• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_GMRES_H
12 #define EIGEN_GMRES_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /**
19  * Generalized Minimal Residual Algorithm based on the
20  * Arnoldi algorithm implemented with Householder reflections.
21  *
22  * Parameters:
23  *  \param mat       matrix of linear system of equations
24  *  \param Rhs       right hand side vector of linear system of equations
25  *  \param x         on input: initial guess, on output: solution
26  *  \param precond   preconditioner used
27  *  \param iters     on input: maximum number of iterations to perform
28  *                   on output: number of iterations performed
29  *  \param restart   number of iterations for a restart
30  *  \param tol_error on input: residual tolerance
31  *                   on output: residuum achieved
32  *
33  * \sa IterativeMethods::bicgstab()
34  *
35  *
36  * For references, please see:
37  *
38  * Saad, Y. and Schultz, M. H.
39  * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
40  * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
41  *
42  * Saad, Y.
43  * Iterative Methods for Sparse Linear Systems.
44  * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
45  *
46  * Walker, H. F.
47  * Implementations of the GMRES method.
48  * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
49  *
50  * Walker, H. F.
51  * Implementation of the GMRES Method using Householder Transformations.
52  * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
53  *
54  */
55 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
gmres(const MatrixType & mat,const Rhs & rhs,Dest & x,const Preconditioner & precond,int & iters,const int & restart,typename Dest::RealScalar & tol_error)56 bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
57 		int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
58 
59 	using std::sqrt;
60 	using std::abs;
61 
62 	typedef typename Dest::RealScalar RealScalar;
63 	typedef typename Dest::Scalar Scalar;
64 	typedef Matrix < Scalar, Dynamic, 1 > VectorType;
65 	typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
66 
67 	RealScalar tol = tol_error;
68 	const int maxIters = iters;
69 	iters = 0;
70 
71 	const int m = mat.rows();
72 
73 	VectorType p0 = rhs - mat*x;
74 	VectorType r0 = precond.solve(p0);
75 
76 	// is initial guess already good enough?
77 	if(abs(r0.norm()) < tol) {
78 		return true;
79 	}
80 
81 	VectorType w = VectorType::Zero(restart + 1);
82 
83 	FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
84 	VectorType tau = VectorType::Zero(restart + 1);
85 	std::vector < JacobiRotation < Scalar > > G(restart);
86 
87 	// generate first Householder vector
88 	VectorType e(m-1);
89 	RealScalar beta;
90 	r0.makeHouseholder(e, tau.coeffRef(0), beta);
91 	w(0)=(Scalar) beta;
92 	H.bottomLeftCorner(m - 1, 1) = e;
93 
94 	for (int k = 1; k <= restart; ++k) {
95 
96 		++iters;
97 
98 		VectorType v = VectorType::Unit(m, k - 1), workspace(m);
99 
100 		// apply Householder reflections H_{1} ... H_{k-1} to v
101 		for (int i = k - 1; i >= 0; --i) {
102 			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
103 		}
104 
105 		// apply matrix M to v:  v = mat * v;
106 		VectorType t=mat*v;
107 		v=precond.solve(t);
108 
109 		// apply Householder reflections H_{k-1} ... H_{1} to v
110 		for (int i = 0; i < k; ++i) {
111 			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
112 		}
113 
114 		if (v.tail(m - k).norm() != 0.0) {
115 
116 			if (k <= restart) {
117 
118 				// generate new Householder vector
119                                   VectorType e(m - k - 1);
120 				RealScalar beta;
121 				v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
122 				H.col(k).tail(m - k - 1) = e;
123 
124 				// apply Householder reflection H_{k} to v
125 				v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
126 
127 			}
128                 }
129 
130                 if (k > 1) {
131                         for (int i = 0; i < k - 1; ++i) {
132                                 // apply old Givens rotations to v
133                                 v.applyOnTheLeft(i, i + 1, G[i].adjoint());
134                         }
135                 }
136 
137                 if (k<m && v(k) != (Scalar) 0) {
138                         // determine next Givens rotation
139                         G[k - 1].makeGivens(v(k - 1), v(k));
140 
141                         // apply Givens rotation to v and w
142                         v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
143                         w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
144 
145                 }
146 
147                 // insert coefficients into upper matrix triangle
148                 H.col(k - 1).head(k) = v.head(k);
149 
150                 bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
151 
152                 if (stop || k == restart) {
153 
154                         // solve upper triangular system
155                         VectorType y = w.head(k);
156                         H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
157 
158                         // use Horner-like scheme to calculate solution vector
159                         VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
160 
161                         // apply Householder reflection H_{k} to x_new
162                         x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
163 
164                         for (int i = k - 2; i >= 0; --i) {
165                                 x_new += y(i) * VectorType::Unit(m, i);
166                                 // apply Householder reflection H_{i} to x_new
167                                 x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
168                         }
169 
170                         x += x_new;
171 
172                         if (stop) {
173                                 return true;
174                         } else {
175                                 k=0;
176 
177                                 // reset data for a restart  r0 = rhs - mat * x;
178                                 VectorType p0=mat*x;
179                                 VectorType p1=precond.solve(p0);
180                                 r0 = rhs - p1;
181 //                                 r0_sqnorm = r0.squaredNorm();
182                                 w = VectorType::Zero(restart + 1);
183                                 H = FMatrixType::Zero(m, restart + 1);
184                                 tau = VectorType::Zero(restart + 1);
185 
186                                 // generate first Householder vector
187                                 RealScalar beta;
188                                 r0.makeHouseholder(e, tau.coeffRef(0), beta);
189                                 w(0)=(Scalar) beta;
190                                 H.bottomLeftCorner(m - 1, 1) = e;
191 
192                         }
193 
194                 }
195 
196 
197 
198 	}
199 
200 	return false;
201 
202 }
203 
204 }
205 
206 template< typename _MatrixType,
207           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
208 class GMRES;
209 
210 namespace internal {
211 
212 template< typename _MatrixType, typename _Preconditioner>
213 struct traits<GMRES<_MatrixType,_Preconditioner> >
214 {
215   typedef _MatrixType MatrixType;
216   typedef _Preconditioner Preconditioner;
217 };
218 
219 }
220 
221 /** \ingroup IterativeLinearSolvers_Module
222   * \brief A GMRES solver for sparse square problems
223   *
224   * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
225   * residual method. The vectors x and b can be either dense or sparse.
226   *
227   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
228   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
229   *
230   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
231   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
232   * and NumTraits<Scalar>::epsilon() for the tolerance.
233   *
234   * This class can be used as the direct solver classes. Here is a typical usage example:
235   * \code
236   * int n = 10000;
237   * VectorXd x(n), b(n);
238   * SparseMatrix<double> A(n,n);
239   * // fill A and b
240   * GMRES<SparseMatrix<double> > solver(A);
241   * x = solver.solve(b);
242   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
243   * std::cout << "estimated error: " << solver.error()      << std::endl;
244   * // update b, and solve again
245   * x = solver.solve(b);
246   * \endcode
247   *
248   * By default the iterations start with x=0 as an initial guess of the solution.
249   * One can control the start using the solveWithGuess() method.
250   *
251   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
252   */
253 template< typename _MatrixType, typename _Preconditioner>
254 class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
255 {
256   typedef IterativeSolverBase<GMRES> Base;
257   using Base::mp_matrix;
258   using Base::m_error;
259   using Base::m_iterations;
260   using Base::m_info;
261   using Base::m_isInitialized;
262 
263 private:
264   int m_restart;
265 
266 public:
267   typedef _MatrixType MatrixType;
268   typedef typename MatrixType::Scalar Scalar;
269   typedef typename MatrixType::Index Index;
270   typedef typename MatrixType::RealScalar RealScalar;
271   typedef _Preconditioner Preconditioner;
272 
273 public:
274 
275   /** Default constructor. */
276   GMRES() : Base(), m_restart(30) {}
277 
278   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
279     *
280     * This constructor is a shortcut for the default constructor followed
281     * by a call to compute().
282     *
283     * \warning this class stores a reference to the matrix A as well as some
284     * precomputed values that depend on it. Therefore, if \a A is changed
285     * this class becomes invalid. Call compute() to update it with the new
286     * matrix A, or modify a copy of A.
287     */
288   GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
289 
290   ~GMRES() {}
291 
292   /** Get the number of iterations after that a restart is performed.
293     */
294   int get_restart() { return m_restart; }
295 
296   /** Set the number of iterations after that a restart is performed.
297     *  \param restart   number of iterations for a restarti, default is 30.
298     */
299   void set_restart(const int restart) { m_restart=restart; }
300 
301   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
302     * \a x0 as an initial solution.
303     *
304     * \sa compute()
305     */
306   template<typename Rhs,typename Guess>
307   inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
308   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
309   {
310     eigen_assert(m_isInitialized && "GMRES is not initialized.");
311     eigen_assert(Base::rows()==b.rows()
312               && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
313     return internal::solve_retval_with_guess
314             <GMRES, Rhs, Guess>(*this, b.derived(), x0);
315   }
316 
317   /** \internal */
318   template<typename Rhs,typename Dest>
319   void _solveWithGuess(const Rhs& b, Dest& x) const
320   {
321     bool failed = false;
322     for(int j=0; j<b.cols(); ++j)
323     {
324       m_iterations = Base::maxIterations();
325       m_error = Base::m_tolerance;
326 
327       typename Dest::ColXpr xj(x,j);
328       if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
329         failed = true;
330     }
331     m_info = failed ? NumericalIssue
332            : m_error <= Base::m_tolerance ? Success
333            : NoConvergence;
334     m_isInitialized = true;
335   }
336 
337   /** \internal */
338   template<typename Rhs,typename Dest>
339   void _solve(const Rhs& b, Dest& x) const
340   {
341     x = b;
342     if(x.squaredNorm() == 0) return; // Check Zero right hand side
343     _solveWithGuess(b,x);
344   }
345 
346 protected:
347 
348 };
349 
350 
351 namespace internal {
352 
353   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
354 struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
355   : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
356 {
357   typedef GMRES<_MatrixType, _Preconditioner> Dec;
358   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
359 
360   template<typename Dest> void evalTo(Dest& dst) const
361   {
362     dec()._solve(rhs(),dst);
363   }
364 };
365 
366 } // end namespace internal
367 
368 } // end namespace Eigen
369 
370 #endif // EIGEN_GMRES_H
371