1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WinException.h"
18 #include "WinCodeViewLineTables.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GCMetadataPrinter.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBundle.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/Mangler.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCExpr.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSymbolELF.h"
43 #include "llvm/MC/MCValue.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/TargetRegistry.h"
48 #include "llvm/Support/Timer.h"
49 #include "llvm/Target/TargetFrameLowering.h"
50 #include "llvm/Target/TargetInstrInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetLoweringObjectFile.h"
53 #include "llvm/Target/TargetRegisterInfo.h"
54 #include "llvm/Target/TargetSubtargetInfo.h"
55 using namespace llvm;
56
57 #define DEBUG_TYPE "asm-printer"
58
59 static const char *const DWARFGroupName = "DWARF Emission";
60 static const char *const DbgTimerName = "Debug Info Emission";
61 static const char *const EHTimerName = "DWARF Exception Writer";
62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
63
64 STATISTIC(EmittedInsts, "Number of machine instrs printed");
65
66 char AsmPrinter::ID = 0;
67
68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
getGCMap(void * & P)69 static gcp_map_type &getGCMap(void *&P) {
70 if (!P)
71 P = new gcp_map_type();
72 return *(gcp_map_type*)P;
73 }
74
75
76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
77 /// value in log2 form. This rounds up to the preferred alignment if possible
78 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const DataLayout & DL,unsigned InBits=0)79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
80 unsigned InBits = 0) {
81 unsigned NumBits = 0;
82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
83 NumBits = DL.getPreferredAlignmentLog(GVar);
84
85 // If InBits is specified, round it to it.
86 if (InBits > NumBits)
87 NumBits = InBits;
88
89 // If the GV has a specified alignment, take it into account.
90 if (GV->getAlignment() == 0)
91 return NumBits;
92
93 unsigned GVAlign = Log2_32(GV->getAlignment());
94
95 // If the GVAlign is larger than NumBits, or if we are required to obey
96 // NumBits because the GV has an assigned section, obey it.
97 if (GVAlign > NumBits || GV->hasSection())
98 NumBits = GVAlign;
99 return NumBits;
100 }
101
AsmPrinter(TargetMachine & tm,std::unique_ptr<MCStreamer> Streamer)102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
105 LastMI(nullptr), LastFn(0), Counter(~0U) {
106 DD = nullptr;
107 MMI = nullptr;
108 LI = nullptr;
109 MF = nullptr;
110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr;
111 CurrentFnBegin = nullptr;
112 CurrentFnEnd = nullptr;
113 GCMetadataPrinters = nullptr;
114 VerboseAsm = OutStreamer->isVerboseAsm();
115 }
116
~AsmPrinter()117 AsmPrinter::~AsmPrinter() {
118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
119
120 if (GCMetadataPrinters) {
121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
122
123 delete &GCMap;
124 GCMetadataPrinters = nullptr;
125 }
126 }
127
128 /// getFunctionNumber - Return a unique ID for the current function.
129 ///
getFunctionNumber() const130 unsigned AsmPrinter::getFunctionNumber() const {
131 return MF->getFunctionNumber();
132 }
133
getObjFileLowering() const134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
135 return *TM.getObjFileLowering();
136 }
137
getDataLayout() const138 const DataLayout &AsmPrinter::getDataLayout() const {
139 return MMI->getModule()->getDataLayout();
140 }
141
142 // Do not use the cached DataLayout because some client use it without a Module
143 // (llmv-dsymutil, llvm-dwarfdump).
getPointerSize() const144 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
145
getSubtargetInfo() const146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
148 return MF->getSubtarget<MCSubtargetInfo>();
149 }
150
EmitToStreamer(MCStreamer & S,const MCInst & Inst)151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
152 S.EmitInstruction(Inst, getSubtargetInfo());
153 }
154
getTargetTriple() const155 StringRef AsmPrinter::getTargetTriple() const {
156 return TM.getTargetTriple().str();
157 }
158
159 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const160 const MCSection *AsmPrinter::getCurrentSection() const {
161 return OutStreamer->getCurrentSection().first;
162 }
163
164
165
getAnalysisUsage(AnalysisUsage & AU) const166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
167 AU.setPreservesAll();
168 MachineFunctionPass::getAnalysisUsage(AU);
169 AU.addRequired<MachineModuleInfo>();
170 AU.addRequired<GCModuleInfo>();
171 if (isVerbose())
172 AU.addRequired<MachineLoopInfo>();
173 }
174
doInitialization(Module & M)175 bool AsmPrinter::doInitialization(Module &M) {
176 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
177
178 // Initialize TargetLoweringObjectFile.
179 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
180 .Initialize(OutContext, TM);
181
182 OutStreamer->InitSections(false);
183
184 Mang = new Mangler();
185
186 // Emit the version-min deplyment target directive if needed.
187 //
188 // FIXME: If we end up with a collection of these sorts of Darwin-specific
189 // or ELF-specific things, it may make sense to have a platform helper class
190 // that will work with the target helper class. For now keep it here, as the
191 // alternative is duplicated code in each of the target asm printers that
192 // use the directive, where it would need the same conditionalization
193 // anyway.
194 Triple TT(getTargetTriple());
195 if (TT.isOSDarwin()) {
196 unsigned Major, Minor, Update;
197 TT.getOSVersion(Major, Minor, Update);
198 // If there is a version specified, Major will be non-zero.
199 if (Major) {
200 MCVersionMinType VersionType;
201 if (TT.isWatchOS())
202 VersionType = MCVM_WatchOSVersionMin;
203 else if (TT.isTvOS())
204 VersionType = MCVM_TvOSVersionMin;
205 else if (TT.isMacOSX())
206 VersionType = MCVM_OSXVersionMin;
207 else
208 VersionType = MCVM_IOSVersionMin;
209 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
210 }
211 }
212
213 // Allow the target to emit any magic that it wants at the start of the file.
214 EmitStartOfAsmFile(M);
215
216 // Very minimal debug info. It is ignored if we emit actual debug info. If we
217 // don't, this at least helps the user find where a global came from.
218 if (MAI->hasSingleParameterDotFile()) {
219 // .file "foo.c"
220 OutStreamer->EmitFileDirective(M.getModuleIdentifier());
221 }
222
223 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
224 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
225 for (auto &I : *MI)
226 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
227 MP->beginAssembly(M, *MI, *this);
228
229 // Emit module-level inline asm if it exists.
230 if (!M.getModuleInlineAsm().empty()) {
231 // We're at the module level. Construct MCSubtarget from the default CPU
232 // and target triple.
233 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
234 TM.getTargetTriple().str(), TM.getTargetCPU(),
235 TM.getTargetFeatureString()));
236 OutStreamer->AddComment("Start of file scope inline assembly");
237 OutStreamer->AddBlankLine();
238 EmitInlineAsm(M.getModuleInlineAsm()+"\n",
239 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
240 OutStreamer->AddComment("End of file scope inline assembly");
241 OutStreamer->AddBlankLine();
242 }
243
244 if (MAI->doesSupportDebugInformation()) {
245 bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
246 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) {
247 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
248 DbgTimerName,
249 CodeViewLineTablesGroupName));
250 }
251 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
252 DD = new DwarfDebug(this, &M);
253 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
254 }
255 }
256
257 EHStreamer *ES = nullptr;
258 switch (MAI->getExceptionHandlingType()) {
259 case ExceptionHandling::None:
260 break;
261 case ExceptionHandling::SjLj:
262 case ExceptionHandling::DwarfCFI:
263 ES = new DwarfCFIException(this);
264 break;
265 case ExceptionHandling::ARM:
266 ES = new ARMException(this);
267 break;
268 case ExceptionHandling::WinEH:
269 switch (MAI->getWinEHEncodingType()) {
270 default: llvm_unreachable("unsupported unwinding information encoding");
271 case WinEH::EncodingType::Invalid:
272 break;
273 case WinEH::EncodingType::X86:
274 case WinEH::EncodingType::Itanium:
275 ES = new WinException(this);
276 break;
277 }
278 break;
279 }
280 if (ES)
281 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
282 return false;
283 }
284
canBeHidden(const GlobalValue * GV,const MCAsmInfo & MAI)285 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
286 if (!MAI.hasWeakDefCanBeHiddenDirective())
287 return false;
288
289 return canBeOmittedFromSymbolTable(GV);
290 }
291
EmitLinkage(const GlobalValue * GV,MCSymbol * GVSym) const292 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
293 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
294 switch (Linkage) {
295 case GlobalValue::CommonLinkage:
296 case GlobalValue::LinkOnceAnyLinkage:
297 case GlobalValue::LinkOnceODRLinkage:
298 case GlobalValue::WeakAnyLinkage:
299 case GlobalValue::WeakODRLinkage:
300 if (MAI->hasWeakDefDirective()) {
301 // .globl _foo
302 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
303
304 if (!canBeHidden(GV, *MAI))
305 // .weak_definition _foo
306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
307 else
308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
309 } else if (MAI->hasLinkOnceDirective()) {
310 // .globl _foo
311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
312 //NOTE: linkonce is handled by the section the symbol was assigned to.
313 } else {
314 // .weak _foo
315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
316 }
317 return;
318 case GlobalValue::AppendingLinkage:
319 // FIXME: appending linkage variables should go into a section of
320 // their name or something. For now, just emit them as external.
321 case GlobalValue::ExternalLinkage:
322 // If external or appending, declare as a global symbol.
323 // .globl _foo
324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
325 return;
326 case GlobalValue::PrivateLinkage:
327 case GlobalValue::InternalLinkage:
328 return;
329 case GlobalValue::AvailableExternallyLinkage:
330 llvm_unreachable("Should never emit this");
331 case GlobalValue::ExternalWeakLinkage:
332 llvm_unreachable("Don't know how to emit these");
333 }
334 llvm_unreachable("Unknown linkage type!");
335 }
336
getNameWithPrefix(SmallVectorImpl<char> & Name,const GlobalValue * GV) const337 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
338 const GlobalValue *GV) const {
339 TM.getNameWithPrefix(Name, GV, *Mang);
340 }
341
getSymbol(const GlobalValue * GV) const342 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
343 return TM.getSymbol(GV, *Mang);
344 }
345
346 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)347 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
348 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
349 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
350 "No emulated TLS variables in the common section");
351
352 // Never emit TLS variable xyz in emulated TLS model.
353 // The initialization value is in __emutls_t.xyz instead of xyz.
354 if (IsEmuTLSVar)
355 return;
356
357 if (GV->hasInitializer()) {
358 // Check to see if this is a special global used by LLVM, if so, emit it.
359 if (EmitSpecialLLVMGlobal(GV))
360 return;
361
362 // Skip the emission of global equivalents. The symbol can be emitted later
363 // on by emitGlobalGOTEquivs in case it turns out to be needed.
364 if (GlobalGOTEquivs.count(getSymbol(GV)))
365 return;
366
367 if (isVerbose()) {
368 // When printing the control variable __emutls_v.*,
369 // we don't need to print the original TLS variable name.
370 GV->printAsOperand(OutStreamer->GetCommentOS(),
371 /*PrintType=*/false, GV->getParent());
372 OutStreamer->GetCommentOS() << '\n';
373 }
374 }
375
376 MCSymbol *GVSym = getSymbol(GV);
377 MCSymbol *EmittedSym = GVSym;
378 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes.
379 // GV's or GVSym's attributes will be used for the EmittedSym.
380
381 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
382
383 if (!GV->hasInitializer()) // External globals require no extra code.
384 return;
385
386 GVSym->redefineIfPossible();
387 if (GVSym->isDefined() || GVSym->isVariable())
388 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
389 "' is already defined");
390
391 if (MAI->hasDotTypeDotSizeDirective())
392 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
393
394 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
395
396 const DataLayout &DL = GV->getParent()->getDataLayout();
397 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
398
399 // If the alignment is specified, we *must* obey it. Overaligning a global
400 // with a specified alignment is a prompt way to break globals emitted to
401 // sections and expected to be contiguous (e.g. ObjC metadata).
402 unsigned AlignLog = getGVAlignmentLog2(GV, DL);
403
404 for (const HandlerInfo &HI : Handlers) {
405 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
406 HI.Handler->setSymbolSize(GVSym, Size);
407 }
408
409 // Handle common and BSS local symbols (.lcomm).
410 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
411 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
412 unsigned Align = 1 << AlignLog;
413
414 // Handle common symbols.
415 if (GVKind.isCommon()) {
416 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
417 Align = 0;
418
419 // .comm _foo, 42, 4
420 OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
421 return;
422 }
423
424 // Handle local BSS symbols.
425 if (MAI->hasMachoZeroFillDirective()) {
426 MCSection *TheSection =
427 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
428 // .zerofill __DATA, __bss, _foo, 400, 5
429 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
430 return;
431 }
432
433 // Use .lcomm only if it supports user-specified alignment.
434 // Otherwise, while it would still be correct to use .lcomm in some
435 // cases (e.g. when Align == 1), the external assembler might enfore
436 // some -unknown- default alignment behavior, which could cause
437 // spurious differences between external and integrated assembler.
438 // Prefer to simply fall back to .local / .comm in this case.
439 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
440 // .lcomm _foo, 42
441 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
442 return;
443 }
444
445 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
446 Align = 0;
447
448 // .local _foo
449 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
450 // .comm _foo, 42, 4
451 OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
452 return;
453 }
454
455 MCSymbol *EmittedInitSym = GVSym;
456
457 MCSection *TheSection =
458 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
459
460 // Handle the zerofill directive on darwin, which is a special form of BSS
461 // emission.
462 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
463 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
464
465 // .globl _foo
466 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
467 // .zerofill __DATA, __common, _foo, 400, 5
468 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
469 return;
470 }
471
472 // Handle thread local data for mach-o which requires us to output an
473 // additional structure of data and mangle the original symbol so that we
474 // can reference it later.
475 //
476 // TODO: This should become an "emit thread local global" method on TLOF.
477 // All of this macho specific stuff should be sunk down into TLOFMachO and
478 // stuff like "TLSExtraDataSection" should no longer be part of the parent
479 // TLOF class. This will also make it more obvious that stuff like
480 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
481 // specific code.
482 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
483 // Emit the .tbss symbol
484 MCSymbol *MangSym =
485 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
486
487 if (GVKind.isThreadBSS()) {
488 TheSection = getObjFileLowering().getTLSBSSSection();
489 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
490 } else if (GVKind.isThreadData()) {
491 OutStreamer->SwitchSection(TheSection);
492
493 EmitAlignment(AlignLog, GV);
494 OutStreamer->EmitLabel(MangSym);
495
496 EmitGlobalConstant(GV->getParent()->getDataLayout(),
497 GV->getInitializer());
498 }
499
500 OutStreamer->AddBlankLine();
501
502 // Emit the variable struct for the runtime.
503 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
504
505 OutStreamer->SwitchSection(TLVSect);
506 // Emit the linkage here.
507 EmitLinkage(GV, GVSym);
508 OutStreamer->EmitLabel(GVSym);
509
510 // Three pointers in size:
511 // - __tlv_bootstrap - used to make sure support exists
512 // - spare pointer, used when mapped by the runtime
513 // - pointer to mangled symbol above with initializer
514 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
515 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
516 PtrSize);
517 OutStreamer->EmitIntValue(0, PtrSize);
518 OutStreamer->EmitSymbolValue(MangSym, PtrSize);
519
520 OutStreamer->AddBlankLine();
521 return;
522 }
523
524 OutStreamer->SwitchSection(TheSection);
525
526 EmitLinkage(GV, EmittedInitSym);
527 EmitAlignment(AlignLog, GV);
528
529 OutStreamer->EmitLabel(EmittedInitSym);
530
531 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
532
533 if (MAI->hasDotTypeDotSizeDirective())
534 // .size foo, 42
535 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym),
536 MCConstantExpr::create(Size, OutContext));
537
538 OutStreamer->AddBlankLine();
539 }
540
541 /// EmitFunctionHeader - This method emits the header for the current
542 /// function.
EmitFunctionHeader()543 void AsmPrinter::EmitFunctionHeader() {
544 // Print out constants referenced by the function
545 EmitConstantPool();
546
547 // Print the 'header' of function.
548 const Function *F = MF->getFunction();
549
550 OutStreamer->SwitchSection(
551 getObjFileLowering().SectionForGlobal(F, *Mang, TM));
552 EmitVisibility(CurrentFnSym, F->getVisibility());
553
554 EmitLinkage(F, CurrentFnSym);
555 if (MAI->hasFunctionAlignment())
556 EmitAlignment(MF->getAlignment(), F);
557
558 if (MAI->hasDotTypeDotSizeDirective())
559 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
560
561 if (isVerbose()) {
562 F->printAsOperand(OutStreamer->GetCommentOS(),
563 /*PrintType=*/false, F->getParent());
564 OutStreamer->GetCommentOS() << '\n';
565 }
566
567 // Emit the prefix data.
568 if (F->hasPrefixData())
569 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
570
571 // Emit the CurrentFnSym. This is a virtual function to allow targets to
572 // do their wild and crazy things as required.
573 EmitFunctionEntryLabel();
574
575 // If the function had address-taken blocks that got deleted, then we have
576 // references to the dangling symbols. Emit them at the start of the function
577 // so that we don't get references to undefined symbols.
578 std::vector<MCSymbol*> DeadBlockSyms;
579 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
580 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
581 OutStreamer->AddComment("Address taken block that was later removed");
582 OutStreamer->EmitLabel(DeadBlockSyms[i]);
583 }
584
585 if (CurrentFnBegin) {
586 if (MAI->useAssignmentForEHBegin()) {
587 MCSymbol *CurPos = OutContext.createTempSymbol();
588 OutStreamer->EmitLabel(CurPos);
589 OutStreamer->EmitAssignment(CurrentFnBegin,
590 MCSymbolRefExpr::create(CurPos, OutContext));
591 } else {
592 OutStreamer->EmitLabel(CurrentFnBegin);
593 }
594 }
595
596 // Emit pre-function debug and/or EH information.
597 for (const HandlerInfo &HI : Handlers) {
598 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
599 HI.Handler->beginFunction(MF);
600 }
601
602 // Emit the prologue data.
603 if (F->hasPrologueData())
604 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
605 }
606
607 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
608 /// function. This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()609 void AsmPrinter::EmitFunctionEntryLabel() {
610 CurrentFnSym->redefineIfPossible();
611
612 // The function label could have already been emitted if two symbols end up
613 // conflicting due to asm renaming. Detect this and emit an error.
614 if (CurrentFnSym->isVariable())
615 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
616 "' is a protected alias");
617 if (CurrentFnSym->isDefined())
618 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
619 "' label emitted multiple times to assembly file");
620
621 return OutStreamer->EmitLabel(CurrentFnSym);
622 }
623
624 /// emitComments - Pretty-print comments for instructions.
emitComments(const MachineInstr & MI,raw_ostream & CommentOS)625 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
626 const MachineFunction *MF = MI.getParent()->getParent();
627 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
628
629 // Check for spills and reloads
630 int FI;
631
632 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
633
634 // We assume a single instruction only has a spill or reload, not
635 // both.
636 const MachineMemOperand *MMO;
637 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) {
638 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
639 MMO = *MI.memoperands_begin();
640 CommentOS << MMO->getSize() << "-byte Reload\n";
641 }
642 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) {
643 if (FrameInfo->isSpillSlotObjectIndex(FI))
644 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
645 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) {
646 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
647 MMO = *MI.memoperands_begin();
648 CommentOS << MMO->getSize() << "-byte Spill\n";
649 }
650 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) {
651 if (FrameInfo->isSpillSlotObjectIndex(FI))
652 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
653 }
654
655 // Check for spill-induced copies
656 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
657 CommentOS << " Reload Reuse\n";
658 }
659
660 /// emitImplicitDef - This method emits the specified machine instruction
661 /// that is an implicit def.
emitImplicitDef(const MachineInstr * MI) const662 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
663 unsigned RegNo = MI->getOperand(0).getReg();
664
665 SmallString<128> Str;
666 raw_svector_ostream OS(Str);
667 OS << "implicit-def: "
668 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
669
670 OutStreamer->AddComment(OS.str());
671 OutStreamer->AddBlankLine();
672 }
673
emitKill(const MachineInstr * MI,AsmPrinter & AP)674 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
675 std::string Str;
676 raw_string_ostream OS(Str);
677 OS << "kill:";
678 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
679 const MachineOperand &Op = MI->getOperand(i);
680 assert(Op.isReg() && "KILL instruction must have only register operands");
681 OS << ' '
682 << PrintReg(Op.getReg(),
683 AP.MF->getSubtarget().getRegisterInfo())
684 << (Op.isDef() ? "<def>" : "<kill>");
685 }
686 AP.OutStreamer->AddComment(Str);
687 AP.OutStreamer->AddBlankLine();
688 }
689
690 /// emitDebugValueComment - This method handles the target-independent form
691 /// of DBG_VALUE, returning true if it was able to do so. A false return
692 /// means the target will need to handle MI in EmitInstruction.
emitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)693 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
694 // This code handles only the 4-operand target-independent form.
695 if (MI->getNumOperands() != 4)
696 return false;
697
698 SmallString<128> Str;
699 raw_svector_ostream OS(Str);
700 OS << "DEBUG_VALUE: ";
701
702 const DILocalVariable *V = MI->getDebugVariable();
703 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
704 StringRef Name = SP->getDisplayName();
705 if (!Name.empty())
706 OS << Name << ":";
707 }
708 OS << V->getName();
709
710 const DIExpression *Expr = MI->getDebugExpression();
711 if (Expr->isBitPiece())
712 OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
713 << " size=" << Expr->getBitPieceSize() << "]";
714 OS << " <- ";
715
716 // The second operand is only an offset if it's an immediate.
717 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
718 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
719
720 for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
721 if (Deref) {
722 // We currently don't support extra Offsets or derefs after the first
723 // one. Bail out early instead of emitting an incorrect comment
724 OS << " [complex expression]";
725 AP.OutStreamer->emitRawComment(OS.str());
726 return true;
727 }
728 uint64_t Op = Expr->getElement(i);
729 if (Op == dwarf::DW_OP_deref) {
730 Deref = true;
731 continue;
732 }
733 uint64_t ExtraOffset = Expr->getElement(i++);
734 if (Op == dwarf::DW_OP_plus)
735 Offset += ExtraOffset;
736 else {
737 assert(Op == dwarf::DW_OP_minus);
738 Offset -= ExtraOffset;
739 }
740 }
741
742 // Register or immediate value. Register 0 means undef.
743 if (MI->getOperand(0).isFPImm()) {
744 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
745 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
746 OS << (double)APF.convertToFloat();
747 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
748 OS << APF.convertToDouble();
749 } else {
750 // There is no good way to print long double. Convert a copy to
751 // double. Ah well, it's only a comment.
752 bool ignored;
753 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
754 &ignored);
755 OS << "(long double) " << APF.convertToDouble();
756 }
757 } else if (MI->getOperand(0).isImm()) {
758 OS << MI->getOperand(0).getImm();
759 } else if (MI->getOperand(0).isCImm()) {
760 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
761 } else {
762 unsigned Reg;
763 if (MI->getOperand(0).isReg()) {
764 Reg = MI->getOperand(0).getReg();
765 } else {
766 assert(MI->getOperand(0).isFI() && "Unknown operand type");
767 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
768 Offset += TFI->getFrameIndexReference(*AP.MF,
769 MI->getOperand(0).getIndex(), Reg);
770 Deref = true;
771 }
772 if (Reg == 0) {
773 // Suppress offset, it is not meaningful here.
774 OS << "undef";
775 // NOTE: Want this comment at start of line, don't emit with AddComment.
776 AP.OutStreamer->emitRawComment(OS.str());
777 return true;
778 }
779 if (Deref)
780 OS << '[';
781 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
782 }
783
784 if (Deref)
785 OS << '+' << Offset << ']';
786
787 // NOTE: Want this comment at start of line, don't emit with AddComment.
788 AP.OutStreamer->emitRawComment(OS.str());
789 return true;
790 }
791
needsCFIMoves()792 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
793 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
794 MF->getFunction()->needsUnwindTableEntry())
795 return CFI_M_EH;
796
797 if (MMI->hasDebugInfo())
798 return CFI_M_Debug;
799
800 return CFI_M_None;
801 }
802
needsSEHMoves()803 bool AsmPrinter::needsSEHMoves() {
804 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
805 }
806
emitCFIInstruction(const MachineInstr & MI)807 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
808 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
809 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
810 ExceptionHandlingType != ExceptionHandling::ARM)
811 return;
812
813 if (needsCFIMoves() == CFI_M_None)
814 return;
815
816 const MachineModuleInfo &MMI = MF->getMMI();
817 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
818 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
819 const MCCFIInstruction &CFI = Instrs[CFIIndex];
820 emitCFIInstruction(CFI);
821 }
822
emitFrameAlloc(const MachineInstr & MI)823 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
824 // The operands are the MCSymbol and the frame offset of the allocation.
825 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
826 int FrameOffset = MI.getOperand(1).getImm();
827
828 // Emit a symbol assignment.
829 OutStreamer->EmitAssignment(FrameAllocSym,
830 MCConstantExpr::create(FrameOffset, OutContext));
831 }
832
833 /// EmitFunctionBody - This method emits the body and trailer for a
834 /// function.
EmitFunctionBody()835 void AsmPrinter::EmitFunctionBody() {
836 EmitFunctionHeader();
837
838 // Emit target-specific gunk before the function body.
839 EmitFunctionBodyStart();
840
841 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
842
843 // Print out code for the function.
844 bool HasAnyRealCode = false;
845 for (auto &MBB : *MF) {
846 // Print a label for the basic block.
847 EmitBasicBlockStart(MBB);
848 for (auto &MI : MBB) {
849
850 // Print the assembly for the instruction.
851 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
852 !MI.isDebugValue()) {
853 HasAnyRealCode = true;
854 ++EmittedInsts;
855 }
856
857 if (ShouldPrintDebugScopes) {
858 for (const HandlerInfo &HI : Handlers) {
859 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
860 TimePassesIsEnabled);
861 HI.Handler->beginInstruction(&MI);
862 }
863 }
864
865 if (isVerbose())
866 emitComments(MI, OutStreamer->GetCommentOS());
867
868 switch (MI.getOpcode()) {
869 case TargetOpcode::CFI_INSTRUCTION:
870 emitCFIInstruction(MI);
871 break;
872
873 case TargetOpcode::LOCAL_ESCAPE:
874 emitFrameAlloc(MI);
875 break;
876
877 case TargetOpcode::EH_LABEL:
878 case TargetOpcode::GC_LABEL:
879 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
880 break;
881 case TargetOpcode::INLINEASM:
882 EmitInlineAsm(&MI);
883 break;
884 case TargetOpcode::DBG_VALUE:
885 if (isVerbose()) {
886 if (!emitDebugValueComment(&MI, *this))
887 EmitInstruction(&MI);
888 }
889 break;
890 case TargetOpcode::IMPLICIT_DEF:
891 if (isVerbose()) emitImplicitDef(&MI);
892 break;
893 case TargetOpcode::KILL:
894 if (isVerbose()) emitKill(&MI, *this);
895 break;
896 default:
897 EmitInstruction(&MI);
898 break;
899 }
900
901 if (ShouldPrintDebugScopes) {
902 for (const HandlerInfo &HI : Handlers) {
903 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
904 TimePassesIsEnabled);
905 HI.Handler->endInstruction();
906 }
907 }
908 }
909
910 EmitBasicBlockEnd(MBB);
911 }
912
913 // If the function is empty and the object file uses .subsections_via_symbols,
914 // then we need to emit *something* to the function body to prevent the
915 // labels from collapsing together. Just emit a noop.
916 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
917 MCInst Noop;
918 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
919 OutStreamer->AddComment("avoids zero-length function");
920
921 // Targets can opt-out of emitting the noop here by leaving the opcode
922 // unspecified.
923 if (Noop.getOpcode())
924 OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
925 }
926
927 const Function *F = MF->getFunction();
928 for (const auto &BB : *F) {
929 if (!BB.hasAddressTaken())
930 continue;
931 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
932 if (Sym->isDefined())
933 continue;
934 OutStreamer->AddComment("Address of block that was removed by CodeGen");
935 OutStreamer->EmitLabel(Sym);
936 }
937
938 // Emit target-specific gunk after the function body.
939 EmitFunctionBodyEnd();
940
941 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
942 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
943 // Create a symbol for the end of function.
944 CurrentFnEnd = createTempSymbol("func_end");
945 OutStreamer->EmitLabel(CurrentFnEnd);
946 }
947
948 // If the target wants a .size directive for the size of the function, emit
949 // it.
950 if (MAI->hasDotTypeDotSizeDirective()) {
951 // We can get the size as difference between the function label and the
952 // temp label.
953 const MCExpr *SizeExp = MCBinaryExpr::createSub(
954 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
955 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
956 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym))
957 OutStreamer->emitELFSize(Sym, SizeExp);
958 }
959
960 for (const HandlerInfo &HI : Handlers) {
961 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
962 HI.Handler->markFunctionEnd();
963 }
964
965 // Print out jump tables referenced by the function.
966 EmitJumpTableInfo();
967
968 // Emit post-function debug and/or EH information.
969 for (const HandlerInfo &HI : Handlers) {
970 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
971 HI.Handler->endFunction(MF);
972 }
973 MMI->EndFunction();
974
975 OutStreamer->AddBlankLine();
976 }
977
978 /// \brief Compute the number of Global Variables that uses a Constant.
getNumGlobalVariableUses(const Constant * C)979 static unsigned getNumGlobalVariableUses(const Constant *C) {
980 if (!C)
981 return 0;
982
983 if (isa<GlobalVariable>(C))
984 return 1;
985
986 unsigned NumUses = 0;
987 for (auto *CU : C->users())
988 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
989
990 return NumUses;
991 }
992
993 /// \brief Only consider global GOT equivalents if at least one user is a
994 /// cstexpr inside an initializer of another global variables. Also, don't
995 /// handle cstexpr inside instructions. During global variable emission,
996 /// candidates are skipped and are emitted later in case at least one cstexpr
997 /// isn't replaced by a PC relative GOT entry access.
isGOTEquivalentCandidate(const GlobalVariable * GV,unsigned & NumGOTEquivUsers)998 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
999 unsigned &NumGOTEquivUsers) {
1000 // Global GOT equivalents are unnamed private globals with a constant
1001 // pointer initializer to another global symbol. They must point to a
1002 // GlobalVariable or Function, i.e., as GlobalValue.
1003 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() ||
1004 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0)))
1005 return false;
1006
1007 // To be a got equivalent, at least one of its users need to be a constant
1008 // expression used by another global variable.
1009 for (auto *U : GV->users())
1010 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1011
1012 return NumGOTEquivUsers > 0;
1013 }
1014
1015 /// \brief Unnamed constant global variables solely contaning a pointer to
1016 /// another globals variable is equivalent to a GOT table entry; it contains the
1017 /// the address of another symbol. Optimize it and replace accesses to these
1018 /// "GOT equivalents" by using the GOT entry for the final global instead.
1019 /// Compute GOT equivalent candidates among all global variables to avoid
1020 /// emitting them if possible later on, after it use is replaced by a GOT entry
1021 /// access.
computeGlobalGOTEquivs(Module & M)1022 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1023 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1024 return;
1025
1026 for (const auto &G : M.globals()) {
1027 unsigned NumGOTEquivUsers = 0;
1028 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1029 continue;
1030
1031 const MCSymbol *GOTEquivSym = getSymbol(&G);
1032 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1033 }
1034 }
1035
1036 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1037 /// for PC relative GOT entry conversion, in such cases we need to emit such
1038 /// globals we previously omitted in EmitGlobalVariable.
emitGlobalGOTEquivs()1039 void AsmPrinter::emitGlobalGOTEquivs() {
1040 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1041 return;
1042
1043 SmallVector<const GlobalVariable *, 8> FailedCandidates;
1044 for (auto &I : GlobalGOTEquivs) {
1045 const GlobalVariable *GV = I.second.first;
1046 unsigned Cnt = I.second.second;
1047 if (Cnt)
1048 FailedCandidates.push_back(GV);
1049 }
1050 GlobalGOTEquivs.clear();
1051
1052 for (auto *GV : FailedCandidates)
1053 EmitGlobalVariable(GV);
1054 }
1055
doFinalization(Module & M)1056 bool AsmPrinter::doFinalization(Module &M) {
1057 // Set the MachineFunction to nullptr so that we can catch attempted
1058 // accesses to MF specific features at the module level and so that
1059 // we can conditionalize accesses based on whether or not it is nullptr.
1060 MF = nullptr;
1061
1062 // Gather all GOT equivalent globals in the module. We really need two
1063 // passes over the globals: one to compute and another to avoid its emission
1064 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1065 // where the got equivalent shows up before its use.
1066 computeGlobalGOTEquivs(M);
1067
1068 // Emit global variables.
1069 for (const auto &G : M.globals())
1070 EmitGlobalVariable(&G);
1071
1072 // Emit remaining GOT equivalent globals.
1073 emitGlobalGOTEquivs();
1074
1075 // Emit visibility info for declarations
1076 for (const Function &F : M) {
1077 if (!F.isDeclarationForLinker())
1078 continue;
1079 GlobalValue::VisibilityTypes V = F.getVisibility();
1080 if (V == GlobalValue::DefaultVisibility)
1081 continue;
1082
1083 MCSymbol *Name = getSymbol(&F);
1084 EmitVisibility(Name, V, false);
1085 }
1086
1087 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1088
1089 // Emit module flags.
1090 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1091 M.getModuleFlagsMetadata(ModuleFlags);
1092 if (!ModuleFlags.empty())
1093 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM);
1094
1095 if (TM.getTargetTriple().isOSBinFormatELF()) {
1096 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1097
1098 // Output stubs for external and common global variables.
1099 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1100 if (!Stubs.empty()) {
1101 OutStreamer->SwitchSection(TLOF.getDataSection());
1102 const DataLayout &DL = M.getDataLayout();
1103
1104 for (const auto &Stub : Stubs) {
1105 OutStreamer->EmitLabel(Stub.first);
1106 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1107 DL.getPointerSize());
1108 }
1109 }
1110 }
1111
1112 // Finalize debug and EH information.
1113 for (const HandlerInfo &HI : Handlers) {
1114 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
1115 TimePassesIsEnabled);
1116 HI.Handler->endModule();
1117 delete HI.Handler;
1118 }
1119 Handlers.clear();
1120 DD = nullptr;
1121
1122 // If the target wants to know about weak references, print them all.
1123 if (MAI->getWeakRefDirective()) {
1124 // FIXME: This is not lazy, it would be nice to only print weak references
1125 // to stuff that is actually used. Note that doing so would require targets
1126 // to notice uses in operands (due to constant exprs etc). This should
1127 // happen with the MC stuff eventually.
1128
1129 // Print out module-level global variables here.
1130 for (const auto &G : M.globals()) {
1131 if (!G.hasExternalWeakLinkage())
1132 continue;
1133 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference);
1134 }
1135
1136 for (const auto &F : M) {
1137 if (!F.hasExternalWeakLinkage())
1138 continue;
1139 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference);
1140 }
1141 }
1142
1143 OutStreamer->AddBlankLine();
1144 for (const auto &Alias : M.aliases()) {
1145 MCSymbol *Name = getSymbol(&Alias);
1146
1147 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
1148 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1149 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
1150 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1151 else
1152 assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
1153
1154 // Set the symbol type to function if the alias has a function type.
1155 // This affects codegen when the aliasee is not a function.
1156 if (Alias.getType()->getPointerElementType()->isFunctionTy())
1157 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1158
1159 EmitVisibility(Name, Alias.getVisibility());
1160
1161 // Emit the directives as assignments aka .set:
1162 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee()));
1163
1164 // If the aliasee does not correspond to a symbol in the output, i.e. the
1165 // alias is not of an object or the aliased object is private, then set the
1166 // size of the alias symbol from the type of the alias. We don't do this in
1167 // other situations as the alias and aliasee having differing types but same
1168 // size may be intentional.
1169 const GlobalObject *BaseObject = Alias.getBaseObject();
1170 if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized() &&
1171 (!BaseObject || BaseObject->hasPrivateLinkage())) {
1172 const DataLayout &DL = M.getDataLayout();
1173 uint64_t Size = DL.getTypeAllocSize(Alias.getValueType());
1174 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name),
1175 MCConstantExpr::create(Size, OutContext));
1176 }
1177 }
1178
1179 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1180 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1181 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1182 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1183 MP->finishAssembly(M, *MI, *this);
1184
1185 // Emit llvm.ident metadata in an '.ident' directive.
1186 EmitModuleIdents(M);
1187
1188 // Emit __morestack address if needed for indirect calls.
1189 if (MMI->usesMorestackAddr()) {
1190 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1191 getDataLayout(), SectionKind::getReadOnly(),
1192 /*C=*/nullptr);
1193 OutStreamer->SwitchSection(ReadOnlySection);
1194
1195 MCSymbol *AddrSymbol =
1196 OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1197 OutStreamer->EmitLabel(AddrSymbol);
1198
1199 unsigned PtrSize = M.getDataLayout().getPointerSize(0);
1200 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1201 PtrSize);
1202 }
1203
1204 // If we don't have any trampolines, then we don't require stack memory
1205 // to be executable. Some targets have a directive to declare this.
1206 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1207 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1208 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1209 OutStreamer->SwitchSection(S);
1210
1211 // Allow the target to emit any magic that it wants at the end of the file,
1212 // after everything else has gone out.
1213 EmitEndOfAsmFile(M);
1214
1215 delete Mang; Mang = nullptr;
1216 MMI = nullptr;
1217
1218 OutStreamer->Finish();
1219 OutStreamer->reset();
1220
1221 return false;
1222 }
1223
getCurExceptionSym()1224 MCSymbol *AsmPrinter::getCurExceptionSym() {
1225 if (!CurExceptionSym)
1226 CurExceptionSym = createTempSymbol("exception");
1227 return CurExceptionSym;
1228 }
1229
SetupMachineFunction(MachineFunction & MF)1230 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1231 this->MF = &MF;
1232 // Get the function symbol.
1233 CurrentFnSym = getSymbol(MF.getFunction());
1234 CurrentFnSymForSize = CurrentFnSym;
1235 CurrentFnBegin = nullptr;
1236 CurExceptionSym = nullptr;
1237 bool NeedsLocalForSize = MAI->needsLocalForSize();
1238 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
1239 MMI->hasEHFunclets() || NeedsLocalForSize) {
1240 CurrentFnBegin = createTempSymbol("func_begin");
1241 if (NeedsLocalForSize)
1242 CurrentFnSymForSize = CurrentFnBegin;
1243 }
1244
1245 if (isVerbose())
1246 LI = &getAnalysis<MachineLoopInfo>();
1247 }
1248
1249 namespace {
1250 // Keep track the alignment, constpool entries per Section.
1251 struct SectionCPs {
1252 MCSection *S;
1253 unsigned Alignment;
1254 SmallVector<unsigned, 4> CPEs;
SectionCPs__anon7e4ef6b00111::SectionCPs1255 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1256 };
1257 }
1258
1259 /// EmitConstantPool - Print to the current output stream assembly
1260 /// representations of the constants in the constant pool MCP. This is
1261 /// used to print out constants which have been "spilled to memory" by
1262 /// the code generator.
1263 ///
EmitConstantPool()1264 void AsmPrinter::EmitConstantPool() {
1265 const MachineConstantPool *MCP = MF->getConstantPool();
1266 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1267 if (CP.empty()) return;
1268
1269 // Calculate sections for constant pool entries. We collect entries to go into
1270 // the same section together to reduce amount of section switch statements.
1271 SmallVector<SectionCPs, 4> CPSections;
1272 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1273 const MachineConstantPoolEntry &CPE = CP[i];
1274 unsigned Align = CPE.getAlignment();
1275
1276 SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1277
1278 const Constant *C = nullptr;
1279 if (!CPE.isMachineConstantPoolEntry())
1280 C = CPE.Val.ConstVal;
1281
1282 MCSection *S =
1283 getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C);
1284
1285 // The number of sections are small, just do a linear search from the
1286 // last section to the first.
1287 bool Found = false;
1288 unsigned SecIdx = CPSections.size();
1289 while (SecIdx != 0) {
1290 if (CPSections[--SecIdx].S == S) {
1291 Found = true;
1292 break;
1293 }
1294 }
1295 if (!Found) {
1296 SecIdx = CPSections.size();
1297 CPSections.push_back(SectionCPs(S, Align));
1298 }
1299
1300 if (Align > CPSections[SecIdx].Alignment)
1301 CPSections[SecIdx].Alignment = Align;
1302 CPSections[SecIdx].CPEs.push_back(i);
1303 }
1304
1305 // Now print stuff into the calculated sections.
1306 const MCSection *CurSection = nullptr;
1307 unsigned Offset = 0;
1308 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1309 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1310 unsigned CPI = CPSections[i].CPEs[j];
1311 MCSymbol *Sym = GetCPISymbol(CPI);
1312 if (!Sym->isUndefined())
1313 continue;
1314
1315 if (CurSection != CPSections[i].S) {
1316 OutStreamer->SwitchSection(CPSections[i].S);
1317 EmitAlignment(Log2_32(CPSections[i].Alignment));
1318 CurSection = CPSections[i].S;
1319 Offset = 0;
1320 }
1321
1322 MachineConstantPoolEntry CPE = CP[CPI];
1323
1324 // Emit inter-object padding for alignment.
1325 unsigned AlignMask = CPE.getAlignment() - 1;
1326 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1327 OutStreamer->EmitZeros(NewOffset - Offset);
1328
1329 Type *Ty = CPE.getType();
1330 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1331
1332 OutStreamer->EmitLabel(Sym);
1333 if (CPE.isMachineConstantPoolEntry())
1334 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1335 else
1336 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1337 }
1338 }
1339 }
1340
1341 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1342 /// by the current function to the current output stream.
1343 ///
EmitJumpTableInfo()1344 void AsmPrinter::EmitJumpTableInfo() {
1345 const DataLayout &DL = MF->getDataLayout();
1346 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1347 if (!MJTI) return;
1348 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1349 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1350 if (JT.empty()) return;
1351
1352 // Pick the directive to use to print the jump table entries, and switch to
1353 // the appropriate section.
1354 const Function *F = MF->getFunction();
1355 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1356 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1357 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1358 *F);
1359 if (JTInDiffSection) {
1360 // Drop it in the readonly section.
1361 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM);
1362 OutStreamer->SwitchSection(ReadOnlySection);
1363 }
1364
1365 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1366
1367 // Jump tables in code sections are marked with a data_region directive
1368 // where that's supported.
1369 if (!JTInDiffSection)
1370 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1371
1372 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1373 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1374
1375 // If this jump table was deleted, ignore it.
1376 if (JTBBs.empty()) continue;
1377
1378 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1379 /// emit a .set directive for each unique entry.
1380 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1381 MAI->doesSetDirectiveSuppressesReloc()) {
1382 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1383 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1384 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1385 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1386 const MachineBasicBlock *MBB = JTBBs[ii];
1387 if (!EmittedSets.insert(MBB).second)
1388 continue;
1389
1390 // .set LJTSet, LBB32-base
1391 const MCExpr *LHS =
1392 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1393 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1394 MCBinaryExpr::createSub(LHS, Base,
1395 OutContext));
1396 }
1397 }
1398
1399 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1400 // before each jump table. The first label is never referenced, but tells
1401 // the assembler and linker the extents of the jump table object. The
1402 // second label is actually referenced by the code.
1403 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1404 // FIXME: This doesn't have to have any specific name, just any randomly
1405 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1406 OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1407
1408 OutStreamer->EmitLabel(GetJTISymbol(JTI));
1409
1410 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1411 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1412 }
1413 if (!JTInDiffSection)
1414 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1415 }
1416
1417 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1418 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1419 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1420 const MachineBasicBlock *MBB,
1421 unsigned UID) const {
1422 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1423 const MCExpr *Value = nullptr;
1424 switch (MJTI->getEntryKind()) {
1425 case MachineJumpTableInfo::EK_Inline:
1426 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1427 case MachineJumpTableInfo::EK_Custom32:
1428 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1429 MJTI, MBB, UID, OutContext);
1430 break;
1431 case MachineJumpTableInfo::EK_BlockAddress:
1432 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1433 // .word LBB123
1434 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1435 break;
1436 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1437 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1438 // with a relocation as gp-relative, e.g.:
1439 // .gprel32 LBB123
1440 MCSymbol *MBBSym = MBB->getSymbol();
1441 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1442 return;
1443 }
1444
1445 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1446 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1447 // with a relocation as gp-relative, e.g.:
1448 // .gpdword LBB123
1449 MCSymbol *MBBSym = MBB->getSymbol();
1450 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1451 return;
1452 }
1453
1454 case MachineJumpTableInfo::EK_LabelDifference32: {
1455 // Each entry is the address of the block minus the address of the jump
1456 // table. This is used for PIC jump tables where gprel32 is not supported.
1457 // e.g.:
1458 // .word LBB123 - LJTI1_2
1459 // If the .set directive avoids relocations, this is emitted as:
1460 // .set L4_5_set_123, LBB123 - LJTI1_2
1461 // .word L4_5_set_123
1462 if (MAI->doesSetDirectiveSuppressesReloc()) {
1463 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1464 OutContext);
1465 break;
1466 }
1467 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1468 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1469 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1470 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1471 break;
1472 }
1473 }
1474
1475 assert(Value && "Unknown entry kind!");
1476
1477 unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1478 OutStreamer->EmitValue(Value, EntrySize);
1479 }
1480
1481
1482 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1483 /// special global used by LLVM. If so, emit it and return true, otherwise
1484 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1485 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1486 if (GV->getName() == "llvm.used") {
1487 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1488 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1489 return true;
1490 }
1491
1492 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1493 if (StringRef(GV->getSection()) == "llvm.metadata" ||
1494 GV->hasAvailableExternallyLinkage())
1495 return true;
1496
1497 if (!GV->hasAppendingLinkage()) return false;
1498
1499 assert(GV->hasInitializer() && "Not a special LLVM global!");
1500
1501 if (GV->getName() == "llvm.global_ctors") {
1502 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1503 /* isCtor */ true);
1504
1505 if (TM.getRelocationModel() == Reloc::Static &&
1506 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1507 StringRef Sym(".constructors_used");
1508 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
1509 MCSA_Reference);
1510 }
1511 return true;
1512 }
1513
1514 if (GV->getName() == "llvm.global_dtors") {
1515 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1516 /* isCtor */ false);
1517
1518 if (TM.getRelocationModel() == Reloc::Static &&
1519 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1520 StringRef Sym(".destructors_used");
1521 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
1522 MCSA_Reference);
1523 }
1524 return true;
1525 }
1526
1527 return false;
1528 }
1529
1530 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1531 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1532 /// is true, as being used with this directive.
EmitLLVMUsedList(const ConstantArray * InitList)1533 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1534 // Should be an array of 'i8*'.
1535 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1536 const GlobalValue *GV =
1537 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1538 if (GV)
1539 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1540 }
1541 }
1542
1543 namespace {
1544 struct Structor {
Structor__anon7e4ef6b00211::Structor1545 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
1546 int Priority;
1547 llvm::Constant *Func;
1548 llvm::GlobalValue *ComdatKey;
1549 };
1550 } // end namespace
1551
1552 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1553 /// priority.
EmitXXStructorList(const DataLayout & DL,const Constant * List,bool isCtor)1554 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1555 bool isCtor) {
1556 // Should be an array of '{ int, void ()* }' structs. The first value is the
1557 // init priority.
1558 if (!isa<ConstantArray>(List)) return;
1559
1560 // Sanity check the structors list.
1561 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1562 if (!InitList) return; // Not an array!
1563 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1564 // FIXME: Only allow the 3-field form in LLVM 4.0.
1565 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1566 return; // Not an array of two or three elements!
1567 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1568 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1569 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1570 return; // Not (int, ptr, ptr).
1571
1572 // Gather the structors in a form that's convenient for sorting by priority.
1573 SmallVector<Structor, 8> Structors;
1574 for (Value *O : InitList->operands()) {
1575 ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1576 if (!CS) continue; // Malformed.
1577 if (CS->getOperand(1)->isNullValue())
1578 break; // Found a null terminator, skip the rest.
1579 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1580 if (!Priority) continue; // Malformed.
1581 Structors.push_back(Structor());
1582 Structor &S = Structors.back();
1583 S.Priority = Priority->getLimitedValue(65535);
1584 S.Func = CS->getOperand(1);
1585 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1586 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1587 }
1588
1589 // Emit the function pointers in the target-specific order
1590 unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1591 std::stable_sort(Structors.begin(), Structors.end(),
1592 [](const Structor &L,
1593 const Structor &R) { return L.Priority < R.Priority; });
1594 for (Structor &S : Structors) {
1595 const TargetLoweringObjectFile &Obj = getObjFileLowering();
1596 const MCSymbol *KeySym = nullptr;
1597 if (GlobalValue *GV = S.ComdatKey) {
1598 if (GV->hasAvailableExternallyLinkage())
1599 // If the associated variable is available_externally, some other TU
1600 // will provide its dynamic initializer.
1601 continue;
1602
1603 KeySym = getSymbol(GV);
1604 }
1605 MCSection *OutputSection =
1606 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1607 : Obj.getStaticDtorSection(S.Priority, KeySym));
1608 OutStreamer->SwitchSection(OutputSection);
1609 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1610 EmitAlignment(Align);
1611 EmitXXStructor(DL, S.Func);
1612 }
1613 }
1614
EmitModuleIdents(Module & M)1615 void AsmPrinter::EmitModuleIdents(Module &M) {
1616 if (!MAI->hasIdentDirective())
1617 return;
1618
1619 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1620 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1621 const MDNode *N = NMD->getOperand(i);
1622 assert(N->getNumOperands() == 1 &&
1623 "llvm.ident metadata entry can have only one operand");
1624 const MDString *S = cast<MDString>(N->getOperand(0));
1625 OutStreamer->EmitIdent(S->getString());
1626 }
1627 }
1628 }
1629
1630 //===--------------------------------------------------------------------===//
1631 // Emission and print routines
1632 //
1633
1634 /// EmitInt8 - Emit a byte directive and value.
1635 ///
EmitInt8(int Value) const1636 void AsmPrinter::EmitInt8(int Value) const {
1637 OutStreamer->EmitIntValue(Value, 1);
1638 }
1639
1640 /// EmitInt16 - Emit a short directive and value.
1641 ///
EmitInt16(int Value) const1642 void AsmPrinter::EmitInt16(int Value) const {
1643 OutStreamer->EmitIntValue(Value, 2);
1644 }
1645
1646 /// EmitInt32 - Emit a long directive and value.
1647 ///
EmitInt32(int Value) const1648 void AsmPrinter::EmitInt32(int Value) const {
1649 OutStreamer->EmitIntValue(Value, 4);
1650 }
1651
1652 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1653 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1654 /// .set if it avoids relocations.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1655 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1656 unsigned Size) const {
1657 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1658 }
1659
1660 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1661 /// where the size in bytes of the directive is specified by Size and Label
1662 /// specifies the label. This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size,bool IsSectionRelative) const1663 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1664 unsigned Size,
1665 bool IsSectionRelative) const {
1666 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1667 OutStreamer->EmitCOFFSecRel32(Label);
1668 return;
1669 }
1670
1671 // Emit Label+Offset (or just Label if Offset is zero)
1672 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1673 if (Offset)
1674 Expr = MCBinaryExpr::createAdd(
1675 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1676
1677 OutStreamer->EmitValue(Expr, Size);
1678 }
1679
1680 //===----------------------------------------------------------------------===//
1681
1682 // EmitAlignment - Emit an alignment directive to the specified power of
1683 // two boundary. For example, if you pass in 3 here, you will get an 8
1684 // byte alignment. If a global value is specified, and if that global has
1685 // an explicit alignment requested, it will override the alignment request
1686 // if required for correctness.
1687 //
EmitAlignment(unsigned NumBits,const GlobalObject * GV) const1688 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1689 if (GV)
1690 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1691
1692 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1693
1694 assert(NumBits <
1695 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1696 "undefined behavior");
1697 if (getCurrentSection()->getKind().isText())
1698 OutStreamer->EmitCodeAlignment(1u << NumBits);
1699 else
1700 OutStreamer->EmitValueToAlignment(1u << NumBits);
1701 }
1702
1703 //===----------------------------------------------------------------------===//
1704 // Constant emission.
1705 //===----------------------------------------------------------------------===//
1706
lowerConstant(const Constant * CV)1707 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1708 MCContext &Ctx = OutContext;
1709
1710 if (CV->isNullValue() || isa<UndefValue>(CV))
1711 return MCConstantExpr::create(0, Ctx);
1712
1713 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1714 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1715
1716 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1717 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1718
1719 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1720 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1721
1722 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1723 if (!CE) {
1724 llvm_unreachable("Unknown constant value to lower!");
1725 }
1726
1727 if (const MCExpr *RelocExpr
1728 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM))
1729 return RelocExpr;
1730
1731 switch (CE->getOpcode()) {
1732 default:
1733 // If the code isn't optimized, there may be outstanding folding
1734 // opportunities. Attempt to fold the expression using DataLayout as a
1735 // last resort before giving up.
1736 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout()))
1737 if (C != CE)
1738 return lowerConstant(C);
1739
1740 // Otherwise report the problem to the user.
1741 {
1742 std::string S;
1743 raw_string_ostream OS(S);
1744 OS << "Unsupported expression in static initializer: ";
1745 CE->printAsOperand(OS, /*PrintType=*/false,
1746 !MF ? nullptr : MF->getFunction()->getParent());
1747 report_fatal_error(OS.str());
1748 }
1749 case Instruction::GetElementPtr: {
1750 // Generate a symbolic expression for the byte address
1751 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1752 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1753
1754 const MCExpr *Base = lowerConstant(CE->getOperand(0));
1755 if (!OffsetAI)
1756 return Base;
1757
1758 int64_t Offset = OffsetAI.getSExtValue();
1759 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1760 Ctx);
1761 }
1762
1763 case Instruction::Trunc:
1764 // We emit the value and depend on the assembler to truncate the generated
1765 // expression properly. This is important for differences between
1766 // blockaddress labels. Since the two labels are in the same function, it
1767 // is reasonable to treat their delta as a 32-bit value.
1768 // FALL THROUGH.
1769 case Instruction::BitCast:
1770 return lowerConstant(CE->getOperand(0));
1771
1772 case Instruction::IntToPtr: {
1773 const DataLayout &DL = getDataLayout();
1774
1775 // Handle casts to pointers by changing them into casts to the appropriate
1776 // integer type. This promotes constant folding and simplifies this code.
1777 Constant *Op = CE->getOperand(0);
1778 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1779 false/*ZExt*/);
1780 return lowerConstant(Op);
1781 }
1782
1783 case Instruction::PtrToInt: {
1784 const DataLayout &DL = getDataLayout();
1785
1786 // Support only foldable casts to/from pointers that can be eliminated by
1787 // changing the pointer to the appropriately sized integer type.
1788 Constant *Op = CE->getOperand(0);
1789 Type *Ty = CE->getType();
1790
1791 const MCExpr *OpExpr = lowerConstant(Op);
1792
1793 // We can emit the pointer value into this slot if the slot is an
1794 // integer slot equal to the size of the pointer.
1795 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1796 return OpExpr;
1797
1798 // Otherwise the pointer is smaller than the resultant integer, mask off
1799 // the high bits so we are sure to get a proper truncation if the input is
1800 // a constant expr.
1801 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1802 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1803 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1804 }
1805
1806 // The MC library also has a right-shift operator, but it isn't consistently
1807 // signed or unsigned between different targets.
1808 case Instruction::Add:
1809 case Instruction::Sub:
1810 case Instruction::Mul:
1811 case Instruction::SDiv:
1812 case Instruction::SRem:
1813 case Instruction::Shl:
1814 case Instruction::And:
1815 case Instruction::Or:
1816 case Instruction::Xor: {
1817 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
1818 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
1819 switch (CE->getOpcode()) {
1820 default: llvm_unreachable("Unknown binary operator constant cast expr");
1821 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
1822 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1823 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
1824 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
1825 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
1826 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
1827 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
1828 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx);
1829 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
1830 }
1831 }
1832 }
1833 }
1834
1835 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
1836 AsmPrinter &AP,
1837 const Constant *BaseCV = nullptr,
1838 uint64_t Offset = 0);
1839
1840 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
1841
1842 /// isRepeatedByteSequence - Determine whether the given value is
1843 /// composed of a repeated sequence of identical bytes and return the
1844 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)1845 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1846 StringRef Data = V->getRawDataValues();
1847 assert(!Data.empty() && "Empty aggregates should be CAZ node");
1848 char C = Data[0];
1849 for (unsigned i = 1, e = Data.size(); i != e; ++i)
1850 if (Data[i] != C) return -1;
1851 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1852 }
1853
1854
1855 /// isRepeatedByteSequence - Determine whether the given value is
1856 /// composed of a repeated sequence of identical bytes and return the
1857 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,const DataLayout & DL)1858 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
1859 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1860 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
1861 assert(Size % 8 == 0);
1862
1863 // Extend the element to take zero padding into account.
1864 APInt Value = CI->getValue().zextOrSelf(Size);
1865 if (!Value.isSplat(8))
1866 return -1;
1867
1868 return Value.zextOrTrunc(8).getZExtValue();
1869 }
1870 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1871 // Make sure all array elements are sequences of the same repeated
1872 // byte.
1873 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1874 Constant *Op0 = CA->getOperand(0);
1875 int Byte = isRepeatedByteSequence(Op0, DL);
1876 if (Byte == -1)
1877 return -1;
1878
1879 // All array elements must be equal.
1880 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
1881 if (CA->getOperand(i) != Op0)
1882 return -1;
1883 return Byte;
1884 }
1885
1886 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1887 return isRepeatedByteSequence(CDS);
1888
1889 return -1;
1890 }
1891
emitGlobalConstantDataSequential(const DataLayout & DL,const ConstantDataSequential * CDS,AsmPrinter & AP)1892 static void emitGlobalConstantDataSequential(const DataLayout &DL,
1893 const ConstantDataSequential *CDS,
1894 AsmPrinter &AP) {
1895
1896 // See if we can aggregate this into a .fill, if so, emit it as such.
1897 int Value = isRepeatedByteSequence(CDS, DL);
1898 if (Value != -1) {
1899 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
1900 // Don't emit a 1-byte object as a .fill.
1901 if (Bytes > 1)
1902 return AP.OutStreamer->EmitFill(Bytes, Value);
1903 }
1904
1905 // If this can be emitted with .ascii/.asciz, emit it as such.
1906 if (CDS->isString())
1907 return AP.OutStreamer->EmitBytes(CDS->getAsString());
1908
1909 // Otherwise, emit the values in successive locations.
1910 unsigned ElementByteSize = CDS->getElementByteSize();
1911 if (isa<IntegerType>(CDS->getElementType())) {
1912 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1913 if (AP.isVerbose())
1914 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
1915 CDS->getElementAsInteger(i));
1916 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
1917 ElementByteSize);
1918 }
1919 } else {
1920 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
1921 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
1922 }
1923
1924 unsigned Size = DL.getTypeAllocSize(CDS->getType());
1925 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1926 CDS->getNumElements();
1927 if (unsigned Padding = Size - EmittedSize)
1928 AP.OutStreamer->EmitZeros(Padding);
1929
1930 }
1931
emitGlobalConstantArray(const DataLayout & DL,const ConstantArray * CA,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)1932 static void emitGlobalConstantArray(const DataLayout &DL,
1933 const ConstantArray *CA, AsmPrinter &AP,
1934 const Constant *BaseCV, uint64_t Offset) {
1935 // See if we can aggregate some values. Make sure it can be
1936 // represented as a series of bytes of the constant value.
1937 int Value = isRepeatedByteSequence(CA, DL);
1938
1939 if (Value != -1) {
1940 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
1941 AP.OutStreamer->EmitFill(Bytes, Value);
1942 }
1943 else {
1944 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1945 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
1946 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
1947 }
1948 }
1949 }
1950
emitGlobalConstantVector(const DataLayout & DL,const ConstantVector * CV,AsmPrinter & AP)1951 static void emitGlobalConstantVector(const DataLayout &DL,
1952 const ConstantVector *CV, AsmPrinter &AP) {
1953 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1954 emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
1955
1956 unsigned Size = DL.getTypeAllocSize(CV->getType());
1957 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1958 CV->getType()->getNumElements();
1959 if (unsigned Padding = Size - EmittedSize)
1960 AP.OutStreamer->EmitZeros(Padding);
1961 }
1962
emitGlobalConstantStruct(const DataLayout & DL,const ConstantStruct * CS,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)1963 static void emitGlobalConstantStruct(const DataLayout &DL,
1964 const ConstantStruct *CS, AsmPrinter &AP,
1965 const Constant *BaseCV, uint64_t Offset) {
1966 // Print the fields in successive locations. Pad to align if needed!
1967 unsigned Size = DL.getTypeAllocSize(CS->getType());
1968 const StructLayout *Layout = DL.getStructLayout(CS->getType());
1969 uint64_t SizeSoFar = 0;
1970 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1971 const Constant *Field = CS->getOperand(i);
1972
1973 // Print the actual field value.
1974 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
1975
1976 // Check if padding is needed and insert one or more 0s.
1977 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
1978 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1979 - Layout->getElementOffset(i)) - FieldSize;
1980 SizeSoFar += FieldSize + PadSize;
1981
1982 // Insert padding - this may include padding to increase the size of the
1983 // current field up to the ABI size (if the struct is not packed) as well
1984 // as padding to ensure that the next field starts at the right offset.
1985 AP.OutStreamer->EmitZeros(PadSize);
1986 }
1987 assert(SizeSoFar == Layout->getSizeInBytes() &&
1988 "Layout of constant struct may be incorrect!");
1989 }
1990
emitGlobalConstantFP(const ConstantFP * CFP,AsmPrinter & AP)1991 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1992 APInt API = CFP->getValueAPF().bitcastToAPInt();
1993
1994 // First print a comment with what we think the original floating-point value
1995 // should have been.
1996 if (AP.isVerbose()) {
1997 SmallString<8> StrVal;
1998 CFP->getValueAPF().toString(StrVal);
1999
2000 if (CFP->getType())
2001 CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2002 else
2003 AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2004 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2005 }
2006
2007 // Now iterate through the APInt chunks, emitting them in endian-correct
2008 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2009 // floats).
2010 unsigned NumBytes = API.getBitWidth() / 8;
2011 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2012 const uint64_t *p = API.getRawData();
2013
2014 // PPC's long double has odd notions of endianness compared to how LLVM
2015 // handles it: p[0] goes first for *big* endian on PPC.
2016 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2017 int Chunk = API.getNumWords() - 1;
2018
2019 if (TrailingBytes)
2020 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2021
2022 for (; Chunk >= 0; --Chunk)
2023 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2024 } else {
2025 unsigned Chunk;
2026 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2027 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2028
2029 if (TrailingBytes)
2030 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2031 }
2032
2033 // Emit the tail padding for the long double.
2034 const DataLayout &DL = AP.getDataLayout();
2035 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2036 DL.getTypeStoreSize(CFP->getType()));
2037 }
2038
emitGlobalConstantLargeInt(const ConstantInt * CI,AsmPrinter & AP)2039 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2040 const DataLayout &DL = AP.getDataLayout();
2041 unsigned BitWidth = CI->getBitWidth();
2042
2043 // Copy the value as we may massage the layout for constants whose bit width
2044 // is not a multiple of 64-bits.
2045 APInt Realigned(CI->getValue());
2046 uint64_t ExtraBits = 0;
2047 unsigned ExtraBitsSize = BitWidth & 63;
2048
2049 if (ExtraBitsSize) {
2050 // The bit width of the data is not a multiple of 64-bits.
2051 // The extra bits are expected to be at the end of the chunk of the memory.
2052 // Little endian:
2053 // * Nothing to be done, just record the extra bits to emit.
2054 // Big endian:
2055 // * Record the extra bits to emit.
2056 // * Realign the raw data to emit the chunks of 64-bits.
2057 if (DL.isBigEndian()) {
2058 // Basically the structure of the raw data is a chunk of 64-bits cells:
2059 // 0 1 BitWidth / 64
2060 // [chunk1][chunk2] ... [chunkN].
2061 // The most significant chunk is chunkN and it should be emitted first.
2062 // However, due to the alignment issue chunkN contains useless bits.
2063 // Realign the chunks so that they contain only useless information:
2064 // ExtraBits 0 1 (BitWidth / 64) - 1
2065 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2066 ExtraBits = Realigned.getRawData()[0] &
2067 (((uint64_t)-1) >> (64 - ExtraBitsSize));
2068 Realigned = Realigned.lshr(ExtraBitsSize);
2069 } else
2070 ExtraBits = Realigned.getRawData()[BitWidth / 64];
2071 }
2072
2073 // We don't expect assemblers to support integer data directives
2074 // for more than 64 bits, so we emit the data in at most 64-bit
2075 // quantities at a time.
2076 const uint64_t *RawData = Realigned.getRawData();
2077 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2078 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2079 AP.OutStreamer->EmitIntValue(Val, 8);
2080 }
2081
2082 if (ExtraBitsSize) {
2083 // Emit the extra bits after the 64-bits chunks.
2084
2085 // Emit a directive that fills the expected size.
2086 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2087 Size -= (BitWidth / 64) * 8;
2088 assert(Size && Size * 8 >= ExtraBitsSize &&
2089 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2090 == ExtraBits && "Directive too small for extra bits.");
2091 AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2092 }
2093 }
2094
2095 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2096 /// equivalent global, by a target specific GOT pc relative access to the
2097 /// final symbol.
handleIndirectSymViaGOTPCRel(AsmPrinter & AP,const MCExpr ** ME,const Constant * BaseCst,uint64_t Offset)2098 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2099 const Constant *BaseCst,
2100 uint64_t Offset) {
2101 // The global @foo below illustrates a global that uses a got equivalent.
2102 //
2103 // @bar = global i32 42
2104 // @gotequiv = private unnamed_addr constant i32* @bar
2105 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2106 // i64 ptrtoint (i32* @foo to i64))
2107 // to i32)
2108 //
2109 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2110 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2111 // form:
2112 //
2113 // foo = cstexpr, where
2114 // cstexpr := <gotequiv> - "." + <cst>
2115 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2116 //
2117 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2118 //
2119 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2120 // gotpcrelcst := <offset from @foo base> + <cst>
2121 //
2122 MCValue MV;
2123 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2124 return;
2125 const MCSymbolRefExpr *SymA = MV.getSymA();
2126 if (!SymA)
2127 return;
2128
2129 // Check that GOT equivalent symbol is cached.
2130 const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2131 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2132 return;
2133
2134 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2135 if (!BaseGV)
2136 return;
2137
2138 // Check for a valid base symbol
2139 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2140 const MCSymbolRefExpr *SymB = MV.getSymB();
2141
2142 if (!SymB || BaseSym != &SymB->getSymbol())
2143 return;
2144
2145 // Make sure to match:
2146 //
2147 // gotpcrelcst := <offset from @foo base> + <cst>
2148 //
2149 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2150 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2151 // if the target knows how to encode it.
2152 //
2153 int64_t GOTPCRelCst = Offset + MV.getConstant();
2154 if (GOTPCRelCst < 0)
2155 return;
2156 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2157 return;
2158
2159 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2160 //
2161 // bar:
2162 // .long 42
2163 // gotequiv:
2164 // .quad bar
2165 // foo:
2166 // .long gotequiv - "." + <cst>
2167 //
2168 // is replaced by the target specific equivalent to:
2169 //
2170 // bar:
2171 // .long 42
2172 // foo:
2173 // .long bar@GOTPCREL+<gotpcrelcst>
2174 //
2175 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2176 const GlobalVariable *GV = Result.first;
2177 int NumUses = (int)Result.second;
2178 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2179 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2180 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2181 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2182
2183 // Update GOT equivalent usage information
2184 --NumUses;
2185 if (NumUses >= 0)
2186 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2187 }
2188
emitGlobalConstantImpl(const DataLayout & DL,const Constant * CV,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2189 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2190 AsmPrinter &AP, const Constant *BaseCV,
2191 uint64_t Offset) {
2192 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2193
2194 // Globals with sub-elements such as combinations of arrays and structs
2195 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2196 // constant symbol base and the current position with BaseCV and Offset.
2197 if (!BaseCV && CV->hasOneUse())
2198 BaseCV = dyn_cast<Constant>(CV->user_back());
2199
2200 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2201 return AP.OutStreamer->EmitZeros(Size);
2202
2203 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2204 switch (Size) {
2205 case 1:
2206 case 2:
2207 case 4:
2208 case 8:
2209 if (AP.isVerbose())
2210 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2211 CI->getZExtValue());
2212 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2213 return;
2214 default:
2215 emitGlobalConstantLargeInt(CI, AP);
2216 return;
2217 }
2218 }
2219
2220 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2221 return emitGlobalConstantFP(CFP, AP);
2222
2223 if (isa<ConstantPointerNull>(CV)) {
2224 AP.OutStreamer->EmitIntValue(0, Size);
2225 return;
2226 }
2227
2228 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2229 return emitGlobalConstantDataSequential(DL, CDS, AP);
2230
2231 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2232 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2233
2234 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2235 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2236
2237 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2238 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2239 // vectors).
2240 if (CE->getOpcode() == Instruction::BitCast)
2241 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2242
2243 if (Size > 8) {
2244 // If the constant expression's size is greater than 64-bits, then we have
2245 // to emit the value in chunks. Try to constant fold the value and emit it
2246 // that way.
2247 Constant *New = ConstantFoldConstantExpression(CE, DL);
2248 if (New && New != CE)
2249 return emitGlobalConstantImpl(DL, New, AP);
2250 }
2251 }
2252
2253 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2254 return emitGlobalConstantVector(DL, V, AP);
2255
2256 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2257 // thread the streamer with EmitValue.
2258 const MCExpr *ME = AP.lowerConstant(CV);
2259
2260 // Since lowerConstant already folded and got rid of all IR pointer and
2261 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2262 // directly.
2263 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2264 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2265
2266 AP.OutStreamer->EmitValue(ME, Size);
2267 }
2268
2269 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const DataLayout & DL,const Constant * CV)2270 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2271 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2272 if (Size)
2273 emitGlobalConstantImpl(DL, CV, *this);
2274 else if (MAI->hasSubsectionsViaSymbols()) {
2275 // If the global has zero size, emit a single byte so that two labels don't
2276 // look like they are at the same location.
2277 OutStreamer->EmitIntValue(0, 1);
2278 }
2279 }
2280
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)2281 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2282 // Target doesn't support this yet!
2283 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2284 }
2285
printOffset(int64_t Offset,raw_ostream & OS) const2286 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2287 if (Offset > 0)
2288 OS << '+' << Offset;
2289 else if (Offset < 0)
2290 OS << Offset;
2291 }
2292
2293 //===----------------------------------------------------------------------===//
2294 // Symbol Lowering Routines.
2295 //===----------------------------------------------------------------------===//
2296
createTempSymbol(const Twine & Name) const2297 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2298 return OutContext.createTempSymbol(Name, true);
2299 }
2300
GetBlockAddressSymbol(const BlockAddress * BA) const2301 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2302 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2303 }
2304
GetBlockAddressSymbol(const BasicBlock * BB) const2305 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2306 return MMI->getAddrLabelSymbol(BB);
2307 }
2308
2309 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const2310 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2311 const DataLayout &DL = getDataLayout();
2312 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2313 "CPI" + Twine(getFunctionNumber()) + "_" +
2314 Twine(CPID));
2315 }
2316
2317 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const2318 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2319 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2320 }
2321
2322 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2323 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const2324 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2325 const DataLayout &DL = getDataLayout();
2326 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2327 Twine(getFunctionNumber()) + "_" +
2328 Twine(UID) + "_set_" + Twine(MBBID));
2329 }
2330
getSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix) const2331 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2332 StringRef Suffix) const {
2333 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
2334 TM);
2335 }
2336
2337 /// Return the MCSymbol for the specified ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2338 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2339 SmallString<60> NameStr;
2340 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2341 return OutContext.getOrCreateSymbol(NameStr);
2342 }
2343
2344
2345
2346 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2347 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2348 unsigned FunctionNumber) {
2349 if (!Loop) return;
2350 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2351 OS.indent(Loop->getLoopDepth()*2)
2352 << "Parent Loop BB" << FunctionNumber << "_"
2353 << Loop->getHeader()->getNumber()
2354 << " Depth=" << Loop->getLoopDepth() << '\n';
2355 }
2356
2357
2358 /// PrintChildLoopComment - Print comments about child loops within
2359 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2360 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2361 unsigned FunctionNumber) {
2362 // Add child loop information
2363 for (const MachineLoop *CL : *Loop) {
2364 OS.indent(CL->getLoopDepth()*2)
2365 << "Child Loop BB" << FunctionNumber << "_"
2366 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2367 << '\n';
2368 PrintChildLoopComment(OS, CL, FunctionNumber);
2369 }
2370 }
2371
2372 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
emitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2373 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2374 const MachineLoopInfo *LI,
2375 const AsmPrinter &AP) {
2376 // Add loop depth information
2377 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2378 if (!Loop) return;
2379
2380 MachineBasicBlock *Header = Loop->getHeader();
2381 assert(Header && "No header for loop");
2382
2383 // If this block is not a loop header, just print out what is the loop header
2384 // and return.
2385 if (Header != &MBB) {
2386 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
2387 Twine(AP.getFunctionNumber())+"_" +
2388 Twine(Loop->getHeader()->getNumber())+
2389 " Depth="+Twine(Loop->getLoopDepth()));
2390 return;
2391 }
2392
2393 // Otherwise, it is a loop header. Print out information about child and
2394 // parent loops.
2395 raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2396
2397 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2398
2399 OS << "=>";
2400 OS.indent(Loop->getLoopDepth()*2-2);
2401
2402 OS << "This ";
2403 if (Loop->empty())
2404 OS << "Inner ";
2405 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2406
2407 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2408 }
2409
2410
2411 /// EmitBasicBlockStart - This method prints the label for the specified
2412 /// MachineBasicBlock, an alignment (if present) and a comment describing
2413 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock & MBB) const2414 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2415 // End the previous funclet and start a new one.
2416 if (MBB.isEHFuncletEntry()) {
2417 for (const HandlerInfo &HI : Handlers) {
2418 HI.Handler->endFunclet();
2419 HI.Handler->beginFunclet(MBB);
2420 }
2421 }
2422
2423 // Emit an alignment directive for this block, if needed.
2424 if (unsigned Align = MBB.getAlignment())
2425 EmitAlignment(Align);
2426
2427 // If the block has its address taken, emit any labels that were used to
2428 // reference the block. It is possible that there is more than one label
2429 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2430 // the references were generated.
2431 if (MBB.hasAddressTaken()) {
2432 const BasicBlock *BB = MBB.getBasicBlock();
2433 if (isVerbose())
2434 OutStreamer->AddComment("Block address taken");
2435
2436 // MBBs can have their address taken as part of CodeGen without having
2437 // their corresponding BB's address taken in IR
2438 if (BB->hasAddressTaken())
2439 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2440 OutStreamer->EmitLabel(Sym);
2441 }
2442
2443 // Print some verbose block comments.
2444 if (isVerbose()) {
2445 if (const BasicBlock *BB = MBB.getBasicBlock())
2446 if (BB->hasName())
2447 OutStreamer->AddComment("%" + BB->getName());
2448 emitBasicBlockLoopComments(MBB, LI, *this);
2449 }
2450
2451 // Print the main label for the block.
2452 if (MBB.pred_empty() ||
2453 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2454 if (isVerbose()) {
2455 // NOTE: Want this comment at start of line, don't emit with AddComment.
2456 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2457 }
2458 } else {
2459 OutStreamer->EmitLabel(MBB.getSymbol());
2460 }
2461 }
2462
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const2463 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2464 bool IsDefinition) const {
2465 MCSymbolAttr Attr = MCSA_Invalid;
2466
2467 switch (Visibility) {
2468 default: break;
2469 case GlobalValue::HiddenVisibility:
2470 if (IsDefinition)
2471 Attr = MAI->getHiddenVisibilityAttr();
2472 else
2473 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2474 break;
2475 case GlobalValue::ProtectedVisibility:
2476 Attr = MAI->getProtectedVisibilityAttr();
2477 break;
2478 }
2479
2480 if (Attr != MCSA_Invalid)
2481 OutStreamer->EmitSymbolAttribute(Sym, Attr);
2482 }
2483
2484 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2485 /// exactly one predecessor and the control transfer mechanism between
2486 /// the predecessor and this block is a fall-through.
2487 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2488 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2489 // If this is a landing pad, it isn't a fall through. If it has no preds,
2490 // then nothing falls through to it.
2491 if (MBB->isEHPad() || MBB->pred_empty())
2492 return false;
2493
2494 // If there isn't exactly one predecessor, it can't be a fall through.
2495 if (MBB->pred_size() > 1)
2496 return false;
2497
2498 // The predecessor has to be immediately before this block.
2499 MachineBasicBlock *Pred = *MBB->pred_begin();
2500 if (!Pred->isLayoutSuccessor(MBB))
2501 return false;
2502
2503 // If the block is completely empty, then it definitely does fall through.
2504 if (Pred->empty())
2505 return true;
2506
2507 // Check the terminators in the previous blocks
2508 for (const auto &MI : Pred->terminators()) {
2509 // If it is not a simple branch, we are in a table somewhere.
2510 if (!MI.isBranch() || MI.isIndirectBranch())
2511 return false;
2512
2513 // If we are the operands of one of the branches, this is not a fall
2514 // through. Note that targets with delay slots will usually bundle
2515 // terminators with the delay slot instruction.
2516 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
2517 if (OP->isJTI())
2518 return false;
2519 if (OP->isMBB() && OP->getMBB() == MBB)
2520 return false;
2521 }
2522 }
2523
2524 return true;
2525 }
2526
2527
2528
GetOrCreateGCPrinter(GCStrategy & S)2529 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2530 if (!S.usesMetadata())
2531 return nullptr;
2532
2533 assert(!S.useStatepoints() && "statepoints do not currently support custom"
2534 " stackmap formats, please see the documentation for a description of"
2535 " the default format. If you really need a custom serialized format,"
2536 " please file a bug");
2537
2538 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2539 gcp_map_type::iterator GCPI = GCMap.find(&S);
2540 if (GCPI != GCMap.end())
2541 return GCPI->second.get();
2542
2543 const char *Name = S.getName().c_str();
2544
2545 for (GCMetadataPrinterRegistry::iterator
2546 I = GCMetadataPrinterRegistry::begin(),
2547 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2548 if (strcmp(Name, I->getName()) == 0) {
2549 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2550 GMP->S = &S;
2551 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2552 return IterBool.first->second.get();
2553 }
2554
2555 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2556 }
2557
2558 /// Pin vtable to this file.
~AsmPrinterHandler()2559 AsmPrinterHandler::~AsmPrinterHandler() {}
2560
markFunctionEnd()2561 void AsmPrinterHandler::markFunctionEnd() {}
2562