• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_OPERATOR_H_
6 #define V8_COMPILER_OPERATOR_H_
7 
8 #include <ostream>  // NOLINT(readability/streams)
9 
10 #include "src/base/flags.h"
11 #include "src/base/functional.h"
12 #include "src/handles.h"
13 #include "src/zone.h"
14 
15 namespace v8 {
16 namespace internal {
17 namespace compiler {
18 
19 // An operator represents description of the "computation" of a node in the
20 // compiler IR. A computation takes values (i.e. data) as input and produces
21 // zero or more values as output. The side-effects of a computation must be
22 // captured by additional control and data dependencies which are part of the
23 // IR graph.
24 // Operators are immutable and describe the statically-known parts of a
25 // computation. Thus they can be safely shared by many different nodes in the
26 // IR graph, or even globally between graphs. Operators can have "static
27 // parameters" which are compile-time constant parameters to the operator, such
28 // as the name for a named field access, the ID of a runtime function, etc.
29 // Static parameters are private to the operator and only semantically
30 // meaningful to the operator itself.
31 class Operator : public ZoneObject {
32  public:
33   typedef uint16_t Opcode;
34 
35   // Properties inform the operator-independent optimizer about legal
36   // transformations for nodes that have this operator.
37   enum Property {
38     kNoProperties = 0,
39     kCommutative = 1 << 0,  // OP(a, b) == OP(b, a) for all inputs.
40     kAssociative = 1 << 1,  // OP(a, OP(b,c)) == OP(OP(a,b), c) for all inputs.
41     kIdempotent = 1 << 2,   // OP(a); OP(a) == OP(a).
42     kNoRead = 1 << 3,       // Has no scheduling dependency on Effects
43     kNoWrite = 1 << 4,      // Does not modify any Effects and thereby
44                             // create new scheduling dependencies.
45     kNoThrow = 1 << 5,      // Can never generate an exception.
46     kNoDeopt = 1 << 6,      // Can never generate an eager deoptimization exit.
47     kFoldable = kNoRead | kNoWrite,
48     kKontrol = kNoDeopt | kFoldable | kNoThrow,
49     kEliminatable = kNoDeopt | kNoWrite | kNoThrow,
50     kPure = kNoDeopt | kNoRead | kNoWrite | kNoThrow | kIdempotent
51   };
52   typedef base::Flags<Property, uint8_t> Properties;
53 
54   // Constructor.
55   Operator(Opcode opcode, Properties properties, const char* mnemonic,
56            size_t value_in, size_t effect_in, size_t control_in,
57            size_t value_out, size_t effect_out, size_t control_out);
58 
~Operator()59   virtual ~Operator() {}
60 
61   // A small integer unique to all instances of a particular kind of operator,
62   // useful for quick matching for specific kinds of operators. For fast access
63   // the opcode is stored directly in the operator object.
opcode()64   Opcode opcode() const { return opcode_; }
65 
66   // Returns a constant string representing the mnemonic of the operator,
67   // without the static parameters. Useful for debugging.
mnemonic()68   const char* mnemonic() const { return mnemonic_; }
69 
70   // Check if this operator equals another operator. Equivalent operators can
71   // be merged, and nodes with equivalent operators and equivalent inputs
72   // can be merged.
Equals(const Operator * that)73   virtual bool Equals(const Operator* that) const {
74     return this->opcode() == that->opcode();
75   }
76 
77   // Compute a hashcode to speed up equivalence-set checking.
78   // Equal operators should always have equal hashcodes, and unequal operators
79   // should have unequal hashcodes with high probability.
HashCode()80   virtual size_t HashCode() const { return base::hash<Opcode>()(opcode()); }
81 
82   // Check whether this operator has the given property.
HasProperty(Property property)83   bool HasProperty(Property property) const {
84     return (properties() & property) == property;
85   }
86 
properties()87   Properties properties() const { return properties_; }
88 
89   // TODO(bmeurer): Use bit fields below?
90   static const size_t kMaxControlOutputCount = (1u << 16) - 1;
91 
92   // TODO(titzer): convert return values here to size_t.
ValueInputCount()93   int ValueInputCount() const { return value_in_; }
EffectInputCount()94   int EffectInputCount() const { return effect_in_; }
ControlInputCount()95   int ControlInputCount() const { return control_in_; }
96 
ValueOutputCount()97   int ValueOutputCount() const { return value_out_; }
EffectOutputCount()98   int EffectOutputCount() const { return effect_out_; }
ControlOutputCount()99   int ControlOutputCount() const { return control_out_; }
100 
ZeroIfEliminatable(Properties properties)101   static size_t ZeroIfEliminatable(Properties properties) {
102     return (properties & kEliminatable) == kEliminatable ? 0 : 1;
103   }
104 
ZeroIfNoThrow(Properties properties)105   static size_t ZeroIfNoThrow(Properties properties) {
106     return (properties & kNoThrow) == kNoThrow ? 0 : 2;
107   }
108 
ZeroIfPure(Properties properties)109   static size_t ZeroIfPure(Properties properties) {
110     return (properties & kPure) == kPure ? 0 : 1;
111   }
112 
113   // TODO(titzer): API for input and output types, for typechecking graph.
114  protected:
115   // Print the full operator into the given stream, including any
116   // static parameters. Useful for debugging and visualizing the IR.
117   virtual void PrintTo(std::ostream& os) const;
118   friend std::ostream& operator<<(std::ostream& os, const Operator& op);
119 
120  private:
121   Opcode opcode_;
122   Properties properties_;
123   const char* mnemonic_;
124   uint32_t value_in_;
125   uint16_t effect_in_;
126   uint16_t control_in_;
127   uint16_t value_out_;
128   uint8_t effect_out_;
129   uint16_t control_out_;
130 
131   DISALLOW_COPY_AND_ASSIGN(Operator);
132 };
133 
134 DEFINE_OPERATORS_FOR_FLAGS(Operator::Properties)
135 
136 std::ostream& operator<<(std::ostream& os, const Operator& op);
137 
138 
139 // Default equality function for below Operator1<*> class.
140 template <typename T>
141 struct OpEqualTo : public std::equal_to<T> {};
142 
143 
144 // Default hashing function for below Operator1<*> class.
145 template <typename T>
146 struct OpHash : public base::hash<T> {};
147 
148 
149 // A templatized implementation of Operator that has one static parameter of
150 // type {T} with the proper default equality and hashing functions.
151 template <typename T, typename Pred = OpEqualTo<T>, typename Hash = OpHash<T>>
152 class Operator1 : public Operator {
153  public:
154   Operator1(Opcode opcode, Properties properties, const char* mnemonic,
155             size_t value_in, size_t effect_in, size_t control_in,
156             size_t value_out, size_t effect_out, size_t control_out,
157             T parameter, Pred const& pred = Pred(), Hash const& hash = Hash())
Operator(opcode,properties,mnemonic,value_in,effect_in,control_in,value_out,effect_out,control_out)158       : Operator(opcode, properties, mnemonic, value_in, effect_in, control_in,
159                  value_out, effect_out, control_out),
160         parameter_(parameter),
161         pred_(pred),
162         hash_(hash) {}
163 
parameter()164   T const& parameter() const { return parameter_; }
165 
Equals(const Operator * other)166   bool Equals(const Operator* other) const final {
167     if (opcode() != other->opcode()) return false;
168     const Operator1<T, Pred, Hash>* that =
169         reinterpret_cast<const Operator1<T, Pred, Hash>*>(other);
170     return this->pred_(this->parameter(), that->parameter());
171   }
HashCode()172   size_t HashCode() const final {
173     return base::hash_combine(this->opcode(), this->hash_(this->parameter()));
174   }
PrintParameter(std::ostream & os)175   virtual void PrintParameter(std::ostream& os) const {
176     os << "[" << this->parameter() << "]";
177   }
178 
179  protected:
PrintTo(std::ostream & os)180   void PrintTo(std::ostream& os) const final {
181     os << mnemonic();
182     PrintParameter(os);
183   }
184 
185  private:
186   T const parameter_;
187   Pred const pred_;
188   Hash const hash_;
189 };
190 
191 
192 // Helper to extract parameters from Operator1<*> operator.
193 template <typename T>
OpParameter(const Operator * op)194 inline T const& OpParameter(const Operator* op) {
195   return reinterpret_cast<const Operator1<T, OpEqualTo<T>, OpHash<T>>*>(op)
196       ->parameter();
197 }
198 
199 
200 // NOTE: We have to be careful to use the right equal/hash functions below, for
201 // float/double we always use the ones operating on the bit level, for Handle<>
202 // we always use the ones operating on the location level.
203 template <>
204 struct OpEqualTo<float> : public base::bit_equal_to<float> {};
205 template <>
206 struct OpHash<float> : public base::bit_hash<float> {};
207 
208 template <>
209 struct OpEqualTo<double> : public base::bit_equal_to<double> {};
210 template <>
211 struct OpHash<double> : public base::bit_hash<double> {};
212 
213 template <>
214 struct OpEqualTo<Handle<HeapObject>> : public Handle<HeapObject>::equal_to {};
215 template <>
216 struct OpHash<Handle<HeapObject>> : public Handle<HeapObject>::hash {};
217 
218 template <>
219 struct OpEqualTo<Handle<String>> : public Handle<String>::equal_to {};
220 template <>
221 struct OpHash<Handle<String>> : public Handle<String>::hash {};
222 
223 template <>
224 struct OpEqualTo<Handle<ScopeInfo>> : public Handle<ScopeInfo>::equal_to {};
225 template <>
226 struct OpHash<Handle<ScopeInfo>> : public Handle<ScopeInfo>::hash {};
227 
228 }  // namespace compiler
229 }  // namespace internal
230 }  // namespace v8
231 
232 #endif  // V8_COMPILER_OPERATOR_H_
233