwaysAllocateScope scope(isolate_);
399     LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
400     Executability exec = static_cast<Executability>(source_.Get());
401     AllocationResult result = lo_space->AllocateRaw(size, exec);
402     HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
403     deserialized_large_objects_.Add(obj);
404     return obj->address();
405   } else {
406     DCHECK(space_index < kNumberOfPreallocatedSpaces);
407     Address address = high_water_[space_index];
408     DCHECK_NOT_NULL(address);
409     high_water_[space_index] += size;
410 #ifdef DEBUG
411     // Assert that the current reserved chunk is still big enough.
412     const Heap::Reservation& reservation = reservations_[space_index];
413     int chunk_index = current_chunk_[space_index];
414     CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
415 #endif
416     if (space_index == CODE_SPACE) SkipList::Update(address, size);
417     return address;
418   }
419 }
420 
CopyInNativesSource(Vector<const char> source_vector,Object ** current)421 Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
422                                            Object** current) {
423   DCHECK(!isolate_->heap()->deserialization_complete());
424   NativesExternalStringResource* resource = new NativesExternalStringResource(
425       source_vector.start(), source_vector.length());
426   Object* resource_obj = reinterpret_cast<Object*>(resource);
427   UnalignedCopy(current++, &resource_obj);
428   return current;
429 }
430 
ReadData(Object ** current,Object ** limit,int source_space,Address current_object_address)431 bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
432                             Address current_object_address) {
433   Isolate* const isolate = isolate_;
434   // Write barrier support costs around 1% in startup time.  In fact there
435   // are no new space objects in current boot snapshots, so it's not needed,
436   // but that may change.
437   bool write_barrier_needed =
438       (current_object_address != NULL && source_space != NEW_SPACE &&
439        source_space != CODE_SPACE);
440   while (current < limit) {
441     byte data = source_.Get();
442     switch (data) {
443 #define CASE_STATEMENT(where, how, within, space_number) \
444   case where + how + within + space_number:              \
445     STATIC_ASSERT((where & ~kWhereMask) == 0);           \
446     STATIC_ASSERT((how & ~kHowToCodeMask) == 0);         \
447     STATIC_ASSERT((within & ~kWhereToPointMask) == 0);   \
448     STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
449 
450 #define CASE_BODY(where, how, within, space_number_if_any)                     \
451   {                                                                            \
452     bool emit_write_barrier = false;                                           \
453     bool current_was_incremented = false;                                      \
454     int space_number = space_number_if_any == kAnyOldSpace                     \
455                            ? (data & kSpaceMask)                               \
456                            : space_number_if_any;                              \
457     if (where == kNewObject && how == kPlain && within == kStartOfObject) {    \
458       ReadObject(space_number, current);                                       \
459       emit_write_barrier = (space_number == NEW_SPACE);                        \
460     } else {                                                                   \
461       Object* new_object = NULL; /* May not be a real Object pointer. */       \
462       if (where == kNewObject) {                                               \
463         ReadObject(space_number, &new_object);                                 \
464       } else if (where == kBackref) {                                          \
465         emit_write_barrier = (space_number == NEW_SPACE);                      \
466         new_object = GetBackReferencedObject(data & kSpaceMask);               \
467       } else if (where == kBackrefWithSkip) {                                  \
468         int skip = source_.GetInt();                                           \
469         current = reinterpret_cast<Object**>(                                  \
470             reinterpret_cast<Address>(current) + skip);                        \
471         emit_write_barrier = (space_number == NEW_SPACE);                      \
472         new_object = GetBackReferencedObject(data & kSpaceMask);               \
473       } else if (where == kRootArray) {                                        \
474         int id = source_.GetInt();                                             \
475         Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
476         new_object = isolate->heap()->root(root_index);                        \
477         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
478         hot_objects_.Add(HeapObject::cast(new_object));                        \
479       } else if (where == kPartialSnapshotCache) {                             \
480         int cache_index = source_.GetInt();                                    \
481         new_object = isolate->partial_snapshot_cache()->at(cache_index);       \
482         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
483       } else if (where == kExternalReference) {                                \
484         int skip = source_.GetInt();                                           \
485         current = reinterpret_cast<Object**>(                                  \
486             reinterpret_cast<Address>(current) + skip);                        \
487         int reference_id = source_.GetInt();                                   \
488         Address address = external_reference_table_->address(reference_id);    \
489         new_object = reinterpret_cast<Object*>(address);                       \
490       } else if (where == kAttachedReference) {                                \
491         int index = source_.GetInt();                                          \
492         new_object = *attached_objects_[index];                                \
493         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
494       } else {                                                                 \
495         DCHECK(where == kBuiltin);                                             \
496         DCHECK(deserializing_user_code());                                     \
497         int builtin_id = source_.GetInt();                                     \
498         DCHECK_LE(0, builtin_id);                                              \
499         DCHECK_LT(builtin_id, Builtins::builtin_count);                        \
500         Builtins::Name name = static_cast<Builtins::Name>(builtin_id);         \
501         new_object = isolate->builtins()->builtin(name);                       \
502         emit_write_barrier = false;                                            \
503       }                                                                        \
504       if (within == kInnerPointer) {                                           \
505         if (new_object->IsCode()) {                                            \
506           Code* new_code_object = Code::cast(new_object);                      \
507           new_object =                                                         \
508               reinterpret_cast<Object*>(new_code_object->instruction_start()); \
509         } else {                                                               \
510           Cell* cell = Cell::cast(new_object);                                 \
511           new_object = reinterpret_cast<Object*>(cell->ValueAddress());        \
512         }                                                                      \
513       }                                                                        \
514       if (how == kFromCode) {                                                  \
515         Address location_of_branch_data = reinterpret_cast<Address>(current);  \
516         Assembler::deserialization_set_special_target_at(                      \
517             isolate, location_of_branch_data,                                  \
518             Code::cast(HeapObject::FromAddress(current_object_address)),       \
519             reinterpret_cast<Address>(new_object));                            \
520         location_of_branch_data += Assembler::kSpecialTargetSize;              \
521         current = reinterpret_cast<Object**>(location_of_branch_data);         \
522         current_was_incremented = true;                                        \
523       } else {                                                                 \
524         UnalignedCopy(current, &new_object);                                   \
525       }                                                                        \
526     }                                                                          \
527     if (emit_write_barrier && write_barrier_needed) {                          \
528       Address current_address = reinterpret_cast<Address>(current);            \
529       SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address));      \
530       isolate->heap()->RecordWrite(                                            \
531           HeapObject::FromAddress(current_object_address),                     \
532           static_cast<int>(current_address - current_object_address),          \
533           *reinterpret_cast<Object**>(current_address));                       \
534     }                                                                          \
535     if (!current_was_incremented) {                                            \
536       current++;                                                               \
537     }                                                                          \
538     break;                                                                     \
539   }
540 
541 // This generates a case and a body for the new space (which has to do extra
542 // write barrier handling) and handles the other spaces with fall-through cases
543 // and one body.
544 #define ALL_SPACES(where, how, within)           \
545   CASE_STATEMENT(where, how, within, NEW_SPACE)  \
546   CASE_BODY(where, how, within, NEW_SPACE)       \
547   CASE_STATEMENT(where, how, within, OLD_SPACE)  \
548   CASE_STATEMENT(where, how, within, CODE_SPACE) \
549   CASE_STATEMENT(where, how, within, MAP_SPACE)  \
550   CASE_STATEMENT(where, how, within, LO_SPACE)   \
551   CASE_BODY(where, how, within, kAnyOldSpace)
552 
553 #define FOUR_CASES(byte_code) \
554   case byte_code:             \
555   case byte_code + 1:         \
556   case byte_code + 2:         \
557   case byte_code + 3:
558 
559 #define SIXTEEN_CASES(byte_code) \
560   FOUR_CASES(byte_code)          \
561   FOUR_CASES(byte_code + 4)      \
562   FOUR_CASES(byte_code + 8)      \
563   FOUR_CASES(byte_code + 12)
564 
565 #define SINGLE_CASE(where, how, within, space) \
566   CASE_STATEMENT(where, how, within, space)    \
567   CASE_BODY(where, how, within, space)
568 
569       // Deserialize a new object and write a pointer to it to the current
570       // object.
571       ALL_SPACES(kNewObject, kPlain, kStartOfObject)
572       // Support for direct instruction pointers in functions.  It's an inner
573       // pointer because it points at the entry point, not at the start of the
574       // code object.
575       SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
576       // Support for pointers into a cell. It's an inner pointer because it
577       // points directly at the value field, not the start of the cell object.
578       SINGLE_CASE(kNewObject, kPlain, kInnerPointer, OLD_SPACE)
579       // Deserialize a new code object and write a pointer to its first
580       // instruction to the current code object.
581       ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
582       // Find a recently deserialized object using its offset from the current
583       // allocation point and write a pointer to it to the current object.
584       ALL_SPACES(kBackref, kPlain, kStartOfObject)
585       ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
586 #if V8_CODE_EMBEDS_OBJECT_POINTER
587       // Deserialize a new object from pointer found in code and write
588       // a pointer to it to the current object. Required only for MIPS, PPC, ARM
589       // or S390 with embedded constant pool, and omitted on the other
590       // architectures because it is fully unrolled and would cause bloat.
591       ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
592       // Find a recently deserialized code object using its offset from the
593       // current allocation point and write a pointer to it to the current
594       // object. Required only for MIPS, PPC, ARM or S390 with embedded
595       // constant pool.
596       ALL_SPACES(kBackref, kFromCode, kStartOfObject)
597       ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
598 #endif
599       // Find a recently deserialized code object using its offset from the
600       // current allocation point and write a pointer to its first instruction
601       // to the current code object or the instruction pointer in a function
602       // object.
603       ALL_SPACES(kBackref, kFromCode, kInnerPointer)
604       ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
605       // Support for direct instruction pointers in functions.
606       SINGLE_CASE(kBackref, kPlain, kInnerPointer, CODE_SPACE)
607       SINGLE_CASE(kBackrefWithSkip, kPlain, kInnerPointer, CODE_SPACE)
608       // Support for pointers into a cell.
609       SINGLE_CASE(kBackref, kPlain, kInnerPointer, OLD_SPACE)
610       SINGLE_CASE(kBackrefWithSkip, kPlain, kInnerPointer, OLD_SPACE)
611       // Find an object in the roots array and write a pointer to it to the
612       // current object.
613       SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
614 #if V8_CODE_EMBEDS_OBJECT_POINTER
615       // Find an object in the roots array and write a pointer to it to in code.
616       SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
617 #endif
618       // Find an object in the partial snapshots cache and write a pointer to it
619       // to the current object.
620       SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
621       // Find an code entry in the partial snapshots cache and
622       // write a pointer to it to the current object.
623       SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
624       // Find an external reference and write a pointer to it to the current
625       // object.
626       SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
627       // Find an external reference and write a pointer to it in the current
628       // code object.
629       SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
630       // Find an object in the attached references and write a pointer to it to
631       // the current object.
632       SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
633       SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
634       SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
635       // Find a builtin and write a pointer to it to the current object.
636       SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
637       SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
638       SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
639 
640 #undef CASE_STATEMENT
641 #undef CASE_BODY
642 #undef ALL_SPACES
643 
644       case kSkip: {
645         int size = source_.GetInt();
646         current = reinterpret_cast<Object**>(
647             reinterpret_cast<intptr_t>(current) + size);
648         break;
649       }
650 
651       case kInternalReferenceEncoded:
652       case kInternalReference: {
653         // Internal reference address is not encoded via skip, but by offset
654         // from code entry.
655         int pc_offset = source_.GetInt();
656         int target_offset = source_.GetInt();
657         Code* code =
658             Code::cast(HeapObject::FromAddress(current_object_address));
659         DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
660         DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
661         Address pc = code->entry() + pc_offset;
662         Address target = code->entry() + target_offset;
663         Assembler::deserialization_set_target_internal_reference_at(
664             isolate, pc, target, data == kInternalReference
665                                      ? RelocInfo::INTERNAL_REFERENCE
666                                      : RelocInfo::INTERNAL_REFERENCE_ENCODED);
667         break;
668       }
669 
670       case kNop:
671         break;
672 
673       case kNextChunk: {
674         int space = source_.Get();
675         DCHECK(space < kNumberOfPreallocatedSpaces);
676         int chunk_index = current_chunk_[space];
677         const Heap::Reservation& reservation = reservations_[space];
678         // Make sure the current chunk is indeed exhausted.
679         CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
680         // Move to next reserved chunk.
681         chunk_index = ++current_chunk_[space];
682         CHECK_LT(chunk_index, reservation.length());
683         high_water_[space] = reservation[chunk_index].start;
684         break;
685       }
686 
687       case kDeferred: {
688         // Deferred can only occur right after the heap object header.
689         DCHECK(current == reinterpret_cast<Object**>(current_object_address +
690                                                      kPointerSize));
691         HeapObject* obj = HeapObject::FromAddress(current_object_address);
692         // If the deferred object is a map, its instance type may be used
693         // during deserialization. Initialize it with a temporary value.
694         if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
695         current = limit;
696         return false;
697       }
698 
699       case kSynchronize:
700         // If we get here then that indicates that you have a mismatch between
701         // the number of GC roots when serializing and deserializing.
702         CHECK(false);
703         break;
704 
705       case kNativesStringResource:
706         current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
707                                       current);
708         break;
709 
710       case kExtraNativesStringResource:
711         current = CopyInNativesSource(
712             ExtraNatives::GetScriptSource(source_.Get()), current);
713         break;
714 
715       // Deserialize raw data of variable length.
716       case kVariableRawData: {
717         int size_in_bytes = source_.GetInt();
718         byte* raw_data_out = reinterpret_cast<byte*>(current);
719         source_.CopyRaw(raw_data_out, size_in_bytes);
720         break;
721       }
722 
723       case kVariableRepeat: {
724         int repeats = source_.GetInt();
725         Object* object = current[-1];
726         DCHECK(!isolate->heap()->InNewSpace(object));
727         for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
728         break;
729       }
730 
731       case kAlignmentPrefix:
732       case kAlignmentPrefix + 1:
733       case kAlignmentPrefix + 2:
734         SetAlignment(data);
735         break;
736 
737       STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
738       STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
739       SIXTEEN_CASES(kRootArrayConstantsWithSkip)
740       SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
741         int skip = source_.GetInt();
742         current = reinterpret_cast<Object**>(
743             reinterpret_cast<intptr_t>(current) + skip);
744         // Fall through.
745       }
746 
747       SIXTEEN_CASES(kRootArrayConstants)
748       SIXTEEN_CASES(kRootArrayConstants + 16) {
749         int id = data & kRootArrayConstantsMask;
750         Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
751         Object* object = isolate->heap()->root(root_index);
752         DCHECK(!isolate->heap()->InNewSpace(object));
753         UnalignedCopy(current++, &object);
754         break;
755       }
756 
757       STATIC_ASSERT(kNumberOfHotObjects == 8);
758       FOUR_CASES(kHotObjectWithSkip)
759       FOUR_CASES(kHotObjectWithSkip + 4) {
760         int skip = source_.GetInt();
761         current = reinterpret_cast<Object**>(
762             reinterpret_cast<Address>(current) + skip);
763         // Fall through.
764       }
765 
766       FOUR_CASES(kHotObject)
767       FOUR_CASES(kHotObject + 4) {
768         int index = data & kHotObjectMask;
769         Object* hot_object = hot_objects_.Get(index);
770         UnalignedCopy(current, &hot_object);
771         if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) {
772           Address current_address = reinterpret_cast<Address>(current);
773           isolate->heap()->RecordWrite(
774               HeapObject::FromAddress(current_object_address),
775               static_cast<int>(current_address - current_object_address),
776               hot_object);
777         }
778         current++;
779         break;
780       }
781 
782       // Deserialize raw data of fixed length from 1 to 32 words.
783       STATIC_ASSERT(kNumberOfFixedRawData == 32);
784       SIXTEEN_CASES(kFixedRawData)
785       SIXTEEN_CASES(kFixedRawData + 16) {
786         byte* raw_data_out = reinterpret_cast<byte*>(current);
787         int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
788         source_.CopyRaw(raw_data_out, size_in_bytes);
789         current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
790         break;
791       }
792 
793       STATIC_ASSERT(kNumberOfFixedRepeat == 16);
794       SIXTEEN_CASES(kFixedRepeat) {
795         int repeats = data - kFixedRepeatStart;
796         Object* object;
797         UnalignedCopy(&object, current - 1);
798         DCHECK(!isolate->heap()->InNewSpace(object));
799         for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
800         break;
801       }
802 
803 #undef SIXTEEN_CASES
804 #undef FOUR_CASES
805 #undef SINGLE_CASE
806 
807       default:
808         CHECK(false);
809     }
810   }
811   CHECK_EQ(limit, current);
812   return true;
813 }
814 }  // namespace internal
815 }  // namespace v8
816