1 /*
2 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3 * MD4 Message-Digest Algorithm (RFC 1320).
4 *
5 * Homepage:
6 http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
7 *
8 * Author:
9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10 *
11 * This software was written by Alexander Peslyak in 2001. No copyright is
12 * claimed, and the software is hereby placed in the public domain. In case
13 * this attempt to disclaim copyright and place the software in the public
14 * domain is deemed null and void, then the software is Copyright (c) 2001
15 * Alexander Peslyak and it is hereby released to the general public under the
16 * following terms:
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted.
20 *
21 * There's ABSOLUTELY NO WARRANTY, express or implied.
22 *
23 * (This is a heavily cut-down "BSD license".)
24 *
25 * This differs from Colin Plumb's older public domain implementation in that
26 * no exactly 32-bit integer data type is required (any 32-bit or wider
27 * unsigned integer data type will do), there's no compile-time endianness
28 * configuration, and the function prototypes match OpenSSL's. No code from
29 * Colin Plumb's implementation has been reused; this comment merely compares
30 * the properties of the two independent implementations.
31 *
32 * The primary goals of this implementation are portability and ease of use.
33 * It is meant to be fast, but not as fast as possible. Some known
34 * optimizations are not included to reduce source code size and avoid
35 * compile-time configuration.
36 */
37
38 #include "curl_setup.h"
39
40 /* NSS and OS/400 crypto library do not provide the MD4 hash algorithm, so
41 * that we have a local implementation of it */
42 #if defined(USE_NSS) || defined(USE_OS400CRYPTO)
43
44 #include "curl_md4.h"
45 #include "warnless.h"
46
47 #ifndef HAVE_OPENSSL
48
49 #include <string.h>
50
51 /* Any 32-bit or wider unsigned integer data type will do */
52 typedef unsigned int MD4_u32plus;
53
54 typedef struct {
55 MD4_u32plus lo, hi;
56 MD4_u32plus a, b, c, d;
57 unsigned char buffer[64];
58 MD4_u32plus block[16];
59 } MD4_CTX;
60
61 static void MD4_Init(MD4_CTX *ctx);
62 static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size);
63 static void MD4_Final(unsigned char *result, MD4_CTX *ctx);
64
65 /*
66 * The basic MD4 functions.
67 *
68 * F and G are optimized compared to their RFC 1320 definitions, with the
69 * optimization for F borrowed from Colin Plumb's MD5 implementation.
70 */
71 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
72 #define G(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))
73 #define H(x, y, z) ((x) ^ (y) ^ (z))
74
75 /*
76 * The MD4 transformation for all three rounds.
77 */
78 #define STEP(f, a, b, c, d, x, s) \
79 (a) += f((b), (c), (d)) + (x); \
80 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));
81
82 /*
83 * SET reads 4 input bytes in little-endian byte order and stores them
84 * in a properly aligned word in host byte order.
85 *
86 * The check for little-endian architectures that tolerate unaligned
87 * memory accesses is just an optimization. Nothing will break if it
88 * doesn't work.
89 */
90 #if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
91 #define SET(n) \
92 (*(MD4_u32plus *)&ptr[(n) * 4])
93 #define GET(n) \
94 SET(n)
95 #else
96 #define SET(n) \
97 (ctx->block[(n)] = \
98 (MD4_u32plus)ptr[(n) * 4] | \
99 ((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \
100 ((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \
101 ((MD4_u32plus)ptr[(n) * 4 + 3] << 24))
102 #define GET(n) \
103 (ctx->block[(n)])
104 #endif
105
106 /*
107 * This processes one or more 64-byte data blocks, but does NOT update
108 * the bit counters. There are no alignment requirements.
109 */
body(MD4_CTX * ctx,const void * data,unsigned long size)110 static const void *body(MD4_CTX *ctx, const void *data, unsigned long size)
111 {
112 const unsigned char *ptr;
113 MD4_u32plus a, b, c, d;
114 MD4_u32plus saved_a, saved_b, saved_c, saved_d;
115
116 ptr = (const unsigned char *)data;
117
118 a = ctx->a;
119 b = ctx->b;
120 c = ctx->c;
121 d = ctx->d;
122
123 do {
124 saved_a = a;
125 saved_b = b;
126 saved_c = c;
127 saved_d = d;
128
129 /* Round 1 */
130 STEP(F, a, b, c, d, SET(0), 3)
131 STEP(F, d, a, b, c, SET(1), 7)
132 STEP(F, c, d, a, b, SET(2), 11)
133 STEP(F, b, c, d, a, SET(3), 19)
134 STEP(F, a, b, c, d, SET(4), 3)
135 STEP(F, d, a, b, c, SET(5), 7)
136 STEP(F, c, d, a, b, SET(6), 11)
137 STEP(F, b, c, d, a, SET(7), 19)
138 STEP(F, a, b, c, d, SET(8), 3)
139 STEP(F, d, a, b, c, SET(9), 7)
140 STEP(F, c, d, a, b, SET(10), 11)
141 STEP(F, b, c, d, a, SET(11), 19)
142 STEP(F, a, b, c, d, SET(12), 3)
143 STEP(F, d, a, b, c, SET(13), 7)
144 STEP(F, c, d, a, b, SET(14), 11)
145 STEP(F, b, c, d, a, SET(15), 19)
146
147 /* Round 2 */
148 STEP(G, a, b, c, d, GET(0) + 0x5a827999, 3)
149 STEP(G, d, a, b, c, GET(4) + 0x5a827999, 5)
150 STEP(G, c, d, a, b, GET(8) + 0x5a827999, 9)
151 STEP(G, b, c, d, a, GET(12) + 0x5a827999, 13)
152 STEP(G, a, b, c, d, GET(1) + 0x5a827999, 3)
153 STEP(G, d, a, b, c, GET(5) + 0x5a827999, 5)
154 STEP(G, c, d, a, b, GET(9) + 0x5a827999, 9)
155 STEP(G, b, c, d, a, GET(13) + 0x5a827999, 13)
156 STEP(G, a, b, c, d, GET(2) + 0x5a827999, 3)
157 STEP(G, d, a, b, c, GET(6) + 0x5a827999, 5)
158 STEP(G, c, d, a, b, GET(10) + 0x5a827999, 9)
159 STEP(G, b, c, d, a, GET(14) + 0x5a827999, 13)
160 STEP(G, a, b, c, d, GET(3) + 0x5a827999, 3)
161 STEP(G, d, a, b, c, GET(7) + 0x5a827999, 5)
162 STEP(G, c, d, a, b, GET(11) + 0x5a827999, 9)
163 STEP(G, b, c, d, a, GET(15) + 0x5a827999, 13)
164
165 /* Round 3 */
166 STEP(H, a, b, c, d, GET(0) + 0x6ed9eba1, 3)
167 STEP(H, d, a, b, c, GET(8) + 0x6ed9eba1, 9)
168 STEP(H, c, d, a, b, GET(4) + 0x6ed9eba1, 11)
169 STEP(H, b, c, d, a, GET(12) + 0x6ed9eba1, 15)
170 STEP(H, a, b, c, d, GET(2) + 0x6ed9eba1, 3)
171 STEP(H, d, a, b, c, GET(10) + 0x6ed9eba1, 9)
172 STEP(H, c, d, a, b, GET(6) + 0x6ed9eba1, 11)
173 STEP(H, b, c, d, a, GET(14) + 0x6ed9eba1, 15)
174 STEP(H, a, b, c, d, GET(1) + 0x6ed9eba1, 3)
175 STEP(H, d, a, b, c, GET(9) + 0x6ed9eba1, 9)
176 STEP(H, c, d, a, b, GET(5) + 0x6ed9eba1, 11)
177 STEP(H, b, c, d, a, GET(13) + 0x6ed9eba1, 15)
178 STEP(H, a, b, c, d, GET(3) + 0x6ed9eba1, 3)
179 STEP(H, d, a, b, c, GET(11) + 0x6ed9eba1, 9)
180 STEP(H, c, d, a, b, GET(7) + 0x6ed9eba1, 11)
181 STEP(H, b, c, d, a, GET(15) + 0x6ed9eba1, 15)
182
183 a += saved_a;
184 b += saved_b;
185 c += saved_c;
186 d += saved_d;
187
188 ptr += 64;
189 } while(size -= 64);
190
191 ctx->a = a;
192 ctx->b = b;
193 ctx->c = c;
194 ctx->d = d;
195
196 return ptr;
197 }
198
MD4_Init(MD4_CTX * ctx)199 static void MD4_Init(MD4_CTX *ctx)
200 {
201 ctx->a = 0x67452301;
202 ctx->b = 0xefcdab89;
203 ctx->c = 0x98badcfe;
204 ctx->d = 0x10325476;
205
206 ctx->lo = 0;
207 ctx->hi = 0;
208 }
209
MD4_Update(MD4_CTX * ctx,const void * data,unsigned long size)210 static void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size)
211 {
212 MD4_u32plus saved_lo;
213 unsigned long used, available;
214
215 saved_lo = ctx->lo;
216 if((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
217 ctx->hi++;
218 ctx->hi += (MD4_u32plus)size >> 29;
219
220 used = saved_lo & 0x3f;
221
222 if(used) {
223 available = 64 - used;
224
225 if(size < available) {
226 memcpy(&ctx->buffer[used], data, size);
227 return;
228 }
229
230 memcpy(&ctx->buffer[used], data, available);
231 data = (const unsigned char *)data + available;
232 size -= available;
233 body(ctx, ctx->buffer, 64);
234 }
235
236 if(size >= 64) {
237 data = body(ctx, data, size & ~(unsigned long)0x3f);
238 size &= 0x3f;
239 }
240
241 memcpy(ctx->buffer, data, size);
242 }
243
MD4_Final(unsigned char * result,MD4_CTX * ctx)244 static void MD4_Final(unsigned char *result, MD4_CTX *ctx)
245 {
246 unsigned long used, available;
247
248 used = ctx->lo & 0x3f;
249
250 ctx->buffer[used++] = 0x80;
251
252 available = 64 - used;
253
254 if(available < 8) {
255 memset(&ctx->buffer[used], 0, available);
256 body(ctx, ctx->buffer, 64);
257 used = 0;
258 available = 64;
259 }
260
261 memset(&ctx->buffer[used], 0, available - 8);
262
263 ctx->lo <<= 3;
264 ctx->buffer[56] = curlx_ultouc((ctx->lo)&0xff);
265 ctx->buffer[57] = curlx_ultouc((ctx->lo >> 8)&0xff);
266 ctx->buffer[58] = curlx_ultouc((ctx->lo >> 16)&0xff);
267 ctx->buffer[59] = curlx_ultouc((ctx->lo >> 24)&0xff);
268 ctx->buffer[60] = curlx_ultouc((ctx->hi)&0xff);
269 ctx->buffer[61] = curlx_ultouc((ctx->hi >> 8)&0xff);
270 ctx->buffer[62] = curlx_ultouc((ctx->hi >> 16)&0xff);
271 ctx->buffer[63] = curlx_ultouc(ctx->hi >> 24);
272
273 body(ctx, ctx->buffer, 64);
274
275 result[0] = curlx_ultouc((ctx->a)&0xff);
276 result[1] = curlx_ultouc((ctx->a >> 8)&0xff);
277 result[2] = curlx_ultouc((ctx->a >> 16)&0xff);
278 result[3] = curlx_ultouc(ctx->a >> 24);
279 result[4] = curlx_ultouc((ctx->b)&0xff);
280 result[5] = curlx_ultouc((ctx->b >> 8)&0xff);
281 result[6] = curlx_ultouc((ctx->b >> 16)&0xff);
282 result[7] = curlx_ultouc(ctx->b >> 24);
283 result[8] = curlx_ultouc((ctx->c)&0xff);
284 result[9] = curlx_ultouc((ctx->c >> 8)&0xff);
285 result[10] = curlx_ultouc((ctx->c >> 16)&0xff);
286 result[11] = curlx_ultouc(ctx->c >> 24);
287 result[12] = curlx_ultouc((ctx->d)&0xff);
288 result[13] = curlx_ultouc((ctx->d >> 8)&0xff);
289 result[14] = curlx_ultouc((ctx->d >> 16)&0xff);
290 result[15] = curlx_ultouc(ctx->d >> 24);
291
292 memset(ctx, 0, sizeof(*ctx));
293 }
294
295 #endif
296
Curl_md4it(unsigned char * output,const unsigned char * input,size_t len)297 void Curl_md4it(unsigned char *output, const unsigned char *input, size_t len)
298 {
299 MD4_CTX ctx;
300 MD4_Init(&ctx);
301 MD4_Update(&ctx, input, curlx_uztoui(len));
302 MD4_Final(output, &ctx);
303 }
304 #endif /* defined(USE_NSS) || defined(USE_OS400CRYPTO) */
305